Cost-based Optimization of Graph Queries

Silke TriR3l
Humboldt-Universitat zu Berlin
Unter den Linden 6
D-10099 Berlin, Germany

trissl@informatik.hu-berlin.de

ABSTRACT

Many applications require efficient management and query-
ing of graph structured data. For example, Systems Biology
studies metabolic pathways and gene regulation networks
modeled as directed graphs. These graphs consist of tens of
thousands of molecules and interactions between them. To
get a better understanding of these networks biologists need
to query the networks and extract information.

In this paper we propose a framework for cost-based op-
timization of graph queries in relational database manage-
ment systems. The result of graph queries is a set of sub-
graphs that is selected from the data graph based on condi-
tions on nodes and paths posed in the query. We present the
pathway query language as syntax to express graph queries.
We show how to utilize techniques of classical cost-based
query optimization to optimize graph queries. To handle
graph specific predicates, such as the existence of paths, we
propose new operators. In addition we describe two im-
plementations of path operators in more detail and give an
overview of future work.

1. INTRODUCTION

Graphs become more and more important in many ar-
eas such as management of XML documents with XPoint-
ers [19] or working in the semantic web, which builds on
RDF, a graph-based data model and on graph-based query
languages such as RQL [13]. In our own research we mostly
work with data from the Life Science domain. In every living
cell there exist complex mechanisms involving components,
such as DNA, proteins, and chemical compounds that are
responsible for the functioning of the cell. It is now com-
monly acknowledged that further progress in understanding
the functioning of a cell can only be achieved if the inter-
play of these components, organized in networks, is under-
stood [3].

In [10] van Helden and colleagues identified several im-
portant questions on biological networks. For instance, the
question ”find all processes that lead from node A to node B

Permission to make digital or hard copies of all or part o thvwork for
personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

Proceedings of S GMOD2007 Ph.D. Workshop on Innovative Database Re-
search 2007 (IDAR2007), June 10, 2007, Beijing, China.

in less than max steps and more than min steps” or ”find all
genes whose expression is directly or indirectly affected by
a given compound”. If we assume that the given compound
is ’glucose’ we can express the second question using the
pathway query language (PQL) proposed by Leser in [15].
Figure 1 shows the PQL query for that question. The FROM-
part specifies the queried network, the LET-part the node
and path variables, and the WHERE-part places conditions on
node and path variables.

SELECT B
FROM network
LET node A, node B, path P
WHERE B ISA gene
AND A ISA compound
AND A.name = ’glucose’
AND P.path = A[-*]B

Figure 1: A PQL query to find all genes that are
directly or indirectly affected by glucose.

Typical biological networks, such as gene regulation, pro-
tein-protein interaction [21], or metabolic networks [12] are
currently in the range of tens of thousands of nodes. This
number will increase in the future as more and more organ-
isms are studied [2].

We assume that the graphs as well as all annotations for
nodes and edges are stored in a relational database man-
agement system (RDBMS). Therefore, graph queries need
to be executed inside a RDBMS. Mannino and Shapiro [17]
gave an overview of different approaches to extend SQL to
answer graph queries. Most of the presented approaches
either rely on depth-first traversal of the graph or the pre-
computation of the transitive closure. Consens and Mendel-
zon [5] presented a graph query language that is inspired
by formal grammar. The queries are evaluated using depth-
first search. Computing the transitive closure or traverse the
graph at query time only work for small graphs as we showed
in [23]. Therefore, there is a need to find other methods to
evaluate graph queries in a RDBMS.

In this paper we propose to use ideas from classical query
optimization to optimize graph queries in a RDBMS. The
reminder of this paper is organized as follows. In the next
section we describe classical query optimization in RDBMS
and its applicability to graph query optimization and related
work. In Section 3 we describe two implementations of path
operators and in Section 4 we discuss future steps. Section 5
concludes the paper.

2. QUERY OPTIMIZATION

The aim of query optimization is to minimize the time to
execute a given query. Many relational database manage-
ment systems use cost-based query optimization [9]. To op-
timize graph queries we use ideas and techniques of classical
cost-based query optimization. We therefore first describe
the classical query optimization in RDBMS and then explain
how to use these techniques for graph query optimization.

2.1 Classical Query Optimization

Query optimization in RDBMS is well established, for re-
views see [11, 4]. We will now give a short introduction to
classical cost-based query optimization, which is displayed
in Figure 2.

Given an SQL query we first have to parse the query to
generate the parse tree. In the next two steps the actual
query optimization is done. In the rewriting phase the initial
parse tree is transformed into an equivalent, but hopefully
more efficient parse tree, e.g., by resolving views or nested
loops.

In the planning step the query planner uses the rewrit-
ten parse tree and searches for the optimal, i.e., cheapest
query plan. To identify the cheapest plan the query planner
first transforms the parse tree to all possible logical query
plans using available operators of relational algebra given
in the logical operator space. The logical query plan con-
tains only operations, e.g., table access and join, but not the
actual implementation of the operations. These are given
by the physical plan space, providing for example different
join methods, like the nested loop or sort-merge join. Us-
ing these implementations the query planner may produce
several physical query plans for one logical query plan. The
query planner can determine the cheapest plan by using the
cost model, which contains a cost function for every imple-
mentation of available operators. A cost function takes the
sizes of initial tables and intermediate results as well as data
access methods into account and produces a cost estimate
for every step of the physical query plan. The accumulated
costs are the overall cost of the physical query plan.

The query planner returns the best physical query plan,
which is then translated into executable code by the code
generator. This code is given to the query processor that
actually executes the query and returns the result.

These methods can also be applied for the optimization
of graph queries in relational database systems as we will
show in Section 2.3.

2.2 Related Work

Graph queries can be answered either by traversing the
graph at query time or by using precomputed information.
Leser proposed in [15] to evaluate a PQL query using pre-
computed information. To efficiently execute the queries
they precompute and store all paths of a graph. As the
number of paths grows exponentially in the number of nodes
and edges the precomputation is only feasible for very small
graphs. Typical biological networks, e.g., the metabolic net-
work of KEGG [12], which contains about 15,000 nodes,
can not be treated that way but different strategies must
be used. Eckman & Brown [8] proposed to query graphs
using a commercial RDBMS. They stored the graph as data
type, for which type-specific operators can be defined. This
has the advantage, that the execution of the query is en-
tirely done inside the RDBMS. But on the downside, they

state that in their current implementation the graph must fit
into main-memory, which makes it inapplicable for biologi-
cal networks. Sohler & Zimmer [20] proposed ToPNet that
allows to specify graph queries in XML format. To evaluate
the query they use a main-memory based algorithm, which
also makes this approach inapplicable to large biological net-
works.

Cost-based query optimization is also known in the con-
text of XML query processing. McHugh & Widom [18] de-
scribe a framework for optimizing queries on XML docu-
ments. They proposed three different index structures that
can be used to evaluate the existence of a path in an XML
document. Based on the estimation of intermediate result
sizes the optimizer should find an optimal physical query
plan. Wu and colleagues showed in [25] that the dynamic
programming strategies applied in classical query optimiza-
tion to find the optimal physical query plan are not equally
well applicable to optimize queries on XML documents using
their proposed index structure. They proposed and evalu-
ated four other algorithms based on dynamic programming
that were adapted for the XML setting. These algorithms
find a nearly optimal query plan by applying different heuris-
tics during the enumeration of the different physical query
plans.

2.3 Graph Query Optimization

In this section we describe how to use techniques from the
classical query optimization to optimize graph queries. As
we want to query graphs we first define graphs using nota-
tion from Corman et al. [6] and then describe the pathway
query language [15]. A graph G = (V,E) is a collection
of nodes V and edges E. Given a graph G, a path p is
a sequence of nodes that are connected by directed edges.
The length of a path is the number of directed edges in the
path. We assume that graphs are stored as a collection of
nodes and edges in an RDBMS. The information on nodes
includes a unique identifier and possibly additional annota-
tion. Edges are stored as binary relationship between two
nodes, i.e., as adjacency list.

The pathway query language (PQL) provides a syntax to
query graphs and retrieve specified subgraphs. PQL consists
of four different parts — a FROM-part that specifies the graph,
a LET-part, where all node and path variables are defined, a
WHERE-part that sets conditions on node and path variables,
and a SELECT-part that specifies the shape of the returned
subgraph. An exemplary PQL query is given in Figure 1.

Conditions in the WHERE-part are interpreted as a Boolean
function. Conditions on node variables include restrictions
on attributes and assigned concepts of nodes. Concepts of
nodes are organized in hierarchies of concepts. Given an
assignment of nodes in the network to a query variable A of
type node every condition can evaluate to TRUE or FALSE.
The nodes from the network for which all conditions of the
node variable evaluate to TRUE are called bindings for the
node variable. In analogy, given an assignment of paths in
the network to the query variable P of type path every path
in the network for which all conditions, e.g., start node, end
node, or path length evaluate to TRUE are called bindings for
the path variable.

To evaluate the graph query — as in the classical query
optimization — we first parse the query and generate the
parse tree. Using the parse tree we can create the logical
query plan using operations defined in the logical plan space.

/ Query Optimization

Logical Physical

@ Plan Space Plan Space

Cost

Model

~

Query Query Query

T

Code Query

Parser Rewriter Planner

.

Generator Processor

/

Figure 2: Cost-based query optimization in RDBMS.

As the logical plan space does not contain any operators for
evaluation of node and path conditions we first have to define
new operators in the logical plan space.

2.3.1 Logical Plan Space

Nodes. Node variables may contain conditions on at-
tributes of nodes. Attributes of nodes in our model are
stored together with the nodes in the node table. To eval-
uate the conditions on attributes of nodes we therefore can
use the selection operator (o) defined in the logical plan
space from the classical query optimization.

Node variables can also have conditions on concepts as-
signed to nodes. The concepts are organized in a hierarchy
of concepts, which forms a directed, acyclic graph (DAG)
with a single root element. Every child concept is a special-
ization of its parent concept. For example, to describe nodes
in biological networks we use a TYPE hierarchy, where below
the root concept there are currently the concepts 'molecule’
and ’interaction’. Below those, different types of molecules,
such as 'gene’,’protein’, or ‘compound’, and different types
of interactions, such as ’inhibition’, ’catalysis’, or ’activa-
tion’, are defined. Therefore, if we query for nodes that are
associated with the concept 'molecule’ we also have to re-
turn nodes that are associated with a successor concept of
‘molecule’ in the TYPE hierarchy.

For the evaluation of assigned concepts we have to define
a new operator, the hierarchy operator, x. The hierarchy
operator takes as input restrictions on concepts of hierar-
chies and returns the selected concept(s) together with all
its successor concepts.

Paths. In PQL we can specify conditions on the start
node, end node and length of the path for a path variable.
In the logical plan space of the classical query optimization
there are no operations for the evaluation of the existence of
paths. To generate the logical query plan we therefore have
to specify the path existence operator, ¢. This operator can
be considered as a special form of a join operator. In the
classical query optimization given two input sets, R and S,
the join operator returns the set of pairs that can be formed.
In analogy we can define the path ezistence operator, ¢.

DEFINITION 1 (PATH EXISTENCE OPERATOR, ¢). Let 4
and B be two node variables and let P be a path variable in
the query. Let P contain the condition that a path from A to
B exists and let V' be the set of nodes bound to A and W be
the set of nodes bound to B. A ¢ B returns the set of node
pairs (v,w) for which a path fromv € V to w € W exists.

In the same line we can define the path length operator,
i.e., an operator that only returns a pair of nodes if there
exists at least one path that is shorter, longer, or between
given values.

Figure 3 shows a possible logical query plan for the PQL
query from Figure 1 using the newly defined operators for
graph queries. Note, this plan first determines the bindings
of both node variables by applying the selection operator
on the node table and the hierarchy operator on the TYPE
hierarchy. The resulting bindings of node variables are then
used as input for the path existence operator.

Tnodes B

L’
Oname=glucose Xcompound Node Xgene

Node TYPE TYPE

Figure 3: The logical query plan for the query given
in Figure 1

2.3.2 Physical Plan Space

The physical plan space contains the actual implementa-
tion of logical operators described in the last section.

The hierarchy operator, y. The hierarchy operator
selects a concept and all successors of that concept in a hi-
erarchy. To retrieve the selected concept we can use the
implemented selection operator. But to retrieve all succes-
sors of a concept we either have to traverse the hierarchy of
concepts using depth- or breadth-first search [6] or use pre-
computed information, such as the transitive closure that
stores all successors of a concept [1] or pre-/ postorder la-
beling [22].

The path existence operator, ¢. Given bindings of
nodes in the graph to node variables in the query the path
existence operator returns the set of node pairs for which
a path exists. We can evaluate the existence of paths by
applying either

e depth-first recursive search,
breadth-first recursive search,
index-based search using GRIPP, or
index-based search using other techniques.

For large graphs we prefer index-based searches over re-
cursive search strategies as these require time linear in the
number of nodes and edges of the graph. For a thorough
evaluation see [23]. To evaluate reachability queries effi-
ciently on large graphs we developed GRIPP (GRaph In-
dexing based on Pre- and Postorder numbering) [24], which

we will present in the next section as one physical imple-
mentation of the path existence operator.

3. IMPLEMENTING A PATH OPERATOR

The path existence operator requires as input bindings of
nodes from the graph to node variables in the query. The
operator returns the set of node pairs for which a path exists.
Given two nodes v and w, the path existence operator eval-
uates the function reach(v, w). This function returns TRUE
if a path between the nodes exists, and otherwise FALSE.

We developed GRIPP (GRaph Indexing based on Pre-
and Postorder numbering) [24] to answer such queries effi-
ciently. In the following we explain briefly how to create the
GRIPP index and show how to efficiently answer reachabil-
ity queries for a single pair of nodes. We then propose a
method to answer set-oriented queries, i.e., given a node v
and a set of nodes W, which nodes w € W are reachable
from v.

3.1 GRIPP - Graph Indexing

The GRIPP indexing strategy is based on the pre- and
postorder labeling, which was originally described for tree
structured data [7]. In the pre- and postorder numbering
scheme each node in the tree receives a pre- and postorder
value. Both values are assigned according to the order in
which the nodes are visited during a depth-first traversal
of the tree. The preorder value vy, is assigned as soon as
node v is encountered during the traversal. The postorder
value vpost is assigned after all successor nodes of v have
been traversed.

A table of all nodes with their assigned pre- and postorder
values forms an index with which reachability queries in
trees can be answered with a single query. If w is reachable
from v, w must have a higher preorder and lower postorder
value than v. If we use only one counter for the pre- and
postorder values all successor nodes w of v must lie within
the borders given by the pre- and postorder values of v, i.e.,
[Upre, Upost]. This condition can be evaluated in an RDBMS
with a single query.

As soon as nodes have more than one incoming edge this
technique does not work anymore. We therefore developed
GRIPP to index cyclic, possibly unrooted graphs [24].

To create the GRIPP index we perform a depth-first search
over a graph G and a given order of child nodes. During that
traversal every node in G receives at least one pre- and pos-
torder value. The node together with the pre- and postorder
value and instance type is stored as instance in the index
table IND(G). Figure 4 shows a graph G and the result-
ing index table IND(G). If node v is traversed for the first
time, we create a tree instance of v in IND(G) and traverse
child nodes of v. For any successive traversal of v we add a
non-tree instance in IND(G) and do not traverse the child
nodes of v in G.

The GRIPP index structure resembles a rooted tree, the
order tree, O(G). In O(G) every non-tree instance is a leaf
node, while tree instances can be inner or leaf nodes. The
order tree O(G) for the index table IND(G) from Figure 4
is displayed in Figure 5.

In GRIPP every node has as many instances in IND(G)
as this node has incoming edges in G, i.e., we have as many
instances in IND(G) as we have edges in G. In [24] we cre-
ated the GRIPP index for generated random and scale-free
graphs with up to 5 million nodes and 10 million edges. For

node | pre post type
r 0 21 tree
1 20 tree
2 7 tree
3 4 tree
5 6 tree
8 9 tree
tree
11 14 tree
12 13 non-tree
15 18 tree
16 17 non-tree

(b) Index table, IND(G).

PITQUQEEE >
S
©

(a) Graph, G.

Figure 4: Graph G and its GRIPP index table
IND(G). Solid lines represent tree edges, dashed
lines are non-tree edges.

example generating the GRIPP index structure for graphs
with 50,000 nodes and 100,000 edges takes less than 130
seconds, which is faster than all competing methods.

3.2 Querying GRIPP — Single Node Pairs

We will now depict how to efficiently answer reachability
queries for a fixed pair of nodes bound to node variables
in the query using GRIPP. Recall that reachability queries
in trees can be answered with a single lookup because all
reachable nodes of a node v have a preorder value that is
contained within the borders given by vpre and vpost. When
querying the GRIPP index structure this way we face two
problems. First, a node v may have many instances v’ in
IND(G). But every non-tree instance of v in IND(G) is
a leaf node in O(G) and has no successors in O(G). We
therefore always use the tree instance of a node for querying.
The second problem is that in the preorder range (also called
reachable instance set of v, RIS(v)) of a tree instance v’ we
will only find instances of nodes that are reachable from v’ in
O(@G). Nodes reachable from v in G but not from v’ in O(G)
will be missed, as during index creation we do not traverse
child nodes when we reach a node over a non-tree edge.
We only insert a non-tree instance in IND(G) and therefore
successor of non-tree instances might not have an instance
in RIS(v). To account for that we have to extend the search
using the hop technique. To find all reachable nodes of v in
G we basically perform a depth-first search over the index
structure using non-tree instances in reachable instance sets.
In Figure 5(a) RIS(D) contains non-tree instances of nodes
B and A, i.e., both are hop nodes for D.

To make the search more efficient we developed three
pruning strategies, namely the simple, the skip, and the
stop strategy. Using the simple and skip pruning strategy
we avoid posing queries for preorder ranges which we have
already checked. During the search we keep a list U of all
nodes that have been used to retrieve a reachable instance
set. Now assume we have found a new hop node h. If that
new hop node is equal to or successor of a previously used
hop node we apply the simple pruning strategy and prune
that node from being used as new hop node (RIS(h) has
previously been retrieved). Otherwise, if hop node h is an-
cestor to used hop nodes, we do not want to consider the
range of the used hop nodes again, we therefore skip those
ranges using the skip strategy. In the case where h is sibling
to all nodes in U we have to retrieve the entire reachable
instance of h.

The stop strategy requires some additionally precomputed
values, the stop nodes. A stop node s is a node in G for
which for every non-tree instance in RIS(s) there exists a
corresponding tree instance in the set. This means, that
all nodes reachable from s in G are reachable from s’ in
O(G). As soon as we reach a stop node during the search
we can immediately return without checking every hop node
in RIS(s). In Figure 5(a) nodes r, A, B, E, F, and C are
stop nodes.

To answer reach(v, w) we proceed as follows. We first find
the tree instance v’ of v and retrieve RIS(v). If w € RIS(v)
we finish and return TRUE, otherwise we have to extend the
search using non-tree instances in RIS (v) (preferably a non-
tree instance of a stop node). We extend the search until
we find an instance of w or no further usable hop nodes are
available.

Consider Figure 5(b) and reach(D, r). We find non-tree
instances of nodes B and A in RIS(D) and first use node B
as hop node. As RIS(B) does not contain the an instance of
r or further hop nodes we proceed with node A as hop node.
As A is a stop node we do not have to consider the non-tree
instances in RIS(A), we only have to check if r € RIS(A).
As this is not the case reach(D, r) = FALSE.

post kT post
20 (A — — D 20:
FA + - H .
o \ mA F
15F el 15}
L A uB X
o \ r
10f 1 wC 10}
B [

L F
5 hE 5

(b) RIS(D) and RIS(B)
in dark gray; RIS(A) in
light gray.

Figure 5: The example shows reach(D, r) evaluated
on the GRIPP index structure from Figure 4(b).
Nodes A and B are hop nodes for D.

3.3 Querying GRIPP — Set-Oriented

To apply the GRIPP query strategies for PQL we also
have to consider set-oriented operations. So far, we only
answered reach(v, w) for single bindings of nodes v and w
to node variables in the query. But in a typical PQL query
several nodes from G may be bound to the node variables.
Therefore, we also require an implementation of the path ex-
istence operator for set-oriented operations. We start with
the following, given the binding of node v to one node vari-
able and a set of bindings W to the other node variable, find
all nodes in W that are reachable from wv.

An obvious implementation would be to query the GRIPP
index structure |W| times for reach(v, w) with w € W. This
strategy requires time linear in the number of nodes in W.

A different approach is to implement an additional search
strategy for sets of nodes. Recall, in the search strategy for
single node pairs, i.e., reach(v, w), we stop extending the
search if we find w in a reachable instance set or if there are
no further usable hop nodes. For set-oriented operations we
would have to check which nodes w € W are contained in
RIS(h). We could only stop if all nodes in W are reached or

no further usable hop nodes exist. As some nodes in W may
not be reached from v we have to explore the entire search
space. As this is time consuming we use a different strategy.
For the implementation of set-oriented querying we pro-
ceed as follows. We first select the tree instance of v, retrieve
RIS(v) and proceed the search using hop nodes. Here as well
we apply the pruning strategies described in the last section.
We stop the search when no further usable hop nodes are
available. During the search we store the pre- and postorder
ranges of all nodes that have been used to retrieve a reach-
able instance set in a list U. When we have finished the
search we use this list U to determine which nodes w € W
have an instance with a preorder value that is contained in
the range of at least one node u € U. Using an RDBMS we
can implement this as join operation between the GRIPP
index table (for the instances of nodes in W) and instances
in U. We experimentally evaluate both query strategies to
answer reach(v, W), which we present in the following.

3.3.1 Experimental Evaluation

To experimentally evaluate both approaches we use a gen-
erated random graph with 10,000 nodes and 20,000 edges
and evaluated reach(v, W) for different sizes of W. We im-
plemented both query strategies for GRIPP as stored pro-
cedures in a commercial object-relational database system.
Tests were performed on a DELL dual Xeon machine with 4
GB RAM. Queries were run without rebooting the database.
The query times for reach(v, W) are averaged over 1,000
queries, with a randomly selected node v and n randomly
selected nodes w. The number of nodes in set W is given as
parameter n.

10000

T T
single node pair —+—
set-oriented ---x---

1000

time in ms (log)

100

1 10 100 1000
Size of target node set (log)

Figure 6: Average query time for both strategies
and increasing size of set W.

Figure 6 shows the average query times for the single
node pair strategy and the set-oriented strategy to evaluate
reach(v, W). The size of the set of nodes W ranges from
1 to 1,000 nodes. The figure shows that the average query
times for the set-oriented approach is almost constant over
different sizes of the graph. In contrast, the query time for
the single node pair approach grows linear with the number
of nodes in set W. The figure also shows that for very small
sizes of W, i.e., up to three nodes, querying GRIPP using
the single node pair query strategy is advantageous. The
reason is that for those searches we can immediately stop
if we find node w in a reachable instance set. In contrast,
for the set-based search we have to explore the entire space
and can only stop when no further usable hop nodes are
available. For few nodes in set W the set-oriented approach
therefore might explore a larger search space than necessary.

4. FUTURE WORK

So far, we only considered the logical plan space and some
implementations of operators in the physical plan space. We
still need to address two major issues, which are evaluating
path and path length queries and assigning cost functions
to implementations of operators.

4.1 Path and Path Length Queries

Using GRIPP we can evaluate reach(v, W) very efficiently.
But as soon as we pose conditions on the length of the path
or even on path properties, e.g., the containment of a node
in the path, evaluating that condition using GRIPP is not
very efficient as we evaluated in [23]. Other indexing strate-
gies such as computing the transitive closure [1] or 2-Hop-
Cover [19] with distance information only works for small
graphs. As the networks under consideration are usually
large these index structures are not generally applicable. We
therefore have to find new indexing and query strategies to
evaluate path and path length queries.

4.2 Cost Functions

Given the implementation of operators we have to assign
a cost function to every implementation. A cost function
usually takes as input parameters the size of the input and
sizes of intermediate results. So far, we have not assigned
a cost function to the search strategies for GRIPP, but this
will be the next step.

In addition to assigning cost functions to operators we
also must estimate the result size of the newly defined op-
erators. For the hierarchy operator we can use techniques
described in [14] for data warehousing, as in that area hier-
archy queries are also required. To estimate the result size
of the path operator we can apply sampling techniques as
described in [16].

5. CONCLUSION

Our aim is to implement a system that uses a PQL query
as input, parses the query, applies cost-based query opti-
mization to execute the query efficiently, and then displays
the result graphically. We believe that optimizing graph
queries is not just needed for biological networks, but also in
other areas. As several other graphs, such as social networks
or web graphs exhibit the same structure as biological net-
works [2] this work can easily be adapted. In this paper we
proposed a framework for cost-based optimization of graph
queries expressed in PQL. We gave details on implementa-
tions of some operators for graph queries. Some issues still
remain open such as assigning cost functions or finding more
efficient strategies to answer path length and path queries,
which we will address in future work.

6. REFERENCES

(1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient
Management of Transitive Relationships in Large Data and
Knowledge Bases. In Proc. of the ACM SIGMOD
Conference, pages 253262, 1989. ACM Press.

[2] A.-L. Barabasi and Z. N. Oltvai. Network biology:
understanding the cell’s functional organization. Nature
Reviews Genetics, 5(2):101-113, Feb 2004.

(3] I. Borodina and J. Nielsen. From genomes to in silico cells
via metabolic networks. Current Opinion in Biotechnology,
16(3):350-355, Jun 2005.

[4] S. Chaudhuri. An Overview of Query Optimization in
Relational Systems. In Proc. of the PODS Conference,
pages 34-43, 1998. ACM Press.

[5] M.P. Consens and A.O. Mendelzon. GraphLog: a Visual
Formalism for Real Life Recursion. In Proc. of the PODS
Conference, pages 404-416, 1990. ACM Press.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, 2001.

[7] P. Dietz and D. Sleator. Two algorithms for maintaining
order in a list. In Proc. of the STOC Conference, pages
365—-372, 1987. ACM Press.

[8] B. Eckman and P. G. Brown Graph data management for
molecular and cell biology. IBM J. Res € Dev., 50(6):545 —
560, Nov 2006.

[9] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database
Systems: The Complete Book. Prentice Hall, 2002.

[10] J. van Helden, A. Naim, R. Mancuso, M. Eldridge, et al.
Representing and analysing molecular and cellular function
using the computer. Journal of Biological Chemistry,
381(9-10):921-935, 2000.

[11] Y. E. Ioannidis. Query Optimization. ACM Comput. Surv.,
28(1):121-123, 1996.

[12] M. Kanehisa, S. Goto, S. Kavashima, Y. Okuno, and
M. Hattori. The KEGG resource for deciphering the
genome. Nucleic Acids Research, 32:D277-D280, 2004.

[13] G. Karvounarakis, S. Alexaki, V. Christophides,

D. Plexousakis, and M. Scholl. RQL: A declarative query
language for RDF, 2002. In Proc. of the WWW
Conference, 2002.

[14] N. Koudas, S. Muthukrishnan, and D. Srivastava. Optimal
Histograms for Hierarchical Range Queries. In Proc. of the
PODS Conference, pages 196-204, 2000. ACM Press.

[15] U. Leser. A query language for biological networks.
Bioinformatics, 21 Suppl 2:1i33-1i39, Sep 2005.

[16] R. J. Lipton and J. F. Naughton. Query Size Estimation by
Adaptive Sampling. In Proc. of the PODS Conference
pages 40-46, 1990. ACM Press.

[17] M.V. Mannino and L.D. Shapiro. Extensions to Query
Languages for Graph Traversal Problems. IEEE Trans.
Knowl. Data Eng., 2:353-363, 1990.

[18] J. McHugh and J. Widom. Query Optimization for XML.
In Proc. of the VLDB Conference, pages 315-326, 1999.
Morgan Kaufmann.

[19] R. Schenkel, A. Theobald, and G. Weikum. Efficient
Creation and Incremental Maintenance of the HOPI Index
for Complex XML Document Collections. In Proc. of the
ICDE Conference, pages 360-371, 2005. IEEE Computer
Society.

[20] F. Sohler and R. Zimmer. Identifying active transcription
factors and kinases from expression data using pathway
queries. Bioinformatics, 21 Suppl 2:1i115-ii1122, Sep 2005.

[21] U. Stelzl, U. Worm, M. Lalowski, Ch. Haenig,

F. H. Brembeck, et al. A human protein-protein interaction
network: a resource for annotating the proteome. Cell,
122(6):957-968, Sep 2005.

[22] S. TriBl and U. Leser. Querying Ontologies in Relational
Database Systems. In Proc. of the DILS, volume 3615 of
Lecture Notes in Computer Science, pages 63-79, 2005.
Springer.

[23] S. TriBl and U. Leser. GRIPP - Indexing and Querying
Graphs based on Pre- and Postorder Numbering. Technical
Report No. 207, Humboldt-Universitdat zu Berlin, 2006.

[24] S. TriBl and U. Leser. Fast and Practical Indexing and
Querying of Very Large Graphs. In Proc. of the ACM
SIGMOD Conference, to appear, 2007. ACM Press.

[25] V. Wu, J. M. Patel, and H. V. Jagadish. Structural Join
Order Selection for XML Query Optimization. In Proc. of
the ICDE Conference, pages 443-454, 2003. IEEE
Computer Society.

