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1 Introduction

As opposed to normal training, in which data for all classes is available simultaneously, continual
learning (CL) demands the ability to learn continually from a stream of data, in which new data
batches are introduced incrementally over time.

Notation: adopting the notation of [2], let Dy = {(xX, y¥) ,”il denote a collection of data
belonging to the task k € I, where X,-k € X is the input data and ylk € ¥ are the ground truth
labels. While in the (standard) non-incremental multi-task setup the entire data D = U|kK:|0Dk
is available at once, in a task-incremental setup the incoming dataset Dy becomes available to
the model continuously and specifically only during the learning of task k. Thereby, Dy can
be composed of a collection of class items from the same task (can also contain a single class).
Furthermore, during test time the output space covers all the labels observed so-far during the
training, independently from the task they belong to: Y* = Uj’leyj . Such an evaluation scenario
is often referred to as a single-head evaluation [2, [16]. In CL setup at any time the model should
be able to classify test samples from the tasks observed so-far.

Artificial Neural Networks (ANN) fail to learn incrementally about new classes, while main-
taining good classification performance on the classes of the previously seen tasks Y*~1, not to
mention reusing the knowledge about old tasks in a new context. Generally, there are two fun-
damental obstacles on the way to a continuously trainable Al system: the problem of forgetting
the old knowledge when learning from new data (catastrophic forgetting) as well as lack of model
scalability, e.g. inability to scale up the model size with continuously growing amount of data to
learn from.

Catastrophic forgetting is believed to occur due to a lack of a plastic component in the
neuron connections [8, 25]. In analogy with biological systems, neural or synaptic plasticity is
the capability of a neuron or synapse to “lock” itself to a state or a connection, thus retaining
previously attained knowledge. Indeed, it has been shown that this plasticity is responsible for
maintaining previously acquired structure in the neo-cortical circuits of brains |3} [6].

Another important factor in the continual learning setting is the ability to scale, i.e. to
maintain sufficient capacity to accommodate for a continuously growing number of tasks. Given
equitable resource constraints, it is inevitable that with a growing number of tasks to learn, the
model capacity is exhausted at some point in time. Without an adaptive strategy for network
expansion, network size can swiftly go beyond existing hardware limits, or unnecessarily waste
resources by parameter reservation.

The goal of this Master’s thesis is to address the problem of catastrophic forgetting and
lacking model scalability in the continual learning setup. We demand a classification system to
be able to continuously learn about new tasks without storing raw samples of previously seen



data, whereas at any time the system should be able to classify test samples from the tasks
observed so-far.

2 Related Work

Several recent approaches try to mitigate forgetting by simulating neuroplasticity in ANNs. To
that end, one possibility is to identify critically important parameters sections of a network w.r.t.
a given task, and imposing a penalty for changing them when learning another task [8], 2], 25] [1].
Common to these methods is that they seek to find a point in the model parameter space that
minimizes the loss jointly for all previously learned tasks. However, the existence of such point is
not always guaranteed, hence the hard attention to the task (HAT) mechanism was proposed [18].
HAT finds a parameter subspace for each task that can overlap with other tasks’ parameter
subspaces. The optimal solution is then found in the corresponding parameter subspace of each
task. These solutions can be seen as reserving sub-spaces of the neural network’s parameter
space for each task at hand and driving the subsequent network updates into the free-capacity
space.

Singe- vs. multi-head output: while the aforementioned methods successfully reduce the
performance gap between incremental and non-incremental training, they all make use of the
multi-head output evaluation. As can be seen in the Figure[I} in a multi-head evaluation setup
each new task k has its own classification layer containing only the classes y* belonging to the
task k. Thus, at the test time of task k, the model has to pick the corresponding classification
layer of this task. To accomplish this the task label k should be available at the test time. In
other words, in such evaluation setup the task label k is assumed to be available at the test time

in order to reduce the output space of the model Y* = Uj-‘zlyi to the output space of the task

yk. to which the current test-sample belongs. If the current task only contains single class, e.g.
ly¥| = 1, availability of the task label k directly infers the ground truth label leading to zero
error of the model.

As opposed to a single-head evaluation, in which the model is evaluated on all classes seen so
far during the training, multi-head evaluation simplifies the problem relying on the assumption
that a separate task predicting model ( TP) can predict he task affiliation k of a test batch Diest
with a high accuracy. Indeed, such an assumption is legitimate in a non-incremental setup,
where the data for all tasks D = U'QOD;( is available at once. In the continual learning setup
the TP also needs to be trained incrementally and thus would also suffer from catastrophic
forgetting. Consequently, a continuously trainable system can not rely on the assumption of
the oracle knowledge of the task label at the test time and therefor should be evaluated in a
single-head output setup. As shown in Figure [2]in a single-head evaluation the network has a
single classification layer for all incrementally learned classes.

In order to address catastrophic forgetting in a continual learning setting with a single-head
architecture some approaches rely on storing raw samples of previously seen data and making
use of replay strategies during the training of subsequent tasks [16, [14]. However, this starkly
contrasts with the natural learning mechanisms of the brain, which does not feature the retrieval
of raw information identical to originally exposed impressions [12]. What is more, storing raw
samples of previous data may violate data privacy and memory restrictions in the real world
applications [22].

Generative Memory: instead of storing raw samples, we propose to rely on the idea of
employing deep generative model for memorizing previously seen data distributions. [19, 21]
follow a similar idea relying on generative replay, which requires retraining the generator from
scratch at each time step on a mixture of synthesized images of previous classes and new real
samples. Apart from being inefficient for training, it is severely prone to “semantic drifting”.
Namely, the quality of data generated at every memory replay point highly depends on the
images generated during previous replays, which can result in loss of quality over time.



Dynamic network expansion: only few existing works explore ANNs with dynamically
extendable capacity. [26] proposes to dynamically add new neurons to an auto-encoder for groups
of difficult examples that yield in high loss. Another line of work explores dynamic adjustment of
networks structure in the context of network compression and pruning 5], [4, 20} 24] - this involves
dynamically removing units rather then adding new once. [23] considers network expansion in a
continual learning setting, relying on a process called "selective-retraining". This involves diverse
heuristics and hyperparameters in order to identify units that causes semantic drift, which are
then duplicated and the network is further retrained.

One output layer per task

Input layer

Figure 1: Multi-head output architecture
with task specific output (classification)
layers. Each output layer contains only
classes of the corresponding task.

Single output layer

Input layer

Figure 2: Single-head output architecture
with single output layer for all classes seen
so-far in the training independently from
which task they belong to.

3 Dynamic generative memory network with learnable plasticity

In contrast to the methods described above, we propose to utilize a single generator that is able
to incrementally learn new information during the normal adversarial training without the need
to replay previous knowledge. Simultaneous with the adversarial training on each incoming data
batch, we learn a sparse mask for the layer activations of the generator network. This serves
the purpose of encouraging parameter re-usability across tasks as well as preventing important
parameters for past tasks from changing when learning subsequent tasks. The values of the
learned mask correspond to the plasticity of the connections between the layers. Thus units with
low plasticity (values of mask ~ 1) are reserved for previous tasks and can be reused but not
changed during the subsequent training. We make use of the learned binary mask as an efficient
mechanism for indicating the necessary amount of additional capacity to be added after learning
a task k. We propose to add exactly the amount of neurons after learning the task k that were
blocked for this task , in this way keeping the amount of "free" capacity constant for each task
("free" capacity are the neurons that are not blocked for any of the previous tasks).

As visualized in the Figure[3] the proposed method is composed of the following components:

e A discriminator network Dyp with two output layers: multi-class classifier L,,x. and binary
classifier L,g, . Here AP are the parameters of the discriminator network.

e A generator network Gy with binary masks Mk learned for each data batch Dy seen so far
in the training. Here §€ are the parameters of the generator network. We utilize techniques
proposed by [18] and [I1] to learn the binary mask from a real valued embedding vector.
The values of the learned mask correspond to the plasticity of the connections. Thus, units
with low plasticity (masked with values 1) are reserved for previous tasks and can be reused
but not changed during the subsequent training. Free parameters (masked with 0) can be
changed during subsequent training.

e Gyc can generate samples of previously seen classes, e.g.: Xi_1 synr. = G(6C, M1, We
utilize multi-head architecture in the generator with one output layer per each seen class.
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Figure 3: Deep generative memory: The AC-GAN [I5] architecture allows simultaneous adver-
sarial and auxiliary training, in which auxiliary output of L, is trained on the real samples of
the current task Xy, reas and synthesized sample of previously seen tasks Xx_1,synt. = G(6 G Mk —1).
During the adversarial training with real and fake samples of current class k a connections’ plas-
ticity in the generator is learned simultaneously with the weights matrices. Connections plasticity
is represented by task specific, learnable binary masks. Generator is dinamically expanded over
time in a way that keeos number of free neurons constant for each task.

e Gyc is adversarially trained to generate samples from the data distribution of the current
batch Dy using real samples Xy rear and fake samples Xy gke = G(6¢, M¥)

e In order to unsure scalability of the method with the increasing amount of data to learn
from, the Gye is dynamically expanded at every time step in a way that keeps the number
of free parameters (masked with 0) constant for every task.

We utilize the AC-GAN architecture [15] that has auxilary and adversarial outputs. This allows
training of the final classification model simultaneously with the adversarial training.

4 Experiments

We define a strictly incremental setup as a setup in which every new task contains a single class
and no raw samples of previous tasks can be stored. We perform experiments measuring the
classification accuracy of our system in a strictly incremental setup with single-head evaluation
on three benchmark datasets: MNIST [10], SVHN [I3] and CIFAR-10 [9]. Accuracy after incre-
mentally many learned tasks is reported to provide a high level impression on the criticality of
the catastrophic forgetting problem: ideally a system that does not forget will see results that
are stable, or even improving as it learns to generalize better from previously seen tasks.

All datasets are used to train a classification network in the strictly incremental setup, and
the performance of our method is evaluated quantitatively through comparison with benchmark
methods. Note that we compare to both type of methods; (i) where the strictly incremental
constraints are relaxed (every task contains more then one class), [16], [8], [2], [25], (i) methods
that strictly adhere to the setup (single class per task), making use of a type of memory: [17],
[19], |21]. Further, we plan to present a qualitative evaluation of CIFAR-10 using a perceptual
metric (FID score) [7].

Datasets: The MNIST and SVHN datasets are composed of 60000 and 99289 images re-
spectively, containing digits. The main difference is in the complexity and variance of the data
used. SVHN’s images are cropped photos containing house numbers and as such present varying
viewpoints, illuminations, etc. All images are further resized to 32 x 32 before use. Finally,



CIFARI10 contains 60000 32 x 32 labelled images of objects (e.g. planes, cars, dogs etc.), split in
10 classes, roughly 6k images per class.

5 Conclusion

The contributions of this Master’s thesis are two-fold: (a) we propose a dynamic generative mem-
ory (DGM) endowed with learnable binary masks for layer activations, mitigating forgetting and
rendering storing and memory replay unnecessary; (b) an adaptive network expansion mech-
anism, facilitating resource efficient continual learning. We study and discuss the impact and
effectiveness of the proposed mask and network extension modules, and evaluate the proposed
method in the incremental learning scenario. The goal is to reach state of the art performance
on benchmark datasets.
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Appendices

A: Preliminary results

Method Alo(%)
EWS [8] 55.8 -
PI [25] 57.6 Method A1o(%)
iCarl-S [16] 55.8 JT (upper bound, non incremental) [2I] ~ 96.9
EWS-S[]] 79.7 EWC-M [I7] 77.3
RWalk-S[2] 82.5 DGR-M [19] 85.4
PLS [25] 78.7 MeRGAN-M [21] 97.0
DGM (ours) 94.4 DGM-strict (ours) 98.14

DGM-strict (ours)  93.9
(a) (b)

Table 1: comparison with different baselines on split MNIST benchmark after incrementally
learning 10 tasks (10 digits 0-9). (a): comparison to benchmark and architecture presented by
[2] in which classes are added in pairs of 2, as well performance of DGM-strict in strict split
MNIST benchmark (classes added by one), where only our method is capable of learning in a
setup where classes are introduced one by one. Baselines where raw samples or previous data are
stored and reused for further training are appended with "-S". (b): comparison to benchmark
and architecture utilized by Wu et al. [2I]. All approaches make use of generative memory and
are evaluated in a strict incremental setup. DGM togather with MeRGAN [21] reach the upper
bound performance of the joint training (JT)
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