

Algorithms and Data Structures

Graphs: Introduction

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components

- There are objects and there are relations between objects
- Directed trees can represent hierarchical relations
 - Relations that are asymmetric, cycle-free, binary
 - Examples: parent_of, subclass_of, smaller_than, ...
- Undirected trees can represent cycle-free, binary relations
- This excludes many real-life relations

 friend_of, similar_to, reachable_by, html_linked_to, ...
- (Classical) Graphs can represent all binary relationships
- N-ary relationships: Hypergraphs
 - exam(student, professor, subject), borrow(student, book, library)

- Most graphs you will see are binary
- Most graphs you will see are simple
 - Simple graphs: At most one edge between any two nodes
 - Extension: Multigraphs
- Some graphs you will see are undirected, some directed
- In theory, graphs can be infinitely large
- This lecture: Binary, simple, finite graphs

Exemplary Graphs

- Classical theoretical model: Random Graphs
 - Create every possible edge with a fixed probability p

 In a random graph, the degree of every node has expected value p*n, and the degree distribution follows a Poisson distribution

Web Graph

Note the strong local clustering

This is not a random graph

Graph layout is difficult

[http://img.webme.com/pic/c/chegga-hp/opte_org.jpg]

Human Protein-Protein-Interaction Network

- Proteins that are close in the graph likely share function
- Knocking out proteins with many neighbors often is lethal [http://www.estradalab.org/research/index.html]

Word Co-Occurrence

- Words that are close have related meaning
 - Close: Appear in the same contexts
- Words cluster into topics

[http://www.michaelbommarito.com/blog/]

Social Networks

- Power-Law degree distribution
- Six degrees of separation

Road Network

• Specific property: Planar graphs

• Hierarchy of edges: Motorways, streets, dirt roads

[Sanders, P. &Schultes, D. (2005).Highway Hierarchies Hasten Exact Shortest Path Queries. In *13th European Symposium on Algorithms (ESA), 568-579.*]

• Graphs are also a wonderful abstraction

Coloring Problem

• How many colors does one need to color a map such that never two colors meet at a border?

- Chromatic number: Number of colors sufficient to color a graph such that no adjacent nodes have the same color
- Every planar graph has chromatic number of at most 4

- This is not simple to proof
- It is easy to see that one sometimes needs at least four colors
- It is easy to show that one may need arbitrary many colors for general graphs
 – Corresponding to higher dimensional spaces
- First conjecture which was proven only by computers (in 1976)
 - Falls into many, many subcases try all of them with a program

- Given a city with rivers and bridges: Is there a cycle-free path crossing every bridge exactly once?
 - Euler-Path

Source: Wikipedia.de

- Given a city with rivers and bridges: Is there a cycle-free path crossing every bridge exactly once?
 - A graph has an Euler-Path iff at contains 0 or 2 nodes with odd degree
- Hamiltonian path
 - ... visits each vertex exactly once
 - NP complete

Recall?

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components

Recall from Trees

• Definition

- A graph G=(V, E) consists of a set of vertices (nodes) V and a set of edges ($E \subseteq VxV$).
 - A sequence of edges e_1 , e_2 , ..., e_n is called a path iff $\forall 1 \le i < n$: $e_i = (v', v)$ and $e_{i+1} = (v, v``)$; the length of this path is n
 - A path (v_1, v_2) , (v_2, v_3) , ..., (v_{n-1}, v_n) is acyclic iff all v_i are different
 - G is acyclic, if no path in G contains a cycle; otherwise it is cyclic
 - A graph is connected if every pair of vertices is connected by at least one path
 - *G* is called undirected, if $\forall (v,v') \in E \Rightarrow (v',v) \in E$. Otherwise it is called directed.

- Definition
 Let G=(V, E) be a directed graph. Let v∈V
 - The outdegree out(v) is the number of edges with v as start point
 - The indegree in(v) is the number of edges with v as end point
 - G=(V,E,w) is an edge-labeled graph if $w:E\rightarrow L$ is a function that assigns an element of a set of labels L to every edge
 - If L are numbers (real, int, ...), G is called edge-weighted
- Remarks
 - Labels / weights max be assigned to edges or nodes (or both)
 - Indegree and outdegree are identical for undirected graphs and called degree (number of neighbors)

Some More Definitions

- Definition. Let G=(V, E) be a directed graph.
 - Any G'=(V', E') is called a subgraph of G, if $V' \subseteq V$ and $E' \subseteq E$ and $\forall (v_1, v_2) \in E'$: $v_1, v_2 \in V'$
 - For any $V' \subseteq V$, the graph $(V', E \cap (V' \times V'))$ is called the induced subgraph of G (induced by V')

Some More Definitions

- Definition. Let G=(V, E) be a directed graph.
 - Any G'=(V', E') is called a subgraph of G, if $V' \subseteq V$ and $E' \subseteq E$ and $\forall (v_1, v_2) \in E'$: $v_1, v_2 \in V'$
 - For any $V' \subseteq V$, the graph $(V', E \cap (V' \times V'))$ is called the induced subgraph of G (induced by V')

Some More Definitions

- Definition. Let G=(V, E) be a directed graph.
 - Any G'=(V', E') is called a subgraph of G, if $V' \subseteq V$ and $E' \subseteq E$ and $\forall (v_1, v_2) \in E'$: $v_1, v_2 \in V'$
 - For any $V' \subseteq V$, the graph $(V', E \cap (V' \times V'))$ is called the induced subgraph of G (induced by V')

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components

- From an abstract point of view, a graph is a list of nodes and a list of (weighted, directed) edges
- Two fundamental implementations
 - Adjacency matrix
 - Adjacency lists
- As usual, the chosen representation determines the complexity of primitive operations
 - E.g. find node, find edge, find neighbors, ...
- Suitability depends on the specific problem under study and the nature of the graphs
 - Shortest paths, transitive hull, cliques, spanning trees, ...
 - Random, sparse/dense, scale-free, planar, ...

Example [OW93]

Graph

Adjacency Matrix

Adjacency List

Adjacency Matrix

• Definition

Let G=(V, E) be a simple graph. The adjacency matrix M_G for G is a two-dimensional matrix of size $|V|^*|V|$, where M[i,j]=1 iff $(v_i, v_j) \in E$

- Remarks
 - Allows to test existence of a given edge in O(1)
 - Requires O(|V|) to obtain all incoming (outgoing) edges of a node
 - For large graphs, M is too large to be of practical use
 - If G is sparse (much less edges than $|V|^2$), M wastes a lot of space
 - If G is dense, M is a very compact representation (1 bit / edge)
 - In labeled graphs, M[i,j] contains the label
 - Since M must be initialized with zero's, without further tricks all algorithms working on adjacency matrices are in $\Omega(|V|^2)$

- Definition
 - Let G=(V, E). The adjacency list L_G for G is a list of all nodes v_i of G. The entry representing $v_i \in V$ is a list of all edges outgoing (or incoming or both) from v_i .
- Remarks (assume a fixed node v)
 - Let k be the maximal outdegree of G. Then, accessing an edge outgoing from v is O(log(k)) (if list is sorted; or use hashing)
 - Obtaining a list of all outgoing edges from v is in O(k)
 - If only outgoing edges are stored, obtaining a list of all incoming edges is O(|V|*log(k)) – we need to search all lists
 - Therefore, usually outgoing and incoming edges are stored, which doubles space consumption
 - If G is sparse, L is a compact representation
 - If G is dense, L is wasteful (many pointers, many IDs)

	Matrix	Lists
Test if a given edge exists	O(1)	O(log(k))
Find all outgoing edges of a given v	O(n)	O(k)
Space of G	O(n ²)	O(n+m)

- With n=|V|, m=|E|, and $m\leq|V|^2$
- Table assumes a node-indexed array
 - L is an array and nodes are uniquely numbered
 - We find the list for node v in O(1)
 - Otherwise, L has additional costs for finding v

• Definition

Let G=(V,E) be a digraph and $v_i, v_j \in V$. The transitive closure of G is a graph G'=(V, E') where $(v_i, v_j) \in E'$ iff G contains a path from v_i to v_j .

- TC usually is dense and represented as adjacency matrix
- Compact encoding of reachability information

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components

- One thing we often do with graphs is traversal
- "Traversal" means: Visit every node exactly once in a sequence determined by the graph's topology
 - Not necessarily on one consecutive path (as in Hamiltonian path)
- Two popular orders
 - Depth-first: Using a stack
 - Breadth-first: Using a queue
 - The scheme is identical to that in tree traversal
- Two difference
 - We have to take care of cycles
 - No root where should we start?

- Any naïve traversal will visit nodes more than once
 - If there is at least one node with more than one incoming edge
- Any naïve traversal will run into infinite loops
 - If the graphs contains at least one cycle (i.e., is cyclic)
- Breaking cycles / avoiding multiple visits
 - Assume we started the traversal at a node r
 - During traversal, we keep a list U of not yet visited nodes
 - Assume we are in v and aim to proceed to v' using $e=(v, v') \in E$
 - If v'∉U, v' was visited before and we are about to run into a cycle or visit v' twice
 - In this case, e is ignored

Example

- Started at r and went r, y, z, v: U={X,1,2,3,4}
- Testing (v,y): y∉U, drop
- Testing (v, r): r∉U, drop
- Testing (v, x): $x \in U$, proceed

Where do we Start?

• Definition

Let G=(V, E). Let $V' \subseteq V$ and G' be the subgraph of G induced by V'

- G' is called connected if it contains a path between any pair $v, v' \in V'$
- G' is called maximally connected, if no subgraph induced by a superset of V' is connected
- If G is undirected, any maximal connected subgraph of G is called a connected component of G
- If G is directed, any maximal connected subgraph of G is called a strongly connected component of G

Example

- If a undirected graph falls into several connected components, we cannot reach all nodes by a single traversal, no matter which node we use as start point
- If a digraph falls into several strongly connected components, we might not reach all nodes by a single traversal
- Remedy: If the traversal gets stuck, we restart at unseen nodes until all nodes have been traversed

Depth-First Traversal on Directed Graphs

```
func void DFS (G=(V,E)) {
 U := V; # Unseen nodes
 while U \neq \emptyset do
   v := getNextUnseen( U);
   traverse( G, v, U);
 end while;
}
            Called once for
           every connected
              component
```

```
func void traverse (G, v node,
                      U set) {
  t := new Stack();
  t.put(v);
  U := U \setminus \{v\};
  while not t.isEmpty() do
    n := t.pop();
    print n;
    c := n.outgoingNodes();
    foreach x in c do
      if xEU then
        U := U \setminus \{x\};
        t.push( x);
      end if;
    end for;
  end while;
}
```

Analysis

- We put every node exactly once on the stack
 - Once visited, never visited again
- We look at every edge exactly once
 - Outgoing edges of a visited node are never considered again
- U can be implemented as bitarray of size |V|, allowing O(1) operations
 - Add, remove, getNextUnseen
- Altogether: O(n+m)

```
func void traverse (G, v node,
                           U set) {
  t := new Stack();
  t.put(v);
  \mathbf{U} := \mathbf{U} \setminus \{\mathbf{v}\};
  while not t.isEmpty() do
     n := t.pop();
     print n;
     c := n.outgoingNodes();
     foreach x in c do
        if xEU then
          \mathbf{U} := \mathbf{U} \setminus \{\mathbf{x}\};
          t.push( x);
        end if;
     end for:
  end while;
```

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components

- In an undirected graph, whenever there is a path from r to v and from v to v', then there is also a path from v' to r
 - Simply go the path $r \rightarrow v \rightarrow v'$ backwards
- Thus, DFS (and BFS) traversal can be used to find all connected components of a undirected graph G
 - Whenever you call traverse(v), create a new component
 - All nodes visited during one call of traverse(v) form one connected component
- Obviously in O(n+m)

- The problem is considerably more complicated for digraphs
 Previous conjecture does not hold
- Still: Tarjan's or Kosaraju's algorithm find all strongly connected components in O(n + m)
 - See next lecture

- Let G be an undirected graph and S,T be two connected components of G. Proof that S and T must be disjoint, i.e., cannot share a node.
- Let G be an undirected graph with n vertices and m edges, m<=n². What is the minimal and what is the maximal number of connected components G can have?
- Let G be a positively edge-weighted digraph G. Design an algorithm which finds the longest acyclic path in G. Analyze the complexity of your algorithm.
- An Euler path through an undirected graph G is a cyclefree path from any start to any end node that hits every node of G (exactly once). Give an algorithm which tests for an input graph G whether it contains an Euler path.