

Algorithms and Data Structures

Graphs: Introduction

Ulf Leser

Content of this Lecture

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components

Graphs

- There are objects and there are relations between objects
- Directed trees can represent hierarchical relations
- Relations that are asymmetric, cycle-free, binary
- Examples: parent_of, subclass_of, smaller_than, ...
- Undirected trees can represent cycle-free, binary relations
- This excludes many real-life relations
- friend_of, similar_to, reachable_by, html_linked_to, ...
- (Classical) Graphs can represent all binary relationships
- N-ary relationships: Hypergraphs
- exam(student, professor, subject), borrow(student, book, library)

Types of Graphs

- Most graphs you will see are binary
- Most graphs you will see are simple
- Simple graphs: At most one edge between any two nodes
- Extension: Multigraphs
- Some graphs you will see are undirected, some directed
- In theory, graphs can be infinitely large
- This lecture: Binary, simple, finite graphs

Exemplary Graphs

- Classical theoretical model: Random Graphs
- Create every possible edge with a fixed probability p

$p=0.1$

$p=0.25$

$p=0.5$
- In a random graph, the degree of every node has expected value p*n, and the degree distribution follows a Poisson distribution

Web Graph

Note the strong local clustering

This is not a random graph

- Graph layout is difficult
[http://img.webme.com/pic/c/chegga-hp/opte_org.jpg]

Human Protein-Protein-Interaction Network

- Proteins that are close in the graph likely share function
- Knocking out proteins with many neighbors often is lethal
[http://www.estradalab.org/research/index.html]

Word Co-Occurrence

- Words that are close have related meaning
- Close: Appear in the same contexts
- Words cluster into topics
[http://www.michaelbommarito.com/blog/]

Social Networks

- Power-Law degree distribution
- Six degrees of separation

Road Network

- Specific property: Planar graphs
- Hierarchy of edges: Motorways, streets, dirt roads
[Sanders, P. \&Schultes, D. (2005).Highway Hierarchies Hasten Exact Shortest Path Queries. In 13th European Symposium on Algorithms (ESA), 568-579.]

More Examples

- Graphs are also a wonderful abstraction

Coloring Problem

- How many colors does one need to color a map such that never two colors meet at a border?

[http://www.wikipedia.de]
- Chromatic number: Number of colors sufficient to color a graph such that no adjacent nodes have the same color
- Every planar graph has chromatic number of at most 4
- This is not simple to proof
- It is easy to see that one sometimes needs at least four colors
- It is easy to show that one may need arbitrary many colors for general graphs
- Corresponding to higher dimensional spaces
- First conjecture which was proven only
 by computers (in 1976)
- Falls into many, many subcases - try all of them with a program

Königsberger Brückenproblem

- Given a city with rivers and bridges: Is there a cycle-free path crossing every bridge exactly once?
- Euler-Path

Source: Wikipedia.de

Königsberger Brückenproblem

- Given a city with rivers and bridges: Is there a cycle-free path crossing every bridge exactly once?
- A graph has an Euler-Path iff at contains 0 or 2 nodes with odd degree

- Hamiltonian path
- ... visits each vertex exactly once
- NP complete

Recall?

Content of this Lecture

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components

Recall from Trees

- Definition

A graph $G=(V, E)$ consists of a set of vertices (nodes) V and a set of edges ($E \subseteq V X V$).

- A sequence of edges $e_{1}, e_{2}, ., e_{n}$ is called a path iff $\forall 1 \leq i<n$: $e_{i}=\left(v^{\prime}, v\right)$ and $e_{i+1}=\left(v, v^{\prime}\right)$; the length of this path is n
- A path $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-1}, v_{n}\right)$ is acyclic iff all v_{i} are different
- G is acyclic, if no path in G contains a cycle; otherwise it is cyclic
- A graph is connected if every pair of vertices is connected by at least one path
- G is called undirected, if $\forall\left(v, v^{\prime}\right) \in E \Rightarrow\left(v^{\prime}, v\right) \in E$. Otherwise it is called directed.

More Definitions

- Definition

Let $G=(V, E)$ be a directed graph. Let $v \in V$

- The outdegree out(v) is the number of edges with v as start point
- The indegree in(v) is the number of edges with v as end point
- $G=(V, E, w)$ is an edge-labeled graph if $w: E \rightarrow L$ is a function that assigns an element of a set of labels L to every edge
- If L are numbers (real, int, ...), G is called edge-weighted
- Remarks
- Labels / weights max be assigned to edges or nodes (or both)
- Indegree and outdegree are identical for undirected graphs and called degree (number of neighbors)

Some More Definitions

- Definition. Let $G=(V, E)$ be a directed graph.
- Any $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is called a subgraph of G, if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$ and $\forall\left(v_{1}, v_{2}\right) \in E^{\prime}: v_{1}, v_{2} \in V^{\prime}$
- For any $V^{\prime} \subseteq V$, the graph $\left(V^{\prime}, E \cap\left(V^{\prime} \times V^{\prime}\right)\right.$) is called the induced subgraph of G (induced by V^{\prime})

Some More Definitions

- Definition. Let $G=(V, E)$ be a directed graph.
- Any $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is called a subgraph of G, if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$ and $\forall\left(v_{1}, v_{2}\right) \in E^{\prime}: v_{1}, v_{2} \in V^{\prime}$
- For any $V^{\prime} \subseteq V$, the graph $\left(V^{\prime}, E \cap\left(V^{\prime} \times V^{\prime}\right)\right.$) is called the induced subgraph of G (induced by V^{\prime})

Some More Definitions

- Definition. Let $G=(V, E)$ be a directed graph.
- Any $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is called a subgraph of G, if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$ and $\forall\left(v_{1}, v_{2}\right) \in E^{\prime}: v_{1}, v_{2} \in V^{\prime}$
- For any $V^{\prime} \subseteq V$, the graph $\left(V^{\prime}, E \cap\left(V^{\prime} \times V^{\prime}\right)\right.$) is called the induced subgraph of G (induced by V^{\prime})

Content of this Lecture

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components

Data Structures

- From an abstract point of view, a graph is a list of nodes and a list of (weighted, directed) edges
- Two fundamental implementations
- Adjacency matrix
- Adjacency lists
- As usual, the chosen representation determines the complexity of primitive operations
- E.g. find node, find edge, find neighbors, ...
- Suitability depends on the specific problem under study and the nature of the graphs
- Shortest paths, transitive hull, cliques, spanning trees, ...
- Random, sparse/dense, scale-free, planar, ...

Example [ow93]

Graph
Adjacency Matrix
Adjacency List

Adjacency Matrix

- Definition

Let $G=(V, E)$ be a simple graph. The adjacency matrix M_{G} for G is a two-dimensional matrix of size $/ V / * / V /$, where $M[i, j]=1$ iff $\left(v_{i} v_{j}\right) \in E$

- Remarks
- Allows to test existence of a given edge in $\mathrm{O}(1)$
- Requires $\mathrm{O}(|\mathrm{V}|)$ to obtain all incoming (outgoing) edges of a node
- For large graphs, M is too large to be of practical use
- If G is sparse (much less edges than $|\mathrm{V}|^{2}$), M wastes a lot of space
- If G is dense, M is a very compact representation (1 bit / edge)
- In labeled graphs, M[i,j] contains the label
- Since M must be initialized with zero's, without further tricks all algorithms working on adjacency matrices are in $\Omega\left(|\mathrm{V}|^{2}\right)$

Adjacency List

- Definition

Let $G=(V, E)$. The adjacency list L_{G} for G is a list of all nodes v_{i} of G. The entry representing $v_{i} \in V$ is a list of all edges outgoing (or incoming or both) from v_{i}.

- Remarks (assume a fixed node v)
- Let k be the maximal outdegree of G . Then, accessing an edge outgoing from v is $\mathrm{O}(\log (\mathrm{k})$) (if list is sorted; or use hashing)
- Obtaining a list of all outgoing edges from v is in $O(k)$
- If only outgoing edges are stored, obtaining a list of all incoming edges is $\mathrm{O}(\mathrm{V} \mid * \log (\mathrm{k}))$ - we need to search all lists
- Therefore, usually outgoing and incoming edges are stored, which doubles space consumption
- If G is sparse, L is a compact representation
- If G is dense, L is wasteful (many pointers, many IDs)

Comparison

	Matrix	Lists
Test if a given edge exists	$\mathrm{O}(1)$	$\mathrm{O}(\log (\mathrm{k}))$
Find all outgoing edges of a given v	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{k})$
Space of G	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n}+\mathrm{m})$

- With $\mathrm{n}=|\mathrm{V}|, \mathrm{m}=|\mathrm{E}|$, and $\mathrm{m} \leq|\mathrm{V}|^{2}$
- Table assumes a node-indexed array
- L is an array and nodes are uniquely numbered
- We find the list for node v in $O(1)$
- Otherwise, L has additional costs for finding v

Transitive Closure

- Definition

Let $G=(V, E)$ be a digraph and $v_{j} v_{j} \in V$. The transitive closure of G is a graph $G^{\prime}=\left(V, E^{\prime}\right)$ where $\left(v_{j} v_{j}\right) \in E^{\prime}$ iff G contains a path from v_{i} to v_{j}.

- TC usually is dense and represented as adjacency matrix
- Compact encoding of reachability information

Content of this Lecture

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components

Graph Traversal

- One thing we often do with graphs is traversal
- "Traversal" means: Visit every node exactly once in a sequence determined by the graph's topology
- Not necessarily on one consecutive path (as in Hamiltonian path)
- Two popular orders
- Depth-first: Using a stack
- Breadth-first: Using a queue
- The scheme is identical to that in tree traversal
- Two difference
- We have to take care of cycles
- No root - where should we start?

Breaking Cycles

- Any naïve traversal will visit nodes more than once
- If there is at least one node with more than one incoming edge
- Any naïve traversal will run into infinite loops
- If the graphs contains at least one cycle (i.e., is cyclic)
- Breaking cycles / avoiding multiple visits
- Assume we started the traversal at a node r
- During traversal, we keep a list U of not yet visited nodes
- Assume we are in v and aim to proceed to v^{\prime} using $e=\left(v, v^{\prime}\right) \in E$
- If $v^{\prime} \notin \mathbf{U}, v^{\prime}$ was visited before and we are about to run into a cycle or visit v' twice
- In this case, e is ignored

Example

- Started at r and went $r, y, z, v: U=\{X, 1,2,3,4\}$
- Testing (v, y): $\mathrm{y} \notin \mathrm{U}$, drop
- Testing (v, r): $\mathrm{r} \notin \mathrm{U}$, drop
- Testing $(\mathrm{v}, \mathrm{x}): \mathrm{x} \in \mathrm{U}$, proceed

Where do we Start?

Where do we Start?

- Definition

Let $G=(V, E)$. Let $V^{\prime} \subseteq V$ and G^{\prime} be the subgraph of G induced by V^{\prime}

- G^{\prime} is called connected if it contains a path between any pair $v, v^{\prime} \in V^{\prime}$
- G'is called maximally connected, if no subgraph induced by a superset of V^{\prime} is connected
- If G is undirected, any maximal connected subgraph of G is called a connected component of G
- If G is directed, any maximal connected subgraph of G is called a strongly connected component of G

Example

Where do we Start?

- If a undirected graph falls into several connected components, we cannot reach all nodes by a single traversal, no matter which node we use as start point
- If a digraph falls into several strongly connected components, we might not reach all nodes by a single traversal
- Remedy: If the traversal gets stuck, we restart at unseen nodes until all nodes have been traversed

Depth-First Traversal on Directed Graphs

```
func void DFS (G=(V,E)) {
    U := V; # Unseen nodes
    while U\not=\varnothing do
        v := getNextUnseen( U);
        traverse( G, v, U);
    end while;
}
```

```
func void traverse (G, v node,
```

func void traverse (G, v node,
U set) {
U set) {
t := new Stack();
t := new Stack();
t.put(v);
t.put(v);
U := U \ {v};
U := U \ {v};
while not t.isEmpty() do
while not t.isEmpty() do
n := t.pop();
n := t.pop();
print n;
print n;
c := n.outgoingNodes();
c := n.outgoingNodes();
foreach x in c do
foreach x in c do
if x\inU then
if x\inU then
U := U \ {x};
U := U \ {x};
t.push(x);
t.push(x);
end if;
end if;
end for;
end for;
end while;
end while;
}

```
}
```


Analysis

- We put every node exactly once on the stack
- Once visited, never visited again
- We look at every edge exactly once
- Outgoing edges of a visited node are never considered again
- U can be implemented as bitarray of size |V|, allowing O(1) operations
- Add, remove, getNextUnseen
- Altogether: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

```
func void traverse (G, v node,
```

func void traverse (G, v node,
U set) {
U set) {
t := new Stack();
t := new Stack();
t.put(v);
t.put(v);
U := U \ {v};
U := U \ {v};
while not t.isEmpty() do
while not t.isEmpty() do
n := t.pop();
n := t.pop();
print n;
print n;
c := n.outgoingNodes();
c := n.outgoingNodes();
foreach x in c do
foreach x in c do
if x\inU then
if x\inU then
U := U \ {x};
U := U \ {x};
t.push(x);
t.push(x);
end if;
end if;
end for;
end for;
end while;
end while;
}

```
}
```

\square

Content of this Lecture

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components

In Undirected Graphs

- In an undirected graph, whenever there is a path from r to v and from v to v^{\prime}, then there is also a path from v^{\prime} to r
- Simply go the path $r \rightarrow v \rightarrow v^{\prime}$ backwards
- Thus, DFS (and BFS) traversal can be used to find all connected components of a undirected graph G
- Whenever you call traverse(v), create a new component
- All nodes visited during one call of traverse(v) form one connected component
- Obviously in $\mathrm{O}(\mathrm{n}+\mathrm{m})$

In Digraphs

- The problem is considerably more complicated for digraphs
- Previous conjecture does not hold
- Still: Tarjan's or Kosaraju's algorithm find all strongly connected components in $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- See next lecture

Possible Examination Questions

- Let G be an undirected graph and S,T be two connected components of G . Proof that S and T must be disjoint, i.e., cannot share a node.
- Let G be an undirected graph with n vertices and m edges, $\mathrm{m}<=\mathrm{n}^{2}$. What is the minimal and what is the maximal number of connected components G can have?
- Let G be a positively edge-weighted digraph G . Design an algorithm which finds the longest acyclic path in G. Analyze the complexity of your algorithm.
- An Euler path through an undirected graph G is a cyclefree path from any start to any end node that hits every node of G (exactly once). Give an algorithm which tests for an input graph G whether it contains an Euler path.

