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ToC

• Today:
• Today 26.11.: Introduction and Group Formation

• Next Friday:
• By next Friday 2.11.: Choice of Topic
• Next Friday 2.11.: Primer on Time Series Analytics
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Motivation

• Temporal data is common in many data 
mining applications 
• Application domains range from:
• Sensor data: environmental sensors 

measure temperature, pressure humidity
• Medical devices: electrocardiogram (ECG) 

and electroencephalogram (EEG)
• Financial market: stock prices, economic 

indicators, product sales
• Meteorological data: sediments from drill 

holes, earth observation satellite data
• See UCR time series archive for sample 

datasets
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Time Series Definition

• Definition: A Time Series is a sequence (ordered collection) of n 
real values at time stamps !", … , !% : 

& = (", … , ()

• Time Series may be univariate or multivariate
• Univariate: a single value *+ is associated with each time stamp ,+.
• Multivariate: - values *+ = (/", …/0) are associated with each time 

stamp ,+.

• The dimensionality of a time series refers to the number of values 
at each time stamp
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Land Cover Mapping

• Land cover is the physical material that covers the 
surface of the earth like grass, asphalt, urbanized 
areas, trees, bare soil, water, …

• The are two primary methods for capturing 
informa=on on land cover:

• Small-scale: Field survey
• Large-scale: Remote sensed imaginary from satellites

• Land cover changes relate to (natural) processes:
• Disasters: flooding, forest disturbance and 

degrada=on, wildfire
• Anthropogenic ac=vi=es: urbaniza=on, agriculture, 

deforesta=on
• Climate change 5

Table 1
Number of pixels for each unchanged LULC type in each region in China. These pixels were randomly split, with 25% used for training, and 75% for validation.

MODIS MCD12Q1 class Number of pixels Class for AVHRR classification

Western Northeast Central Southern

Water 313 60 135 260 Water
Evergreen needleleaf forest 20 0 0 0 Evergreen needleleaf forest
Evergreen broadleaf forest 141 0 0 1432 Evergreen broadleaf forest
Deciduous needleleaf forest 0 0 0 0
Deciduous broadleaf forest 0 117 75 0 Deciduous broadleaf forest
Mixed forest 496 2702 1832 10,032 Mixed forest
Closed shrublands 0 0 2 0
Open shrublands 210 0 43 0 Open shrublands
Woody savannas 0 1 0 2949 Woody savannas
Savannas 0 0 0 0
Grasslands 16,062 5387 12,530 3628 Grasslands
Permanent wetlands 0 0 0 2
Croplands 450 3947 7751 6177 Croplands
Urban and built-up 4 25 138 233 Urban and built-up
Cropland and natural vegetation mosaic 7 556 102 521 Cropland and natural vegetation mosaic
Snow and ice 432 0 1 5 Snow and ice
Barren or sparsely vegetated 23,881 0 5159 0 Barren or sparsely vegetated

Fig. 5. Unchanged pixels of LULC for Mainland China, 2001 to 2010 derived fromMODIS MCD12Q1, and used for training the random forest classifier.

205Y. He et al. / Remote Sensing of Environment 199 (2017) 201–217

He, Yaqian, Eungul Lee, and Timothy A. Warner. "A time series
of annual land use and land cover maps of China from 1982 to
2013 generated using AVHRR GIMMS NDVI3g data." Remote 
Sensing of Environment 199 (2017): 201-217.



Satellite-based Earth Observation

• Satellites periodically observe Earth’s 
surface and acquire large, temporal, multi-
spectral image sets
• American Landsat 8, 30 m spatial resolution, 8 

spectral bands, every 16 days
• European Sentinel-2, 10 to 20 m spatial 

resolution, every 5 days

• Satellites enable the identification of the 
nature of spatial-temporal changes from 
space

„Satellite Image Time Series Analysis by RNNs -Preliminary 
Results" - CES Det. Changement, France, 2017
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Change of annual land cover of china
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Fig. 12. Annual LULC maps of China, produced by random forest classification. (a) 1982, (b) 1992, (c) 2002, and (d) 2012.

Table 8
Error matrix of Google Earth data and MODIS LULC.

Reference LULC (from Google Earth interpretation)

Water Forest Grasslands Croplands Urban and
built-up

Cropland and natural
vegetation mosaic

Barren or sparsely
vegetated

Total User's
accuracy

MODIS
LULC

Water 0.00619 0.00000 0.00000 0.00000 0.00077 0.00000 0.00000 0.00696 89%
Forest 0.00000 0.15929 0.01493 0.02489 0.00000 0.04480 0.00498 0.24889 64%
Grasslands 0.00441 0.03531 0.18098 0.05738 0.00000 0.02207 0.01766 0.31782 57%
Croplands 0.01035 0.00000 0.00345 0.13106 0.01035 0.01380 0.00000 0.16900 78%
Urban and built-up 0.00000 0.00000 0.00000 0.00119 0.00238 0.00000 0.00000 0.00358 67%
Cropland and natural
vegetation mosaic

0.00000 0.00332 0.00000 0.00996 0.00000 0.01661 0.00000 0.02989 56%

Barren or sparsely
vegetated

0.00000 0.00000 0.00367 0.00367 0.00000 0.00000 0.21652 0.22386 97%

Total 0.02095 0.19793 0.20303 0.22816 0.01350 0.09728 0.23915 1.00000
Producer's accuracy 30% 80% 89% 57% 18% 17% 91% 71.3%

213Y. He et al. / Remote Sensing of Environment 199 (2017) 201–217

Fig. 12. Annual LULC maps of China, produced by random forest classification. (a) 1982, (b) 1992, (c) 2002, and (d) 2012.

Table 8
Error matrix of Google Earth data and MODIS LULC.

Reference LULC (from Google Earth interpretation)

Water Forest Grasslands Croplands Urban and
built-up

Cropland and natural
vegetation mosaic

Barren or sparsely
vegetated

Total User's
accuracy

MODIS
LULC

Water 0.00619 0.00000 0.00000 0.00000 0.00077 0.00000 0.00000 0.00696 89%
Forest 0.00000 0.15929 0.01493 0.02489 0.00000 0.04480 0.00498 0.24889 64%
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Cropland and natural
vegetation mosaic

0.00000 0.00332 0.00000 0.00996 0.00000 0.01661 0.00000 0.02989 56%

Barren or sparsely
vegetated

0.00000 0.00000 0.00367 0.00367 0.00000 0.00000 0.21652 0.22386 97%

Total 0.02095 0.19793 0.20303 0.22816 0.01350 0.09728 0.23915 1.00000
Producer's accuracy 30% 80% 89% 57% 18% 17% 91% 71.3%

213Y. He et al. / Remote Sensing of Environment 199 (2017) 201–217

He, Yaqian, Eungul Lee, and Timothy A. Warner. "A time series of annual
land use and land cover maps of China from 1982 to 2013 generated
using AVHRR GIMMS NDVI3g data." Remote Sensing of
Environment 199 (2017): 201-217.



From satellite images to pixel time series
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Figure 2: Production of a time series datasets from satellite image series.

periodic behaviour which can be slightly modulated
by weather artifacts. These modulations result in
distortions of canonical temporal profiles that are well
handled by DTW [20]. (2) Time series are too short for
Bag-of-word-type approaches [28, 29] to perform best.

NN-DTW cannot scale to the typical size of satellite
datasets where it is common to have 100 million example
time series [9, 10]. This is because to classify each
query time series, we have to scan the entire 100 million
training dataset. Even making the most of lower-
bounding [12, 15], this is completely infeasible. Figure 3
illustrates this point: while all datasets of the standard
archive of time series [7] can be classified in less than
30 minutes, creating a temporal land-cover map for just
a city like Houston (16 million time series) assuming a
bare minimum of 1 million training examples would take
about a year to complete. To create a land-cover map of
Texas (7 billion time series) with a reasonable training
dataset of 100 million samples would require 30k years
of computation.

With these motivations, this work tackles Con-

tract Time Series Classification, where we would
like to produce the most accurate classifier under a con-
tracted time (obviously significantly smaller than run-
ning the NN-DTW). We propose a new algorithm that
e�ciently indexes the training database using a hierar-
chical K-means tree structure specifically designed for
DTW. We will show that our algorithm reduces the time
per query while retaining similar error to the state of the
art, NN-DTW.

This paper is organized as follows. In section 2, we
review some background and define the problem state-
ment for our work. Then in section 3 we introduce and
describe our approach. Section 4 shows the empirical
evaluation for our approach. Lastly, section 5 o↵ers
some direction for our future work and we conclude our
work in section 6.

2 Background and Motivation

2.1 Time Series Classification Many time se-
ries classification algorithms in the literature such as
Shapelets [23, 33], 1-NN BOSS [28] and SAX-VSM [29]
have been shown to be competitive (and sometimes su-
perior) to the state of the art, NN-DTW.

Nonetheless, as explained in the introduction, clas-
sification of the Satellite Image Time Series (SITS) is
better tackled by NN-DTW. NN-DTW has been shown
to be extremely competitive for many other applications
[4, 19, 20, 22, 24, 30, 31]. It has been argued that the
widespread utility of NN-DTW is due to time series data
having autocorrelated values, resulting in high apparent
but low intrinsic dimensionality. Experimental compar-
ison of DTW to most other highly cited distance mea-
sures on many datasets concluded that DTW almost
always outperforms other measures [30].

Figure 3: Average NN-DTW Classification Time on
di↵erent datasets

Tan, Chang Wei, Geoffrey I. Webb, and François Petitjean. "Indexing and classifying gigabytes of time series under time warping." Proceedings of
the 2017 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2017.
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A smoothed NDVI time-series

mostly found in Northeast China andWestern China, as shown in white
in Fig. 2 (a). The smoothing processes discussed above improves the
completeness of the NDVI, reducing, but not entirely eliminating, the
number of no data pixels, as shown in Fig. 2 (b). This is due to the lim-
itation of TIMESAT, as mentioned above.

Fig. 3 displays the raw NDVI and cleaned and smoothed NDVI time-
series for a single year of randomly selected individual pixels from
Northeast China representing mixed forest, croplands, and grasslands.
After cleaning and smoothing, the NDVI profiles provide generalized
overall patterns of the NDVI time-series.

Fig. 4. Flowchart of the land use and land cover classification approach.

Fig. 3. Raw, and cleaned and smoothed NDVI time-series of mixed forest, croplands, and grasslands.

204 Y. He et al. / Remote Sensing of Environment 199 (2017) 201–217

9He, Yaqian, Eungul Lee, and Timothy A. Warner. "A time series of annual land use and land cover maps of China from 1982 
to 2013 generated using AVHRR GIMMS NDVI3g data." Remote Sensing of Environment 199 (2017): 201-217.



Why %me series? 

• We could also work with single images (single date)
• Large gaps: In some areas, the number of 

observations is low (due to shadows, clouds or haze):
• Thus, repeated observations of the same location 

increase the chance of cloud-free observations
• Repeated observations allow for identifying temporal 

trends (flooding, wildfire, anthropogenic activities 
(urbanization, agriculture), forest disturbance and 
degradation)
• Time series analysis has shown to be superior (more 

accurate) when compared to single-date methods
10maps.google.de



Spectral Sensors / Features

• Land surfaces absorb and reflect sunlight 
differently
• Satellite are equipped with multi-spectral sensors

• Visible spectrum: 
Blue, green, red (absorbed by green vegetation)

• Near-infrared (absorbed by water)
• Short-wave infrared

• Derived Features: 3 computed indices: 
• for vegetation NDVI, 
• for water NDWI, 
• for brightness BI 

• This allows machine-assisted mapping of land 
cover from space

A pixel Jme series of the
Normalized Difference VegetaJon 
Index (NDVI)
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Land cover usage classifica1on

• Typically, experts label some reference land cover samples apriori
• Then we can train classifiers in a supervised manner
• However, selecting an appropriate number of samples is crucial and very time 

consuming as it is typically done manually (and error-prone)
• Thus, acquiring reference data is very expensive and time consuming, thus 

large labelled datasets are rare and very valuable
• Luckily, we are given the labelled data and only need to worry about choosing 

the right classifier

12



Classification (I)

• Given a set D of samples and a set of classes C. A 
classifier is a function f: D®C
• Supervised learning:
• Training data: Obtain a set S of samples with their 

classes
• Feature Space: Function v mapping a sample to a 

vector of features.
• Model the characteristics of the samples in each class
• Encode the model in a classifier function f operating on 

the feature vector: v: D®V, and f: V®C
• Classification: Compute f(v(d))

Dataset D
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Classification (II)
• Non-%me-series approaches do not capture 

model temporal dependencies and treat values 
independently 
• Time series approaches explicitly capture 

temporal dependencies, which captures 
periodic changes over %me (seasonality, 
agriculture, or harves%ng)
• Mul%variate ~: use all sensors as features but 

scalability might be a major issue (2d vector)
• Univariate ~: dimensionality reduc%on on 

features / use a single sensor or computed 
index (1d vector)

14



Time Series Classification TSC

• There are hundredths of base-classifiers
• k-nearest neighbour, Naïve Bayes, Bayesian Networks, Graphical models, Decision 

Trees and Random Forests, Support Vector Machines, Neural Networks, …
• Differences when using different base-classifiers on the same 

data/representation are often astonishing small
• Including time series models into classification has a larger impact on 

accuracy than the choice of classifier
• Despite progress in technology and data availability, training time series 

models on large-scale data is very challenging in practice
• Overall, effectiveness of classification depends on many variables: labelled 

data, classifier, representation, feature selection and engineering, evaluation 
method

15



Time Series Approaches

• Time series approaches are composed of a /me series representa/on and a 
classifier
• Representa/ons of /me series can be divided into:
• Using the whole /me series (global trends)
• Using sub-sequences of a /me series (local trends)

• Shapelets: absence or presence of (seasonal) paAerns
• Bag-of-PaAerns (Dic/onaries): use frequency of occurrences

• Base-Classifiers can then trained on this (new) representa/on

16



Subsequence vs Whole Series

• Suppose, we wish to build a classifier to 
distinguish between two kinds of plants: 
what features should one use?

• The contour of a leaf can in fact be be 
interpreted as a time series

• Instead of comparing the entire shapes, it 
can be better to only compare small 
subsections (“Shapelets”)

• Here: the defining difference is that Urtica
dioica has a stem that connects to the leaf 
at almost 90 degrees
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ABSTRACT
Classification of time series has been attracting great interest over
the past decade. Recent empirical evidence has strongly suggested
that the simple nearest neighbor algorithm is very difficult to beat
for most time series problems. While this may be considered good
news, given the simplicity of implementing the nearest neighbor
algorithm, there are some negative consequences of this. First, the
nearest neighbor algorithm requires storing and searching the
entire dataset, resulting in a time and space complexity that limits
its applicability, especially on resource-limited sensors. Second,
beyond mere classification accuracy, we often wish to gain some
insight into the data.
In this work we introduce a new time series primitive, time series
shapelets, which addresses these limitations. Informally, shapelets
are time series subsequences which are in some sense maximally
representative of a class. As we shall show with extensive
empirical evaluations in diverse domains, algorithms based on the
time series shapelet primitives can be interpretable, more accurate
and significantly faster than state-of-the-art classifiers.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
Mining

General Terms
Algorithms, Experimentation

1. INTRODUCTION
While the last decade has seen a huge interest in time series
classification, to date the most accurate and robust method is the
simple nearest neighbor algorithm [4][12][14]. While the nearest
neighbor algorithm has the advantages of simplicity and not
requiring extensive parameter tuning, it does have several
important disadvantages. Chief among these are its space and time
requirements, and the fact that it does not tell us anything about
why a particular object was assigned to a particular class.

In this work we present a novel time series data mining primitive
called time series shapelets. Informally, shapelets are time series
subsequences which are in some sense maximally representative
of a class. While we believe shapelets can have many uses in data
mining, one obvious implication of them is to mitigate the two
weaknesses of the nearest neighbor algorithm noted above.

Because we are defining and solving a new problem, we will take
some time to consider a detailed motivating example. Figure 1
shows some examples of leaves from two classes, Urtica dioica
(stinging nettles) and Verbena urticifolia. These two plants are
commonly confused, hence the colloquial name “false nettle” for
Verbena urticifolia.

Figure 1: Samples of leaves from two species. Note that several
leaves have the insect-bite damage

Suppose we wish to build a classifier to distinguish these two
plants; what features should we use? Since the intra-variability of
color and size within each class completely dwarfs the inter-
variability between classes, our best hope is based on the shapes
of the leaves. However, as we can see in Figure 1, the differences
in the global shape are very subtle. Furthermore, it is very
common for leaves to have distortions or “occlusions” due to
insect damage, and these are likely to confuse any global
measures of shape. Instead we attempt the following. We first
convert each leaf into a one-dimensional representation as shown
in Figure 2.

Figure 2: A shape can be converted into a one dimensional “time
series” representation. The reason for the highlighted section of the
time series will be made apparent shortly

Such representations have been successfully used for the
classification, clustering and outlier detection of shapes in recent
years [8]. However, here we find that using a nearest neighbor
classifier with either the (rotation invariant) Euclidean distance or
Dynamic Time Warping (DTW) distance does not significantly
outperform random guessing. The reason for the poor
performance of these otherwise very competitive classifiers seems
to be due to the fact that the data is somewhat noisy (i.e. insect
bites, and different stem lengths), and this noise is enough to
swamp the subtle differences in the shapes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’09, June 29–July 1, 2009, Paris, France
Copyright 2009 ACM 978-1-60558-495-9/09/06.…$5.00.
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Suppose, however, that instead of comparing the entire shapes,
we only compare a small subsection of the shapes from the two
classes that is particularly discriminating. We can call such
subsections shapelets, which invokes the idea of a small “sub-
shape.” For the moment we ignore the details of how to formally
define shapelets, and how to efficiently compute them. In Figure
3, we see the shapelet discovered by searching the small dataset
shown in Figure 1.

Figure 3: Here, the shapelet hinted at in Figure 2 (in both cases
shown with a bold line), is the subsequence that best
discriminates between the two classes

As we can see, the shapelet has “discovered” that the defining
difference between the two species is that Urtica dioica has a stem
that connects to the leaf at almost 90 degrees, whereas the stem of
Verbena urticifolia connects to the leaf at a much shallower angle.
Having found the shapelet and recorded its distance to the nearest
matching subsequence in all objects in the database, we can build
the simple decision-tree classifier shown in Figure 4.
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Figure 4: A decision-tree classifier for the leaf problem. The
object to be classified has all of its subsequences compared to the
shapelet, and if any subsequence is less than (the empirically
determined value of) 5.1, it is classified as Verbena urticifolia

The reader will immediately see that this method of classification
has many potential advantages over current methods:
x Shapelets can provide interpretable results, which may
help domain practitioners better understand their data. For
example, in Figure 3 we see that the shapelet can be summarized
as the following: “Urtica dioica has a stem that connects to the
leaf at almost 90 degrees.” Most other state-of-the-art time
series/shape classifiers do not produce interpretable results [4][7].
x Shapelets can be significantly more accurate/robust on
some datasets. This is because they are local features, whereas
most other state-of-the-art time series/shape classifiers consider
global features, which can be brittle to even low levels of noise
and distortions [4]. In our example, leaves which have insect bite
damage are still usually correctly classified.
x Shapelets can be significantly faster at classification
than existing state-of-the-art approaches. The classification time is
just O(ml), where m is the length of the query time series and l is

the length of the shapelet. In contrast, if we use the best
performing global distance measure, rotation invariant DTW
distance [8], the time complexity is on the order of O(km3), where
k is the number of reference objects in the training set. On real-
world problems the speed difference can be greater than three
orders of magnitude.
The leaf example, while from an important real-world problem in
botany, is a contrived and small example to help develop the
reader’s intuitions. However, as we shall show in Section 5, we
can provide extensive empirical evidence for all of these claims,
on a vast array of problems in domains as diverse as
anthropology, human motion analysis, spectrography, and
historical manuscript mining.

2. RELATEDWORK AND BACKGROUND
While there is a vast amount of literature on time series
classification and mining [4][7][14], we believe that the problem
we intend to solve here is unique. The closest work is that of [5].
Here the author also attempts to find local patterns in a time series
which are predictive of a class. However, the author considers the
problem of finding the best such pattern intractable, and thus
resorts to examining a single, randomly chosen instance from each
class, and even then only considering a reduced piecewise
constant approximation of the data. While the author notes “it is
impossible in practice to consider every such subsignal as a
candidate pattern,” this is in fact exactly what we do, aided by
eight years of improvements in CPU time, and, more importantly,
an admissible pruning technique that can prune off more than
99.9% of the calculations (c.f. Section 5.1). Our work may also be
seen as a form of a supervised motif discovery algorithm [3].

2.1 Notation
Table 1 summarizes the notation in the paper; we expand on the
definitions below.

Table 1: Symbol table
Symbol Explanation
T, R time series
S subsequence
m, |T| length of time series
l, |S| length of subsequence
d distance measurement
D time series dataset
A,B class label
I entropy
Î weighted average entropy
sp split strategy
k number of time series objects in dataset
C classifier
S(k) the kth data point in subsequence S

We begin by defining the key terms in the paper. For ease of
exposition, we consider only a two-class problem. However,
extensions to a multiple-class problem are trivial.
Definition 1: Time Series. A time series T = t1,…,tm is an
ordered set of m real-valued variables.

Data points t1,…,tm are typically arranged by temporal order,
spaced at equal time intervals. We are interested in the local
properties of a time series rather than the global properties. A
local subsection of time series is termed as a subsequence.

Verbena urticifolia

Shapelet

Urtica dioica
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1. INTRODUCTION
While the last decade has seen a huge interest in time series
classification, to date the most accurate and robust method is the
simple nearest neighbor algorithm [4][12][14]. While the nearest
neighbor algorithm has the advantages of simplicity and not
requiring extensive parameter tuning, it does have several
important disadvantages. Chief among these are its space and time
requirements, and the fact that it does not tell us anything about
why a particular object was assigned to a particular class.

In this work we present a novel time series data mining primitive
called time series shapelets. Informally, shapelets are time series
subsequences which are in some sense maximally representative
of a class. While we believe shapelets can have many uses in data
mining, one obvious implication of them is to mitigate the two
weaknesses of the nearest neighbor algorithm noted above.

Because we are defining and solving a new problem, we will take
some time to consider a detailed motivating example. Figure 1
shows some examples of leaves from two classes, Urtica dioica
(stinging nettles) and Verbena urticifolia. These two plants are
commonly confused, hence the colloquial name “false nettle” for
Verbena urticifolia.

Figure 1: Samples of leaves from two species. Note that several
leaves have the insect-bite damage

Suppose we wish to build a classifier to distinguish these two
plants; what features should we use? Since the intra-variability of
color and size within each class completely dwarfs the inter-
variability between classes, our best hope is based on the shapes
of the leaves. However, as we can see in Figure 1, the differences
in the global shape are very subtle. Furthermore, it is very
common for leaves to have distortions or “occlusions” due to
insect damage, and these are likely to confuse any global
measures of shape. Instead we attempt the following. We first
convert each leaf into a one-dimensional representation as shown
in Figure 2.

Figure 2: A shape can be converted into a one dimensional “time
series” representation. The reason for the highlighted section of the
time series will be made apparent shortly

Such representations have been successfully used for the
classification, clustering and outlier detection of shapes in recent
years [8]. However, here we find that using a nearest neighbor
classifier with either the (rotation invariant) Euclidean distance or
Dynamic Time Warping (DTW) distance does not significantly
outperform random guessing. The reason for the poor
performance of these otherwise very competitive classifiers seems
to be due to the fact that the data is somewhat noisy (i.e. insect
bites, and different stem lengths), and this noise is enough to
swamp the subtle differences in the shapes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
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mining." Proceedings of the 15th ACM SIGKDD international conference on Knowledge 
discovery and data mining. ACM, 2009.



Bag-of-Patterns: 
single occurrence vs frequency of occurrences

18

• Many signals are inherently periodic/repe55ve 
(heartbeats, network traffic, weather, …)

• We describe a signal by the frequency of occurrence of 
paCerns

• Similar to the bag-of-words representa5on for 
documents, which is a histogram of word counts

• Problem: how to count the occurrences of real-valued-
subsequences?

Lin, Jessica, Rohan Khade, and Yuan Li. "Rotation-invariant similarity in time series using bag-of-patterns 
representation." Journal of Intelligent Information Systems 39.2 (2012): 287-315.



What is a good Classifier?

• Problem: Finding a good classifier
• Assigning as many samples as possible to their correct class
• Involves proper feature engineering

• How do we know?
• Use a (separate) gold standard test data set
• Split the training data (beware of overfitting)

• Train data for training the model
• Validation data for evaluating the model 

• A classifier f is the better, the more samples it assigns to their correct classes on the 
validation data

19

Train
data

Gold-standard
test data

held-backAvailable 
for training

Train Valida
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split



Beware of Overfitting

• Training data: Let S be a set of instances with their classes
• We can easily build a perfect classifier for a train set S
• Model: map a sample to its nearest neighbour in S using identity.
• This will produce perfect results for every sample !∈#
• What about samples !∉# (validation/test  set)?
• So, don’t train a model and evaluate the model on the same data

• Overfitting
• If the model strongly depends on S, f overfits – it will only work well if all future 

samples are very similar to the samples in S
• You cannot detect overfitting when evaluation is performed on training set S only

20



Towards Overfitting

• f must generalize: Capture features that are typical for all 

samples in D, not only for the samples in S

• S9ll, o:en we only have a train set S for evalua9on …

• We need to extrapolate the quality of f to unknown samples

• Usual method: Cross-valida9on (leave-one-out)

• Divide S into k disjoint par99ons (typical: k=10)

• Leave-one-out: k=|S|

• Learn model on k-1 par99ons and evaluate on the k-th

• Performed k 9mes, each 9me evalua9ng on another par99on

• Es9mated quality on new samples = average performance over 

k runs

train train valid.

train valid. train

valid. train train

3-fold-cross-valida9on
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What we’ll address here

• Working with massive pixel time series series
• Feature engineering
• (Time Series) Representations
• (Time Series) Classification
• Pre-processing
• Scalability
• Competition

22



Who should be here

• Master Informa-k
• Also: Wirtscha6sinforma-k, Ms.Edu, Diplominforma-k

• Ability to read English papers
• Ideally: 
• Knowledge on machine learning
• Knowledge in sta-s-cs, probability theory, math
• Or willingness to learn this

23



How it will work – compe//on part

• Every group (2-3 people) has to implement a (times series) classification method
• Free choice pre-processing (normalization, interpolation, feature engineering, …)
• Your topic: Every group uses (a) different classifier(s) 
• Published codes and libraries (Weka (Java), scikit-learn (Python), R, matlab,…) allowed

• I will release a training set in November
• A set of pixels time series with landcover classes assigned
• Program, build, test and optimize your model
• Include approach description in seminar talk and presentation

• We will evaluate your method on held-back test data
• You will be given an unlabeled test set 
• We will use an automated evaluation web platform (Kaggle)
• Submissions will be possible in January
• Small price for best average accuracy among all groups

24



Competition part

• A massive land cover pixel time series (TS) dataset
• 46 geometrically and radio-metrically corrected images taken by FORMOSAT-2
• Train data: 6.091.037 pixels TS, 2,4GB
• Test data (hold-back): 2.614.122 pixels TS, 1,0GB

• In total 3x46 values per pixel time series
• 46 time stamps between 06.02 and 29.11.2006
• 3 surface reflectances: Near-Infra-Red, Red, Green

• Contains missing values ‚?‘

• Overall, 24 land cover classes, labelled by experts

• Note: This data is provided for the class only and it has to be
deleted once the seminar is over 25



Compe&&on: Excerpt of the data
• 0,226,57,57,285,47,50,401,49,49,408,43,51,459,45,53,320,20,25,460,69,82,?,?,?,?,?,?,338,119,109,?,?,?,331,135,102,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,269,95,81,266,100,81,283,90,7

6,283,86,71,282,84,71,298,80,70,?,?,?,313,80,67,311,79,70,356,86,76,332,83,74,?,?,?,185,91,66,199,87,66,174,85,59,175,88,62,?,?,?,156,60,47,?,?,?,131,47,40,159,41,32,186,27,32
,140,21,31,167,23,24,188,41,33,182,43,30,116,30,26,135,28,23

• 0,156,51,52,154,30,36,292,30,33,316,30,43,417,38,44,288,16,19,433,64,70,?,?,?,?,?,?,325,111,95,?,?,?,308,109,79,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,248,64,60,246,75,60,255,68,55,25
1,59,49,294,64,53,250,59,56,?,?,?,283,64,52,281,67,53,309,64,55,288,65,57,?,?,?,130,54,35,126,50,43,121,50,34,121,56,43,?,?,?,76,32,24,?,?,?,82,28,28,65,26,23,89,18,20,69,15,19
,74,17,16,108,32,27,77,15,16,69,15,13,91,18,18

• 0,254,71,63,285,66,64,347,58,57,365,54,57,378,58,59,248,30,30,431,69,82,?,?,?,?,?,?,337,112,105,?,?,?,308,104,89,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,279,70,64,271,65,63,288,69,65,2
87,66,62,282,63,60,290,64,63,?,?,?,303,66,59,305,64,58,347,65,65,330,65,63,?,?,?,235,77,65,229,73,61,202,76,59,239,79,61,?,?,?,234,55,49,?,?,?,239,67,62,267,54,51,277,47,53,30
0,46,54,295,41,43,296,58,59,266,60,54,210,58,52,175,46,44

• 0,221,64,56,302,48,54,397,44,48,412,41,48,450,43,53,312,20,25,467,72,83,?,?,?,?,?,?,325,128,114,?,?,?,315,155,110,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,277,73,69,271,79,73,290,73,65,
285,71,62,294,71,62,305,70,65,?,?,?,317,71,65,320,72,64,366,74,68,338,65,64,?,?,?,187,85,64,193,82,59,166,81,58,165,84,62,?,?,?,162,61,49,?,?,?,138,49,41,189,47,37,207,33,33,1
65,25,31,229,27,25,204,42,39,199,40,27,124,28,23,132,28,26

• 0,153,51,50,157,28,34,324,32,37,354,30,44,426,36,46,312,19,19,433,64,69,?,?,?,?,?,?,323,122,104,?,?,?,289,125,87,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,262,55,58,257,64,57,268,62,55,2
61,56,52,280,61,49,256,57,56,?,?,?,276,63,51,296,64,56,326,60,57,300,62,57,?,?,?,136,59,41,138,58,42,132,56,39,127,60,48,?,?,?,95,37,27,?,?,?,85,28,32,80,30,24,75,18,17,77,14,1
9,86,16,16,108,31,29,79,18,18,71,14,21,88,18,18

• 0,262,69,63,325,59,68,336,55,57,369,50,57,375,51,57,262,27,27,403,67,78,?,?,?,?,?,?,320,110,104,?,?,?,303,117,89,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,255,78,70,266,75,66,266,69,65,2
78,71,63,248,67,62,285,71,64,?,?,?,300,71,61,286,69,63,337,66,66,303,65,63,?,?,?,203,74,64,215,74,63,196,74,59,193,84,64,?,?,?,212,60,48,?,?,?,230,74,63,262,59,55,297,53,61,29
0,46,50,298,42,51,275,53,53,273,53,56,199,47,42,179,41,37

• 0,235,61,57,323,48,54,397,47,49,418,41,49,454,37,53,315,20,26,462,69,85,?,?,?,?,?,?,323,128,113,?,?,?,317,149,109,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,284,72,68,282,74,67,292,72,65,
300,67,61,297,68,61,307,67,64,?,?,?,329,66,62,333,69,62,383,67,66,351,65,63,?,?,?,185,87,64,181,82,59,163,74,56,159,85,61,?,?,?,138,61,47,?,?,?,144,51,41,186,47,41,203,36,34,1
65,29,31,221,27,28,204,40,38,199,37,26,118,26,20,132,27,19

• [...]
26



Direction: Features

• Scalability will be a major issue [1]!

• Directions:
• How to handle missing values (interpolation, …)?
• Use additional indices: brightness, normalized difference vegetation index
• Test additional features: minimum, maximum, average, range, …
• Address Scalability: feature selection, dimensionality / noise reduction, sampling
• Use a time series representation: Shapelets / Dictionary-based, …?
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(e.g. magnitude, duration). Spectrotemporal change metrics have
been used successfully for characterization of land cover
(Franklin et al., 2015), as well as forest disturbance and recovery
(Hermosilla et al., 2015a; Kennedy et al., 2012).

Temporal trajectories can also be treated with a continuous
approach as stationary (e.g. periodic) or non-stationary shape vari-
ables (i.e. referring to the shape of the temporal trajectory). Devia-
tions from modeled stationary patterns, derived from multiple
observations per year, have been used for classification of land
cover types (Zhu and Woodcock, 2014b). Idealized non-stationary
shapes have been used for identification of land cover transitions
like stand-replacing forest disturbance (Kennedy et al., 2007) and
for characterizing the nature of land cover change (Olthof and
Fraser, 2014). Temporal trajectories capturing processes of natural
succession (e.g. growth) constitute a spectrotemporal signature of
specific land cover types. The length or duration of the shape vari-
ables necessary to identify significant patterns is presumably vari-
able, as in the estimation of biomass (Gómez et al., 2014;
Pflugmacher et al., 2014), and dependent on land cover type. Dif-
ferent strategies for analysis of time series are the decomposition
into trend, seasonal, and break elements (BFAST, Verbesselt et al.,
2010) enabling analyses of components in relation to landscape
processes of change and land cover (DeVries et al., 2015;
Verbesselt et al., 2012), or the simple analysis of trend (Eastman
et al., 2009; Parmentier and Eastman, 2014). The existing range
and variety of approaches and more than 30 years of radiometri-
cally and spatially consistent Landsat TM/ETM+ observations will
enable retrospective land cover mapping based on the spectrotem-
poral feature space.

3.3. Classification methods incorporating time series data

The choice of classification algorithm requires considering mul-
tiple aspects of the problem: type of data, statistical distribution of
classes, target accuracy, ease of use, speed, scalability, and inter-
pretability of the classifier. Direct tradeoffs of some of these factors
exist, and it is also important to establish a balance between
acceptable accuracy and optimal use of resources. Algorithms that
cluster elements by similarity of attributes without a priori human
intervention (i.e. unsupervised classification) are typically used
when scarce knowledge of the land cover types is available (Chen
and Gong, 2013; Eva et al., 2004). Clustering algorithms (e.g. k-
means, ISODATA) run iteratively until convergence of an optimal
set of clusters. Because clusters produced automatically do not

necessarily correspond with the land cover types (Loveland et al.,
2000), post-classification refinement techniques (e.g. merging
and splitting clusters) are necessary before labelling (e.g. Wulder
et al., 2008a). Also, to avoid classes with high internal variance
(e.g. water, bare soil, snow) dominating the clustering (Loveland
et al., 1991), prior stratification and masking are common practices
(Furby et al., 2008; Wulder et al., 2008a). Despite the attractiveness
of the automatic character of clustering algorithms, they become
time consuming when the data dimension is high or the data vol-
ume large (Chen and Gong, 2013), and interpreting clusters prop-
erly is a challenging and intensive process. Alternatively,
supervised classification approaches assimilate the data to a num-
ber of reference land cover samples labelled a priori. Selecting an
adequate number of good quality training samples is crucial
(Bruzzone and Demir, 2014; Foody and Mathur, 2006; Shao and
Lunetta, 2012), a time consuming task typically done manually,
although accumulated experience and improved databases enable
semiautomatic selection in certain conditions (e.g. Radoux et al.,
2014). Selecting and labeling samples is not error-free and poten-
tially the cause of poor and biased classification performance
(McIver and Friedl, 2002; Pal and Mather, 2006). Supervised meth-
ods require that the training data completely represent the classi-
fication problem, the classifier is incapable of identifying what is
unknown to the training sample (Foody, 2000, 2004). The state of
practice for large-area land cover mapping has evolved during
the last decade, from a preponderance of unsupervised techniques
(Franklin and Wulder, 2002) to an increased use of supervised
techniques (Khatami et al., 2016), in part due to increasing ancil-
lary data that facilitates sample collection for training data (e.g.
Colditz et al., 2011; Homer et al., 2007; Radoux et al., 2014). Other
approaches involve various classifiers used in parallel or in succes-
sion (e.g. Bauer et al., 1994; Bontemps et al., 2011; Chen et al.,
2014; Tateishi et al., 2011) that can be both supervised and unsu-
pervised. Table 3 illustrates how several of the common classifica-
tion algorithms have been applied for large-area land cover
mapping using time series of optical EO data. Table 4 synthesizes
the strengths and weaknesses of algorithms included in Table 3,
as identified in the literature.

Partitioning is the only clustering category (Han and Kamber,
2001) widely used for land cover mapping with remotely sensed
data, although sporadic efforts of hierarchical clustering exist
(Shenthilnath et al., 2011). For large datasets, k-means and ISO-
DATA algorithms are preferred, as they are less time consuming
than others. Parametric supervised classifiers (e.g. maximum like-
lihood, minimum distance, discriminant analysis) are difficult to
use with multi-temporal data of many spectral features and multi-
modal distributions (Glanz et al., 2014). As a general rule, their
reduced flexibility in decision boundaries makes parametric classi-
fiers unsatisfactory for characterization of land cover in large areas
and complex environments (Hubert-Moy et al., 2001). On the other
hand, non-parametric classifiers (e.g. k-Nearest Neighbor, kNN;
decision trees, DT; neural networks, NN; and Support Vector
Machines, SVM) impose boundaries of arbitrary geometries, and
provide higher flexibility at the expense of computationally intense
iterative processes. In general, non-parametric classifiers that focus
decision rules on class boundaries are proficient when the statistics
and distribution of land cover types are unknown (Foody and
Mathur, 2006; Hansen, 2012)—a common scenario for large
areas—thereby making non-parametric classifiers more appropri-
ate than parametric classifiers, which focus on central tendency
statistics.

Significant effort has been dedicated to evaluating the perfor-
mance of land cover classification algorithms, and identifying their
relative strengths and shortcomings (Huang et al., 2002; Pal and
Mather, 2003, 2005; Rodríguez Galiano et al., 2012). A few efforts
have specifically compared algorithms using time-series data (Jia

Table 2
Variables derived from the spectrotemporal feature space by different approaches.

Variable type Characteristics

Statistical metric ! Statistical summary of spectral values over one or
more periods

! Typically data informing seasonality or phenology
! Example: average, maximum, minimum

Change metric ! Descriptive attribute of a temporal segment
! Typically from annual data
! Example: magnitude, duration, slope

Shape non-
stationary

! Pattern of anniversary data
! Can/cannot be characterized by parameters
! Typically annual data

Shape stationary ! Periodic pattern of multiple values per year
! Can be described by parameters
! Example: sine or cosine based curve

Trend ! Non stationary
! Annual or longer interval
! Admits irregular intervals

60 C. Gómez et al. / ISPRS Journal of Photogrammetry and Remote Sensing 116 (2016) 55–72

[1] Schäfer, Patrick, and Ulf Leser. "Benchmarking univariate Ume series classifiers." Datenbanksysteme für Business, Technologie und Web (BTW 2017) (2017).

Gómez, Cristina, Joanne C. White, and Michael A. Wulder. "Optical remotely sensed 
time series data for land cover classification: A review." ISPRS Journal of 
Photogrammetry and Remote Sensing 116 (2016): 55-72.



A List of Possible Approaches

• (non-time series) based-Classifiers
• SVM, logistic regression, random

forests/decision trees, gradient
boosting trees, XGBoost

• Whole-Series-based Classifiers
• 1-NN Dynamic Time Warping
• 1-NN Euclidean Distance
• Proximity Forests

• Shapelet-based Classifiers
• Univariate: Fast Shapelets (FS), Learning 

Shapelets (LS), Shapelet Transform (ST)
• Multivariate: gRSF

• Dic:onary-based Classifiers
• Univariate: BoP, SAX VSM, TSBF, BOSS, 

BOSS VS, WEASEL
• MulPvariate: SMTS, WEASEL+MUSE, 

LPS

• Deep Learning Classifiers
• ResNet, FCN, Encoder, MLP, Time-CNN, 

TWIESN, MCDCNN, MCNN, t-LeNet

• Ensembles of Core Classifiers
• Univariate: EE PROP, COTE 28



4. Novel inputs for land cover classification

Progress in the development of robust methods for the genera-
tion of repeat land cover products over large areas is made possible
with contributions from novel inputs that were not necessary or
possible before. Knowledge of ecological succession can facilitate
refinement of a time series of land cover maps, while information
on land cover dynamics can be used to impose model restrictions
on short- and medium-term land cover transitions, contributing
to the temporal consistency of land cover products. Variables with
an inherent temporal dimension and temporal trajectories of mul-
tiple vegetation indices provide complementary insights regarding
the status and change of essential biophysical attributes associated
with land cover types. Improved quality of training samples, and
combinations of multi-scale and multi-sensor data for enhance-
ment of temporal and spatial resolution has direct impacts on
the accuracy of land cover characterization.

4.1. Land cover transitions and temporal stabilization of classification

The likely character of land cover transitions depends on the
time interval considered and on the environmental context. Likely
successional transitions (e.g. open to dense forest) may take just a
few years to manifest in tropical areas but longer in boreal or
Mediterranean regions. Possible land cover transitions by loss of
vegetation (e.g. shrub to bare ground) could happen rapidly any-
where following a sudden disturbance. Furthermore, transitions
related to subtle, long-term processes occur in different directions
(e.g. canopy closure by natural growth, loss of density by disease-
related mortality, change in dominant species). Understanding
ecological processes is essential for production of reliable time

series land cover maps, regardless of the mapping strategy applied.
Insights of possible and likely transitions at different time intervals
can be used to impose logical restrictions for generation of consec-
utive maps (Liu and Cai, 2012; Pouliot and Latifovic, 2013) and also
for refinement and verification. Land cover transitions can be iden-
tified by modifications in spectral seasonal curves over several
years (Gutiérrez-Vélez and DeFries, 2013; Reed et al., 1994) and
by specific patterns or trends in inter-annual spectral trajectories
that can inform on change types (Olthof and Fraser, 2014).

Developing accurate and consistent annual land cover maps
requires dedicated techniques for temporal stabilization of the
classification results (Friedl et al., 2010). Furthermore, for some
change assessment applications, temporal consistency is more
important than the overall accuracy of individual maps (Radoux
et al., 2014). Markov Random Field (MRF) models are particularly
attractive techniques in temporal pattern recognition, as a result
of their ability to identify relationships of temporally dependent
data, and have been applied in land cover map series to identify
and correct illogical class transitions (i.e. transitions that are eco-
logically impossible) (Wehmann and Liu, 2015), and to incorpo-
rate spatial context into classifications (Li et al., 2014). Liu and
Cai (2012) constructed land cover change trajectories from
time-series Landsat data with a transition probability model
based on MRF. The temporal-contextual constraints imposed by
the model improved temporal consistency of a series of seven
Landsat-based land cover maps. Cai et al. (2014) applied the same
model to a MODIS Collection 5 Global Land Cover product,
detecting illogical transitions and improving the accuracy and
temporal consistency of the product in five tiles with abundant
illogical transitions. Similarly, Wang et al. (2015) applied the
maximum a posteriori MRF in post-classification processing, as

Table 4
Strengths and weaknesses of algorithms used for large-area land cover characterization with time-series optical data.

Algorithm Strengths/characteristics Weaknesses

Artificial Neural Networks
Non-parametric

! Manage well large feature space
! Indicate strength of class membership
! Generally high classification accuracy
! Resistant to training data deficiencies—requires less training
data than DT

! Needs parameters for network design
! Tends to overfit data
! Black box (rules are unknown)
! Computationally intense
! Slow training

Clustering
(partitioning)

! Do not need previous knowledge
! Do not need samples

! Cluster-class correspondence not assured
! Complex identification of classes
! Computationally intense

Decision trees
Non-parametric

! No need of any kind of parameter
! Easy to apply and interpret
! Handle missing data
! Handle data of different types (e.g. continuous, categorical)
and scales

! Handle non-linear relationships
! Insensitive to noise

! Sensitive to noise
! Tend to overfit
! Not as good as others in large feature spaces
! Large training sample needed

Gaussian Maximum likelihood
Parametric

! Simple application
! Easy to understand and interpret
! Predicts class membership probability

! Parametric
! Assumes normal distribution of data
! Large training sample needed

Support Vector Machines
Non-parametric

! Manages well large feature space
! Insensitive to Hughes effect
! Works well with small training dataset
! Does not overfit

! Needs parameters: regularization and kernel
! Poor performance with small feature space
! Computationally intense
! Designed as binary, although variations exist

Random Forests
Non-parametric

! Capacity to determine variable importance
! Robust to data reduction
! Does not over-fit
! Produces unbiased accuracy estimate
! Higher accuracy than DT

! Decision rules unknown (black box)
! Computationally intense
! Needs input parameters (#trees and #variables per node)

Bagging ! Provides measures of classification confidence
! Does not overfit

! Complex incomprehensible classifiers

Boosting ! Provides measures of classification confidence
! Does not overfit
! Robust to noise

! Stops if a classifier achieves zero training set error
! Complex incomprehensible classifiers
! Ineffective if excessive error in training sample

C. Gómez et al. / ISPRS Journal of Photogrammetry and Remote Sensing 116 (2016) 55–72 63

Gómez, Cristina, Joanne C. White, and Michael A. Wulder. "Optical remotely sensed time series data for land cover classification: A review." ISPRS Journal of 
Photogrammetry and Remote Sensing 116 (2016): 55-72.

A List of Non-Time Series Classifiers
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General Literature
• On Landcover Classifica1on - To be read by everyone

• Gómez, Cris1na, Joanne C. White, and Michael A. Wulder. "Op1cal remotely sensed 1me series data for land 
cover classifica1on: A review." ISPRS Journal of Photogrammetry and Remote Sensing 116 (2016): 55-72.

• Hostert, Patrick, et al. "Time series analyses in a new era of op1cal satellite data." Remote Sensing Time 
Series. Springer, Cham, 2015. 25-41.

• On Univariate Time Series Classifica1on
• Bagnall, Anthony, et al. "The great 1me series classifica1on bake off: a review and experimental evalua1on of

recent algorithmic advances." Data Mining and Knowledge Discovery 31.3 (2017): 606-660.
• On Deep Learning for Time Series Classifica1on

• Fawaz, Hassan Ismail, et al. "Deep learning for 1me series classifica1on: a review." arXiv preprint 
arXiv:1809.04356 (2018).

• Webseiten / Wedbewerbe:
• TiSeLaC: Time Series Land Cover Classifica1on Challenge
• AALTD'16 Challenge : on mul1variate 1me series data
• hdp://1meseriesclassifica1on.com : a website dedicated to univariate 1me series classifiers

• On classifica1on / machine learning in general
• Alpaydin: Introduc1on to Machine Learning, MIT press 2014
• Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorien1erte Einführung, Springer 2016
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https://sites.google.com/site/dinoienco/tiselc
https://aaltd16.irisa.fr/challenge/
http://timeseriesclassification.com/


Allgemeine Hinweise

• Literaturrecherche ist notwendig
• Die ausgegebenen Arbeiten sind Anker 
• Weiterführende Arbeiten müssen herangezogen werden
• Auch Grundlagen nachlesen

• Kritisch lesen
• Keine Angst vor nicht ganz zutreffenden Aussagen – solange gute Gründe vorhanden 

sind
• Begründen und argumentieren
• Kritikloses Abschreiben ist fehl am Platz
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Next steps…

• Today: Introduc.on and group forma.on
• Friday 2.11.: Lecture “Primer on Time Series Analy.cs”
• Between today and Friday 2.11.: choose a topic
• Flash presenta.on (7.12. 15-16 Uhr, RUD 25 4.410):
• Before 30.11.18: meet me to discuss topic
• Present ideas and method in 5min

• Blockseminar (1.2. 15-18 Uhr, RUD 25 4.410)
• Before 31.01.19: meet me to discuss slides
• Present your topic (30-40min) at the Blockseminar

• Seminar Thesis before 31.03.2019!
• write seminar thesis (~20 pages)
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Topics and Groups
Topic Assigned to (groups of 2-3)
(non-time series) based-Classifiers

SVM, logistic regression, random forests/decision trees, gradient boosting trees, 
XGBoost, Bayesian methods

Alexej

Whole-Series-based Classifiers
Dynamic Time Warping, Euclidean Distance, Proximity Forests

Shapelet-based Classifiers
Univariate: Fast Shapelets (FS), Learning Shapelets (LS), Shapelet Transform (ST)
Multivariate: gRSF

Martin

Dictionary-based Classifiers
Univariate: BoP, SAX VSM, TSBF, BOSS, BOSS VS, WEASEL
Multivariate: SMTS, WEASEL+MUSE, LPS Arik

Deep Learning Classifiers
ResNet, FCN, Encoder, MLP, Time-CNN, TWIESN, MCDCNN, MCNN, t-LeNet

Ensembles of Core Classifiers
Univariate: EE PROP, COTE

...
33

Siehe Webseite:

hVps://hu.berlin/landnutzung

https://hu.berlin/landnutzung


Questions?
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Hinweise zum Vortrag

• 30-40 Minuten plus Diskussion
• Klare Gliederung
• Themenauswahl: Lieber verständlich als komplett
• Bilder und Grafiken; Beispiele
• Eher Stichwörter als lange Sätze
• Vorträge können auch unterhaltend sein
• Gimmicks, Rhythmuswechsel, Einbeziehen der Zuhörer, etc.

• Adressat sind alle Teilnehmer, nicht nur die Betreuer
• Technik: Laptop? Powerpoint? Apple?
• Siehe: https://hu.berlin/checkliste_seminar
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Hinweise zur Ausarbeitung

• Eine gedruckte Version abgeben
• Selbstständigkeitserklärung unterschreiben

• Eine elektronische Version schicken
• Referenzen: Alle verwendeten und nur die

• Im Text referenzieren, Liste am Schluss
• Korrekt zitieren

• Vorsicht vor Übernahme von kompletten Textpassagen; wenn, dann deutlich kennzeichnen
• Aussagen mit Evidenz oder Verweis auf Literatur versehen

• Verwendung von gefundenen Arbeiten im Web
• Möglich, aber VORSICHT
• Eventuell Themenschwerpunkt verschieben – Betreuer fragen

• Siehe: https://hu.berlin/checkliste_seminar
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Format

• Benutzung unserer Latex-Vorlage
• Nur eine Schriftart, wenig und konsistente Wechsel in Schriftgröße und –stärke
• Inhaltsverzeichnis
• Bilder: Nummerieren und darauf verweisen
• Referenzen:

• [1] Yan, X., Yu, P. S. and Han, J. (2004). "Graph Indexing: A Frequent Structure-Based Approach". 
SIGMOD, Paris, France. 

• [YYH04] Yan, X., Yu, P. S. and Han, J. (2004). "Graph Indexing: A Frequent Structure-Based 
Approach". SIGMOD, Paris, France. 

• Darf man Wikipedia zitieren?
• Ja, aber nicht dauernd

• Siehe: https://hu.berlin/checkliste_seminar
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If you want to know more…

Sehr geehrte Institutsmitglieder,

am Dienstag, den 30.10.2018, verteidigt ab 10.00 Uhr c.t. in Raum 4.410 Herr 
Arik Ermshaus seine Bachelorarbeit mit dem Titel

Deep Spatio-Temporal Time Series Land Cover Classification

Alle Interessierten sind herzlich eingeladen.

Beste Grüße,
Ulf Leser
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