
Semesterprojekt
Verteilte Echtzeitrecherche in Genomdaten

Marc Bux (buxmarcn@informatik.hu-berlin.de)

An Introduction to

Concurrent Programming in Java

Concurrent Programming in Java 2 / 25

Concurrent Computing

• Parallel computing:

Information exchange

via shared memory

• Distributed computing:

Information exchange

via passing messages

• Typical Problems:

– Conflicts & deadlocks

– Node failures

– Distribution of data & workload

• Architecture: centralized versus de-centralized "D
is

tr
ib

u
te

d
-p

ar
al

le
l"

 b
y

M
iy

m
 -

 O
w

n
 w

o
rk

. L
ic

en
se

d
 u

n
d

er
 C

C
 B

Y
-S

A
 3

.0
 v

ia

C
o

m
m

o
n

s
-

h
tt

p
s:

//
co

m
m

o
n

s.
w

ik
im

ed
ia

.o
rg

/w
ik

i/
Fi

le
:D

is
tr

ib
u

te
d

-
p

ar
al

le
l.s

vg
#/

m
ed

ia
/F

ile
:D

is
tr

ib
u

te
d

-p
ar

al
le

l.s
vg

Concurrent Programming in Java 3 / 25

What this talk is (not) about

• What this talk is about:

– Parallel computing: Threads, Locks

– Distributed computing: Sockets, MPI

– Data exchange formats: JSON, (XML, YAML)

– Implementations in Java to get started with

• What this talk is not about:

– Distributed search indices

– Theoretical foundations

– Technical implementations

Concurrent Programming in Java 4 / 25

Where can you apply these concepts?

Parallel Computing

Distributed Computing

Data Exchange Formats

Concurrent Programming in Java 5 / 25

Agenda

1. Parallel Computing

– Threads

– Locks

2. Distributed Computing

3. Date Exchange Formats

Concurrent Programming in Java 6 / 25

Threads and Processes

• Process:

– Instance of a program in execution

– Separate entity with own heap space

– Cannot access another process‘s

data structures

• Thread:

– Component of a process

– Shares the process‘s resources

– Has its own stack, but shares heap memory (data

structures) with other threads

"Multithreaded process" by I, Cburnett.
Licensed under CC BY-SA 3.0 via
Commons -
https://commons.wikimedia.org/wiki/F
ile:Multithreaded_process.svg#/media/
File:Multithreaded_process.svg

Concurrent Programming in Java 7 / 25

Threads in Java

• In Java, threads can be implemented in two ways:

1. Implement java.lang.Runnable interface

2. Extend java.lang.Thread class

• The former is usually preferred to the latter

– A class implementing the Runnable interface may

extend another class

– The Thread class brings some overhead with it

Concurrent Programming in Java 8 / 25

Implementing java.lang.Runnable
public class RunnableCount implements Runnable {

 public int count = 0;

 public void run() {

 try {

 while (count < 10) {

 Thread.sleep(250);

 System.out.println("count: " + count);

 count++;

 }

 } catch (InterruptedException e) {

 System.out.println("RunnableCount interrupted.");

 }

 }

}

public static void main(String[] args) {

 RunnableCount runnableCount = new RunnableCount();

 Thread threadCount = new Thread(runnableCount);

 threadCount.start();

 while (runnableCount.count != 10) {

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

}

Concurrent Programming in Java 9 / 25

Extending java.lang.Thread
public class ThreadCount extends Thread {

 public int count = 0;

 public void run() {

 try {

 while (count < 10) {

 Thread.sleep(250);

 System.out.println("count: " + count);

 count++;

 }

 } catch (InterruptedException e) {

 System.out.println("ThreadCount interrupted.");

 }

 }

}

public static void main(String[] args) {

 ThreadCount threadCount = new ThreadCount();

 threadCount.start();

 while (threadCount.count != 10) {

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

}

Concurrent Programming in Java 10 / 25

Synchronization and Locks in Java

• Threads can attempt to modify shared resources at

the same time

• Locks can be used to limit access to shared resources

• In Java, there are three common ways to implement

locks:

1. Implement a lock on an object by using the synchronized

keyword for a method

2. Implement a lock on an object by using the synchronized

keyword for a block of code

3. Manually implement a lock using the

java.util.concurrent.locks.Lock interface

Concurrent Programming in Java 11 / 25

Synchronized Methods in Java
public class SynchronizedCounter {

 private int c = 0;

 public synchronized void increment() {

 c++;

 }

}

Concurrent Programming in Java 12 / 25

Synchronized Blocks in Java
public class SynchronizedCounter {

 private int c = 0;

 public void increment() {

 synchronized(this) {

 c++;

 }

 }

}

Concurrent Programming in Java 13 / 25

Synchronized Blocks in Java (cont.)
public class SynchronizedDoubleCounter {

 private int c1 = 0;

 private int c2 = 0;

 private Object lock1 = new Object();

 private Object lock2 = new Object();

 public void incrementC1() {

 synchronized(lock1) {

 c1++;

 }

 }

 public void incrementC2() {

 synchronized(lock2) {

 c2++;

 }

 }

}

Concurrent Programming in Java 14 / 25

Manual use of locks in Java
public class SynchronizedCounter {

 private Lock lock;

 private int c = 0;

 public SynchronizedCounter() {

 lock = new ReentrantLock();

 }

 public void increment() {

 lock.lock();

 c++;

 lock.unlock();

 }

}

Concurrent Programming in Java 15 / 25

Deadlocks

• Deadlock: state, in which two (or more) threads are

waiting for one another

• Four conditions must be met:

– Mutual exclusion: there is limited access / quantity to a

resource

– Hold and Wait: thread holding a resource A requests

another resource B before releasing A

– No Preemption: resources only released voluntarily

– Circular Wait: multiple threads form a circular chain where

each thread is waiting for another thread in the chain

• Livelock: risk in deadlock detection

Concurrent Programming in Java 16 / 25

Agenda

1. Parallel Computing

2. Distributed Computing

– Sockets

– MPI

– Large-Scale Distributed Processing Frameworks

3. Date Exchange Formats

Concurrent Programming in Java 17 / 25

Sockets in Java
• (Network) socket: endpoint (IP address + port) of an

inter-process communication across a network

• Used for low-level network communication via TCP

• Two types of sockets in Java:

– java.net.Socket implements (client) sockets

– java.net.ServerSocket implements server sockets that

listen for connecting sockets on a port

• Java Remote Method Invocation (RMI): higher-level API

based on sockets for communication between Java

applications

• Objects of classes implementing the

java.io.Serializable interface can be serialized

and sent via sockets (using ObjectInputStream)

Concurrent Programming in Java 18 / 25

The Server Side of a Socket in Java
try (

 ServerSocket serverSocket =

 new ServerSocket(portNumber);

 Socket clientSocket = serverSocket.accept();

 PrintWriter out =

 new PrintWriter(clientSocket.getOutputStream(), true);

 BufferedReader in = new BufferedReader(

 new InputStreamReader(clientSocket.getInputStream()));

) {

 String inputLine;

 while ((inputLine = in.readLine()) != null) {

 out.println(inputLine);

 }

} catch (IOException e) {

 System.out.println(e.getMessage());

}

Concurrent Programming in Java 19 / 25

The Client Side of a Socket in Java
try (

 Socket echoSocket =

 new Socket(hostName, portNumber);

 PrintWriter out =

 new PrintWriter(echoSocket.getOutputStream(), true);

 BufferedReader in =

 new BufferedReader(new InputStreamReader(echoSocket.getInputStream()));

 BufferedReader stdIn =

 new BufferedReader(new InputStreamReader(System.in))

) {

 String userInput;

 while ((userInput = stdIn.readLine()) != null) {

 out.println(userInput);

 System.out.println("echo: " + in.readLine());

 }

} catch (IOException e) {

 e.printStackTrace();

 System.exit(-1);

}

Concurrent Programming in Java 20 / 25

Message-Passing Interface (MPI)

• MPI: a standard for message passing libraries in

parallel computing

• Performant, portable across platforms, flexible wrt.

underlying technology

• Abstract, high-level

 comm.send(data, 5, MPI.DOUBLE, 1, 1);

 Status status =

 comm.recv(data, 5, MPI.DOUBLE, MPI.ANY_SOURCE, 1);

• Implementations of MPI available for Java:

– MPJ Express (http://mpj-express.org/)

– OpenMPI (http://www.open-mpi.de/faq/?category=java)

http://mpj-express.org/
http://mpj-express.org/
http://mpj-express.org/
http://mpj-express.org/
http://www.open-mpi.de/faq/?category=java
http://www.open-mpi.de/faq/?category=java
http://www.open-mpi.de/faq/?category=java
http://www.open-mpi.de/faq/?category=java

Concurrent Programming in Java 21 / 25

Performance comparison

• Performance test: sort an integer array on a

distributed infrastructure

– 5 Intel pentium machines with 233 MHz

– 100 Mbit network

Qureshi, Kalim, and Haroon Rashid. "A performance evaluation of rpc, java rmi, mpi and pvm.
"Malaysian Journal of Computer Science 18.2 (2005): 38-44.

Concurrent Programming in Java 22 / 25

Large-Scale Distributed Processing Frameworks

• Apache Hadoop

– comprises distributed filesystem HDFS and resource

manager YARN

• New cool kid in town: Apache Spark

– Resilient Distributed Datasets (RDD)

h
tt

p
:/

/h
o

rt
o

n
w

o
rk

s.
co

m
/b

lo
g

/a
p

ac
h

e
-h

ad
o

o
p

-2
-i

s-
ga

/

Concurrent Programming in Java 23 / 25

Agenda

1. Parallel Computing

2. Distributed Computing

3. Date Exchange Formats

Concurrent Programming in Java 24 / 25

JSON
• Data Types: number, string, boolean, array, “object” (map), null
 {

 "name": "Alex Rye",

 "deceased": false,

 "accounts": [

 {

 "bank": "Sparkasse",

 "balance": 3788

 },

 {

 "bank": "Commerzbank",

 "balance": 505

 }

],

 "gender": null

 }

• Alternatives:
– XML: more strict; separation of meta-data and data via tag attributes

– YAML: less strict; superset of JSON with more features (comments,
ordered maps, …)

Concurrent Programming in Java 25 / 25

Questions

1. Parallel Computing

– Threads

– Locks

2. Distributed Computing

– Sockets

– MPI

– Large-Scale Distributed Processing Frameworks

3. Date Exchange Formats

