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Content of this Lecture

• Graphs
• Definitions 
• Representing Graphs
• Traversing Graphs
• Connected Components
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Graphs

• There are objects and there are relations between objects
• Directed trees can represent hierarchical relations

– Relations that are asymmetric, cycle-free, binary
– Examples: parent_of, subclass_of, smaller_than, …

• Undirected trees can represent cycle-free, binary relations
• This excludes many real-life relations

– friend_of, similar_to, reachable_by, html_linked_to, …
• (Classical) Graphs can represent all binary relationships
• N-ary relationships: Hypergraphs

– exam(student, professor, subject), borrow(student, book, library)
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Types of Graphs

• Most graphs you will see are binary
• Most graphs you will see are simple

– Simple graphs: At most one edge between any two nodes
– Extension: Multigraphs

• Some graphs you will see are undirected, some directed
• In theory, graphs can be infinitely large
• This lecture: Binary, simple, finite graphs
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Exemplary Graphs

• Classical theoretical model: Random Graphs
– Create every possible edge with a fixed probability p

– In a random graph, the degree of every node has expected value 
p*n, and the degree distribution follows a Poisson distribution
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Web Graph

• Graph layout is difficult
[http://img.webme.com/pic/c/chegga-hp/opte_org.jpg]

Note the 
strong local 
clustering

This is not a 
random 
graph
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Human Protein-Protein-Interaction Network 

• Proteins that are close in the graph likely share function
• Knocking out proteins with many neighbors often is lethal
[http://www.estradalab.org/research/index.html]
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Word Co-Occurrence

• Words that are close have related meaning
– Close: Appear in the same contexts

• Words cluster into topics
[http://www.michaelbommarito.com/blog/]
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Social Networks

• Power-Law degree distribution
• Six degrees of separation
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Road Network

• Specific property: Planar graphs
• Hierarchy of edges: Motorways, streets, dirt roads
[Sanders, P. &Schultes, D. (2005).Highway Hierarchies Hasten Exact Shortest Path Queries. In 13th 

European Symposium on Algorithms (ESA), 568-579.]
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More Examples

• Graphs are also a wonderful abstraction
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Coloring Problem

• How many colors does one need to color a map such that 
never two colors meet at a border?

• Chromatic number: Number of colors sufficient to color a 
graph such that no adjacent nodes have the same color

• Every planar graph has chromatic number of at most 4

[http://www.wikipedia.de]
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History [Wikipedia.de]

• This is not simple to proof
• It is easy to see that one sometimes 

needs at least four colors
• It is easy to show that one may need 

arbitrary many colors for general graphs
– Corresponding to higher dimensional spaces

• First conjecture which was proven only 
by computers (in 1976)
– Falls into many, many subcases – try all of 

them with a program
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Königsberger Brückenproblem

• Given a city with rivers and 
bridges: Is there a cycle-free 
path crossing every bridge 
exactly once?
– Euler-Path

Source: Wikipedia.de
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Königsberger Brückenproblem

• Given a city with rivers and 
bridges: Is there a cycle-free 
path crossing every bridge 
exactly once?
– A graph has an Euler-Path iff at 

contains 0 or 2 nodes with odd 
degree

• Hamiltonian path
– … visits each vertex exactly once
– NP complete
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Recall?
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Content of this Lecture

• Graphs
• Definitions
• Representing Graphs
• Traversing Graphs
• Connected Components
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Recall from Trees

• Definition
A graph G=(V, E) consists of a set of vertices (nodes) V 
and a set of edges (E⊆VxV). 
– A sequence of edges e1, e2, .., en is called a path iff ∀1≤i<n: 

ei=(v‘, v) and ei+1=(v, v``); the length of this path is n
– A path (v1,v2), (v2,v3), …, (vn-1,vn) is acyclic iff all vi are different
– G is acyclic, if no path in G contains a cycle; otherwise it is cyclic
– A graph is connected if every pair of vertices is connected by at 

least one path
– G is called undirected, if ∀(v,v’)∈E ⇒(v’,v)∈E. Otherwise it is called 

directed.
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More Definitions

• Definition
Let G=(V, E) be a directed graph. Let v∈V
– The outdegree out(v) is the number of edges with v as start point
– The indegree in(v) is the number of edges with v as end point
– G=(V,E,w) is an edge-labeled graph if w:E→L is a function that 

assigns an element of a set of labels L to every edge
– If L are numbers (real, int, …), G is called edge-weighted

• Remarks
– Labels / weights max be assigned to edges or nodes (or both)
– Indegree and outdegree are identical for undirected graphs and 

called degree (number of neighbors)
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Some More Definitions

• Definition. Let G=(V, E) be a directed graph.
– Any G’=(V’, E’) is called a subgraph of G, if V’⊆V and E’⊆E and 

∀(v1,v2)∈E’: v1,v2∈V’
– For any V’⊆V, the graph (V’, E∩(V’×V’)) is called the induced 

subgraph of G (induced by V’)
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Content of this Lecture
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• Definitions 
• Representing Graphs
• Traversing Graphs
• Connected Components
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Data Structures

• From an abstract point of view, a graph is a list of nodes 
and a list of (weighted, directed) edges

• Two fundamental implementations
– Adjacency matrix
– Adjacency lists

• As usual, the chosen representation determines the 
complexity of primitive operations 
– E.g. find node, find edge, find neighbors, …

• Suitability depends on the specific problem under study 
and the nature of the graphs
– Shortest paths, transitive hull, cliques, spanning trees, …
– Random, sparse/dense, scale-free, planar, …
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Example [OW93]

Graph Adjacency Matrix Adjacency List
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Adjacency Matrix

• Definition
Let G=(V, E) be a simple graph. The adjacency matrix MG
for G is a two-dimensional matrix of size |V|*|V|, where 
M[i,j]=1 iff (vi,vj)∈E

• Remarks
– Allows to test existence of a given edge in O(1) 
– Requires O(|V|) to obtain all incoming (outgoing) edges of a node
– For large graphs, M is too large to be of practical use
– If G is sparse (much less edges than |V|2), M wastes a lot of space
– If G is dense, M is a very compact representation (1 bit / edge)
– In labeled graphs, M[i,j] contains the label
– Since M must be initialized with zero’s, without further tricks all 

algorithms working on adjacency matrices are in Ω(|V|2)
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Adjacency List

• Definition
Let G=(V, E). The adjacency list LG for G is a list of all 
nodes vi of G. The entry representing vi∈V is a list of all 
edges outgoing (or incoming or both) from vi. 

• Remarks (assume a fixed node v)
– Let k be the maximal outdegree of G. Then, accessing an edge 

outgoing from v is O(log(k)) (if list is sorted; or use hashing)
– Obtaining a list of all outgoing edges from v is in O(k)

• If only outgoing edges are stored, obtaining a list of all incoming edges 
is O(|V|*log(k)) – we need to search all lists

• Therefore, usually outgoing and incoming edges are stored, which 
doubles space consumption

– If G is sparse, L is a compact representation
– If G is dense, L is wasteful (many pointers, many IDs)
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Comparison

Matrix Lists
Test if a given edge exists O(1) O(log(k))
Find all outgoing edges of 
a given v

O(n) O(k)

Space of G O(n2) O(n+m)

• With n=|V|, m=|E|, and m≤|V|2

• Table assumes a node-indexed array
• L is an array and nodes are uniquely numbered
• We find the list for node v in O(1)
• Otherwise, L has additional costs for finding v
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Transitive Closure

• Definition
Let G=(V,E) be a digraph and vi,vj∈V. The transitive 
closure of G is a graph G’=(V, E’) where (vi,vj)∈E’ iff G 
contains a path from vi to vj.

• TC usually is dense and represented as adjacency matrix
• Compact encoding of reachability information

X

D

B

FE

A

G

C

Y

X

D

B

FE

A

G

C

Y

and many more
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Content of this Lecture

• Graphs
• Definitions 
• Representing Graphs
• Traversing Graphs
• Connected Components
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Graph Traversal

• One thing we often do with graphs is traversal
• “Traversal” means: Visit every node exactly once in a 

sequence determined by the graph’s topology
– Not necessarily on one consecutive path (as in Hamiltonian path)

• Two popular orders
– Depth-first: Using a stack
– Breadth-first: Using a queue
– The scheme is identical to that in tree traversal

• Two difference
– We have to take care of cycles
– No root – where should we start?
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Breaking Cycles

• Any naïve traversal will visit nodes more than once
– If there is at least one node with more than one incoming edge

• Any naïve traversal will run into infinite loops
– If the graphs contains at least one cycle (i.e., is cyclic)

• Breaking cycles / avoiding multiple visits
– Assume we started the traversal at a node r 
– During traversal, we keep a list U of not yet visited nodes 
– Assume we are in v and aim to proceed to v’ using e=(v, v’)∈E
– If v’∉U, v’ was visited before and we are about to run into a cycle 

or visit v’ twice
– In this case, e is ignored
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Example

• Started at r and went r, y, z, v: U={X,1,2,3,4}
• Testing (v,y): y∉U, drop
• Testing (v, r): r∉U, drop
• Testing (v, x): x∈U, proceed

r

y

x

32

1

4

z

v
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Where do we Start? 
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Where do we Start? 

• Definition
Let G=(V, E). Let V’⊆V and G’ be the subgraph of G 
induced by V’
– G’ is called connected if it contains a path between any pair v,v’∈V’ 
– G’ is called maximally connected, if no subgraph induced by a 

superset of V’ is connected
– If G is undirected, any maximal connected subgraph of G is called a 

connected component of G
– If G is directed, any maximal connected subgraph of G is called a 

strongly connected component of G
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Example
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Where do we Start?

• If a undirected graph falls into several connected 
components, we cannot reach all nodes by a single 
traversal, no matter which node we use as start point

• If a digraph falls into several strongly connected 
components, we might not reach all nodes by a single 
traversal

• Remedy: If the traversal gets stuck, we restart at unseen 
nodes until all nodes have been traversed
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Depth-First Traversal on Directed Graphs

func void DFS (G=(V,E)) {
U := V;    # Unseen nodes
while U≠∅ do

v := getNextUnseen( U);
traverse( G, v, U);

end while;
}

Called once for 
every connected 

component

func void traverse (G, v node, 
U set) {

t := new Stack();
t.put( v);
U := U \ {v};
while not t.isEmpty() do

n := t.pop();
print n;
c := n.outgoingNodes();
foreach x in c do

if x∈U then
U := U \ {x};
t.push( x);

end if;
end for;

end while;
}
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Analysis

• We put every node exactly once 
on the stack
– Once visited, never visited again

• We look at every edge exactly 
once
– Outgoing edges of a visited node 

are never considered again
• U can be implemented as bit-

array of size |V|, allowing O(1) 
operations
– Add, remove, getNextUnseen

• Altogether: O(n+m)

func void traverse (G, v node, 
U set) {

t := new Stack();
t.put( v);
U := U \ {v};
while not t.isEmpty() do
n := t.pop();
print n;
c := n.outgoingNodes();
foreach x in c do
if x∈U then
U := U \ {x};
t.push( x);

end if;
end for;

end while;
}
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Content of this Lecture

• Graphs
• Definitions 
• Representing Graphs
• Traversing Graphs
• Connected Components



Ulf Leser: Algorithms and Data Structures 42

In Undirected Graphs

• In an undirected graph, whenever there is a path from r to 
v and from v to v’, then there is also a path from v’ to r 
– Simply go the path r → v → v’ backwards

• Thus, DFS (and BFS) traversal can be used to find all 
connected components of a undirected graph G
– Whenever you call traverse(v), create a new component
– All nodes visited during one call of traverse(v) form one connected 

component
• Obviously in O(n+m)
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In Digraphs

• The problem is considerably more complicated for digraphs
– Previous conjecture does not hold

• Still: Tarjan‘s or Kosaraju’s algorithm find all strongly 
connected components in O(n + m)
– See next lecture



Ulf Leser: Algorithms and Data Structures 44

Possible Examination Questions

• Let G be an undirected graph and S,T be two connected 
components of G. Proof that S and T must be disjoint, i.e., 
cannot share a node.

• Let G be an undirected graph with n vertices and m edges, 
m<=n2. What is the minimal and what is the maximal 
number of connected components G can have?

• Let G be a positively edge-weighted digraph G. Design an 
algorithm which finds the longest acyclic path in G. Analyze 
the complexity of your algorithm.

• An Euler path through an undirected graph G is a cycle-
free path from any start to any end node that hits every 
node of G (exactly once). Give an algorithm which tests for 
an input graph G whether it contains an Euler path.
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