
Algorithms and Data Structures

Ulf Leser

Graphs: Introduction

Ulf Leser: Algorithms and Data Structures 3

Content of this Lecture

• Graphs
• Definitions
• Representing Graphs
• Traversing Graphs
• Connected Components

Ulf Leser: Algorithms and Data Structures 4

Graphs

• There are objects and there are relations between objects
• Directed trees can represent hierarchical relations

– Relations that are asymmetric, cycle-free, binary
– Examples: parent_of, subclass_of, smaller_than, …

• Undirected trees can represent cycle-free, binary relations
• This excludes many real-life relations

– friend_of, similar_to, reachable_by, html_linked_to, …
• (Classical) Graphs can represent all binary relationships
• N-ary relationships: Hypergraphs

– exam(student, professor, subject), borrow(student, book, library)

Ulf Leser: Algorithms and Data Structures 5

Types of Graphs

• Most graphs you will see are binary
• Most graphs you will see are simple

– Simple graphs: At most one edge between any two nodes
– Extension: Multigraphs

• Some graphs you will see are undirected, some directed
• In theory, graphs can be infinitely large
• This lecture: Binary, simple, finite graphs

Ulf Leser: Algorithms and Data Structures 6

Exemplary Graphs

• Classical theoretical model: Random Graphs
– Create every possible edge with a fixed probability p

– In a random graph, the degree of every node has expected value
p*n, and the degree distribution follows a Poisson distribution

Ulf Leser: Algorithms and Data Structures 7

Web Graph

• Graph layout is difficult
[http://img.webme.com/pic/c/chegga-hp/opte_org.jpg]

Note the
strong local
clustering

This is not a
random
graph

Ulf Leser: Algorithms and Data Structures 8

Human Protein-Protein-Interaction Network

• Proteins that are close in the graph likely share function
• Knocking out proteins with many neighbors often is lethal
[http://www.estradalab.org/research/index.html]

Ulf Leser: Algorithms and Data Structures 9

Word Co-Occurrence

• Words that are close have related meaning
– Close: Appear in the same contexts

• Words cluster into topics
[http://www.michaelbommarito.com/blog/]

Ulf Leser: Algorithms and Data Structures 10

Social Networks

• Power-Law degree distribution
• Six degrees of separation

Ulf Leser: Algorithms and Data Structures 11

Road Network

• Specific property: Planar graphs
• Hierarchy of edges: Motorways, streets, dirt roads
[Sanders, P. &Schultes, D. (2005).Highway Hierarchies Hasten Exact Shortest Path Queries. In 13th

European Symposium on Algorithms (ESA), 568-579.]

Ulf Leser: Algorithms and Data Structures 12

More Examples

• Graphs are also a wonderful abstraction

Ulf Leser: Algorithms and Data Structures 13

Coloring Problem

• How many colors does one need to color a map such that
never two colors meet at a border?

• Chromatic number: Number of colors sufficient to color a
graph such that no adjacent nodes have the same color

• Every planar graph has chromatic number of at most 4

[http://www.wikipedia.de]

Ulf Leser: Algorithms and Data Structures 14

History [Wikipedia.de]

• This is not simple to proof
• It is easy to see that one sometimes

needs at least four colors
• It is easy to show that one may need

arbitrary many colors for general graphs
– Corresponding to higher dimensional spaces

• First conjecture which was proven only
by computers (in 1976)
– Falls into many, many subcases – try all of

them with a program

Ulf Leser: Algorithms and Data Structures 15

Königsberger Brückenproblem

• Given a city with rivers and
bridges: Is there a cycle-free
path crossing every bridge
exactly once?
– Euler-Path

Source: Wikipedia.de

Ulf Leser: Algorithms and Data Structures 16

Königsberger Brückenproblem

• Given a city with rivers and
bridges: Is there a cycle-free
path crossing every bridge
exactly once?
– A graph has an Euler-Path iff at

contains 0 or 2 nodes with odd
degree

• Hamiltonian path
– … visits each vertex exactly once
– NP complete

Ulf Leser: Algorithms and Data Structures 17

Recall?

Ulf Leser: Algorithms and Data Structures 18

Content of this Lecture

• Graphs
• Definitions
• Representing Graphs
• Traversing Graphs
• Connected Components

Ulf Leser: Algorithms and Data Structures 19

Recall from Trees

• Definition
A graph G=(V, E) consists of a set of vertices (nodes) V
and a set of edges (E⊆VxV).
– A sequence of edges e1, e2, .., en is called a path iff ∀1≤i<n:

ei=(v‘, v) and ei+1=(v, v``); the length of this path is n
– A path (v1,v2), (v2,v3), …, (vn-1,vn) is acyclic iff all vi are different
– G is acyclic, if no path in G contains a cycle; otherwise it is cyclic
– A graph is connected if every pair of vertices is connected by at

least one path
– G is called undirected, if ∀(v,v’)∈E ⇒(v’,v)∈E. Otherwise it is called

directed.

Ulf Leser: Algorithms and Data Structures 20

More Definitions

• Definition
Let G=(V, E) be a directed graph. Let v∈V
– The outdegree out(v) is the number of edges with v as start point
– The indegree in(v) is the number of edges with v as end point
– G=(V,E,w) is an edge-labeled graph if w:E→L is a function that

assigns an element of a set of labels L to every edge
– If L are numbers (real, int, …), G is called edge-weighted

• Remarks
– Labels / weights max be assigned to edges or nodes (or both)
– Indegree and outdegree are identical for undirected graphs and

called degree (number of neighbors)

Ulf Leser: Algorithms and Data Structures 21

Some More Definitions

• Definition. Let G=(V, E) be a directed graph.
– Any G’=(V’, E’) is called a subgraph of G, if V’⊆V and E’⊆E and

∀(v1,v2)∈E’: v1,v2∈V’
– For any V’⊆V, the graph (V’, E∩(V’×V’)) is called the induced

subgraph of G (induced by V’)

Ulf Leser: Algorithms and Data Structures 22

Some More Definitions

• Definition. Let G=(V, E) be a directed graph.
– Any G’=(V’, E’) is called a subgraph of G, if V’⊆V and E’⊆E and

∀(v1,v2)∈E’: v1,v2∈V’
– For any V’⊆V, the graph (V’, E∩(V’×V’)) is called the induced

subgraph of G (induced by V’)

Ulf Leser: Algorithms and Data Structures 23

Some More Definitions

• Definition. Let G=(V, E) be a directed graph.
– Any G’=(V’, E’) is called a subgraph of G, if V’⊆V and E’⊆E and

∀(v1,v2)∈E’: v1,v2∈V’
– For any V’⊆V, the graph (V’, E∩(V’×V’)) is called the induced

subgraph of G (induced by V’)

Ulf Leser: Algorithms and Data Structures 24

Content of this Lecture

• Graphs
• Definitions
• Representing Graphs
• Traversing Graphs
• Connected Components

Ulf Leser: Algorithms and Data Structures 25

Data Structures

• From an abstract point of view, a graph is a list of nodes
and a list of (weighted, directed) edges

• Two fundamental implementations
– Adjacency matrix
– Adjacency lists

• As usual, the chosen representation determines the
complexity of primitive operations
– E.g. find node, find edge, find neighbors, …

• Suitability depends on the specific problem under study
and the nature of the graphs
– Shortest paths, transitive hull, cliques, spanning trees, …
– Random, sparse/dense, scale-free, planar, …

Ulf Leser: Algorithms and Data Structures 26

Example [OW93]

Graph Adjacency Matrix Adjacency List

Ulf Leser: Algorithms and Data Structures 27

Adjacency Matrix

• Definition
Let G=(V, E) be a simple graph. The adjacency matrix MG
for G is a two-dimensional matrix of size |V|*|V|, where
M[i,j]=1 iff (vi,vj)∈E

• Remarks
– Allows to test existence of a given edge in O(1)
– Requires O(|V|) to obtain all incoming (outgoing) edges of a node
– For large graphs, M is too large to be of practical use
– If G is sparse (much less edges than |V|2), M wastes a lot of space
– If G is dense, M is a very compact representation (1 bit / edge)
– In labeled graphs, M[i,j] contains the label
– Since M must be initialized with zero’s, without further tricks all

algorithms working on adjacency matrices are in Ω(|V|2)

Ulf Leser: Algorithms and Data Structures 28

Adjacency List

• Definition
Let G=(V, E). The adjacency list LG for G is a list of all
nodes vi of G. The entry representing vi∈V is a list of all
edges outgoing (or incoming or both) from vi.

• Remarks (assume a fixed node v)
– Let k be the maximal outdegree of G. Then, accessing an edge

outgoing from v is O(log(k)) (if list is sorted; or use hashing)
– Obtaining a list of all outgoing edges from v is in O(k)

• If only outgoing edges are stored, obtaining a list of all incoming edges
is O(|V|*log(k)) – we need to search all lists

• Therefore, usually outgoing and incoming edges are stored, which
doubles space consumption

– If G is sparse, L is a compact representation
– If G is dense, L is wasteful (many pointers, many IDs)

Ulf Leser: Algorithms and Data Structures 29

Comparison

Matrix Lists
Test if a given edge exists O(1) O(log(k))
Find all outgoing edges of
a given v

O(n) O(k)

Space of G O(n2) O(n+m)

• With n=|V|, m=|E|, and m≤|V|2

• Table assumes a node-indexed array
• L is an array and nodes are uniquely numbered
• We find the list for node v in O(1)
• Otherwise, L has additional costs for finding v

Ulf Leser: Algorithms and Data Structures 30

Transitive Closure

• Definition
Let G=(V,E) be a digraph and vi,vj∈V. The transitive
closure of G is a graph G’=(V, E’) where (vi,vj)∈E’ iff G
contains a path from vi to vj.

• TC usually is dense and represented as adjacency matrix
• Compact encoding of reachability information

X

D

B

FE

A

G

C

Y

X

D

B

FE

A

G

C

Y

and many more

Ulf Leser: Algorithms and Data Structures 31

Content of this Lecture

• Graphs
• Definitions
• Representing Graphs
• Traversing Graphs
• Connected Components

Ulf Leser: Algorithms and Data Structures 32

Graph Traversal

• One thing we often do with graphs is traversal
• “Traversal” means: Visit every node exactly once in a

sequence determined by the graph’s topology
– Not necessarily on one consecutive path (as in Hamiltonian path)

• Two popular orders
– Depth-first: Using a stack
– Breadth-first: Using a queue
– The scheme is identical to that in tree traversal

• Two difference
– We have to take care of cycles
– No root – where should we start?

Ulf Leser: Algorithms and Data Structures 33

Breaking Cycles

• Any naïve traversal will visit nodes more than once
– If there is at least one node with more than one incoming edge

• Any naïve traversal will run into infinite loops
– If the graphs contains at least one cycle (i.e., is cyclic)

• Breaking cycles / avoiding multiple visits
– Assume we started the traversal at a node r
– During traversal, we keep a list U of not yet visited nodes
– Assume we are in v and aim to proceed to v’ using e=(v, v’)∈E
– If v’∉U, v’ was visited before and we are about to run into a cycle

or visit v’ twice
– In this case, e is ignored

Ulf Leser: Algorithms and Data Structures 34

Example

• Started at r and went r, y, z, v: U={X,1,2,3,4}
• Testing (v,y): y∉U, drop
• Testing (v, r): r∉U, drop
• Testing (v, x): x∈U, proceed

r

y

x

32

1

4

z

v

Ulf Leser: Algorithms and Data Structures 35

Where do we Start?

Ulf Leser: Algorithms and Data Structures 36

Where do we Start?

• Definition
Let G=(V, E). Let V’⊆V and G’ be the subgraph of G
induced by V’
– G’ is called connected if it contains a path between any pair v,v’∈V’
– G’ is called maximally connected, if no subgraph induced by a

superset of V’ is connected
– If G is undirected, any maximal connected subgraph of G is called a

connected component of G
– If G is directed, any maximal connected subgraph of G is called a

strongly connected component of G

Ulf Leser: Algorithms and Data Structures 37

Example

Ulf Leser: Algorithms and Data Structures 38

Where do we Start?

• If a undirected graph falls into several connected
components, we cannot reach all nodes by a single
traversal, no matter which node we use as start point

• If a digraph falls into several strongly connected
components, we might not reach all nodes by a single
traversal

• Remedy: If the traversal gets stuck, we restart at unseen
nodes until all nodes have been traversed

Ulf Leser: Algorithms and Data Structures 39

Depth-First Traversal on Directed Graphs

func void DFS (G=(V,E)) {
U := V; # Unseen nodes
while U≠∅ do

v := getNextUnseen(U);
traverse(G, v, U);

end while;
}

Called once for
every connected

component

func void traverse (G, v node,
U set) {

t := new Stack();
t.put(v);
U := U \ {v};
while not t.isEmpty() do

n := t.pop();
print n;
c := n.outgoingNodes();
foreach x in c do

if x∈U then
U := U \ {x};
t.push(x);

end if;
end for;

end while;
}

Ulf Leser: Algorithms and Data Structures 40

Analysis

• We put every node exactly once
on the stack
– Once visited, never visited again

• We look at every edge exactly
once
– Outgoing edges of a visited node

are never considered again
• U can be implemented as bit-

array of size |V|, allowing O(1)
operations
– Add, remove, getNextUnseen

• Altogether: O(n+m)

func void traverse (G, v node,
U set) {

t := new Stack();
t.put(v);
U := U \ {v};
while not t.isEmpty() do
n := t.pop();
print n;
c := n.outgoingNodes();
foreach x in c do
if x∈U then
U := U \ {x};
t.push(x);

end if;
end for;

end while;
}

Ulf Leser: Algorithms and Data Structures 41

Content of this Lecture

• Graphs
• Definitions
• Representing Graphs
• Traversing Graphs
• Connected Components

Ulf Leser: Algorithms and Data Structures 42

In Undirected Graphs

• In an undirected graph, whenever there is a path from r to
v and from v to v’, then there is also a path from v’ to r
– Simply go the path r → v → v’ backwards

• Thus, DFS (and BFS) traversal can be used to find all
connected components of a undirected graph G
– Whenever you call traverse(v), create a new component
– All nodes visited during one call of traverse(v) form one connected

component
• Obviously in O(n+m)

Ulf Leser: Algorithms and Data Structures 43

In Digraphs

• The problem is considerably more complicated for digraphs
– Previous conjecture does not hold

• Still: Tarjan‘s or Kosaraju’s algorithm find all strongly
connected components in O(n + m)
– See next lecture

Ulf Leser: Algorithms and Data Structures 44

Possible Examination Questions

• Let G be an undirected graph and S,T be two connected
components of G. Proof that S and T must be disjoint, i.e.,
cannot share a node.

• Let G be an undirected graph with n vertices and m edges,
m<=n2. What is the minimal and what is the maximal
number of connected components G can have?

• Let G be a positively edge-weighted digraph G. Design an
algorithm which finds the longest acyclic path in G. Analyze
the complexity of your algorithm.

• An Euler path through an undirected graph G is a cycle-
free path from any start to any end node that hits every
node of G (exactly once). Give an algorithm which tests for
an input graph G whether it contains an Euler path.

	Foliennummer 1
	Content of this Lecture
	Graphs
	Types of Graphs
	Exemplary Graphs
	Web Graph
	Human Protein-Protein-Interaction Network
	Word Co-Occurrence
	Social Networks
	Road Network
	More Examples
	Coloring Problem
	History [Wikipedia.de]
	Königsberger Brückenproblem
	Königsberger Brückenproblem
	Recall?
	Content of this Lecture
	Recall from Trees
	More Definitions
	Some More Definitions
	Some More Definitions
	Some More Definitions
	Content of this Lecture
	Data Structures
	Example [OW93]
	Adjacency Matrix
	Adjacency List
	Comparison
	Transitive Closure
	Content of this Lecture
	Graph Traversal
	Breaking Cycles
	Example
	Where do we Start?
	Where do we Start?
	Example
	Where do we Start?
	Depth-First Traversal on Directed Graphs
	Analysis
	Content of this Lecture
	In Undirected Graphs
	In Digraphs
	Possible Examination Questions

