Einführung in die Theoretische Informatik

Johannes Köbler

Institut für Informatik Humboldt-Universität zu Berlin

WS 2017/18

Bemerkung

• Wie wir gesehen haben, ist folgende Sprache nicht regulär:

$$L = \{a^n b^n \mid n \ge 0\}.$$

• Wir können aber eine kontextfreie Grammatik für L angeben:

$$G = (\{S\}, \{a, b\}, P, S) \text{ mit } P = \{S \rightarrow aSb, S \rightarrow \varepsilon\}.$$

 Damit ist klar, dass die Klasse der regulären Sprachen echt in der Klasse der kontextfreien Sprachen enthalten ist:

REG
$$\subsetneq$$
 CFL.

 Als nächstes wollen wir zeigen, dass die Klasse der kontextfreien Sprachen wiederum echt in der Klasse der kontextsensitiven Sprachen enthalten ist:

- Kontextfreie Grammatiken sind dadurch charakterisiert, dass sie nur Regeln der Form $A \rightarrow v$ haben.
- Dies lässt die Verwendung von beliebigen ε -Regeln der Form $A \to \varepsilon$ zu.
- Eine kontextsensitive Grammatik darf dagegen höchstens die ε -Regel $S \to \varepsilon$ haben.
- Voraussetzung hierfür ist, dass S das Startsymbol ist und dieses nicht auf der rechten Seite einer Regel vorkommt.
- Daher sind nicht alle kontextfreien Grammatiken kontextsensitiv.
- Beispielsweise ist die Grammatik $G = (\{S\}, \{a, b\}, \{S \rightarrow aSb, S \rightarrow \varepsilon\}, S)$ nicht kontextsensitiv, da sie die Regel $S \rightarrow \varepsilon$ enthält, obwohl S auf der rechten Seite der Regel $S \rightarrow aSb$ vorkommt.
- Wir werden jedoch sehen, dass sich zu jeder kontextfreien Grammatik eine äquivalente kontextsensitive Grammatik konstruieren lässt.

Satz

Zu jeder kontextfreien Grammatik $G = (V, \Sigma, P, S)$ gibt es eine kontextfreie Grammatik $G' = (V, \Sigma, P', S)$ ohne ε -Regeln mit $L(G') = L(G) \setminus \{\varepsilon\}$.

Beweis

• Zuerst berechnen wir die Menge $E = \{A \in V \mid A \Rightarrow^* \varepsilon\}$ aller Variablen, die nach ε ableitbar sind:

```
1 E' := \{A \in V \mid A \rightarrow \varepsilon\}

2 repeat

3 E := E'

4 E' := E \cup \{A \in V \mid \exists B_1, \dots, B_k \in E : A \rightarrow B_1 \dots B_k\}

5 until E = E'
```

Nun bilden wir P' wie folgt:

```
\begin{cases} A \to v' & \text{es ex. eine Regel } A \to_G v, \text{ so dass } v' \neq \varepsilon \text{ aus } v \text{ durch} \\ & \text{Entfernen von beliebig vielen Variablen } A \in E \text{ entsteht} \end{cases}
```

Beispiel

Betrachte die Grammatik $G = (\{S, T, U, X, Y, Z\}, \{a, b, c\}, P, S)$ mit

• Berechnung von *E*:

$$E' \mid \{Z\} \quad \{Z,S\}$$

 $E \mid \{Z,S\} \quad \{Z,S\}$

• Entferne $Z \to \varepsilon$ und füge $Y \to b$ (wegen $Y \to bS$), $X \to a$ (wegen $X \to aS$) und $Z \to c$ (wegen $Z \to cZ$) hinzu:

$$P': S \rightarrow aY, bX, Z \qquad Y \rightarrow b, bS, aYY \qquad T \rightarrow U$$

 $X \rightarrow a, aS, bXX \qquad Z \rightarrow c, S, T, cZ \qquad U \rightarrow abc$

Die Chomsky-Hierarchie

Satz

Zu jeder kontextfreien Grammatik $G = (V, \Sigma, P, S)$ gibt es eine kontextfreie Grammatik $G' = (V, \Sigma, P', S)$ ohne ε -Regeln mit $L(G') = L(G) \setminus \{\varepsilon\}$.

Korollar

 $REG \nsubseteq CFL \subseteq CSL \subseteq RE$.

Beweis

- Es ist nur noch die Inklusion CFL ⊆ CSL zu zeigen.
- Nach obigem Satz ex. zu $L \in CFL$ eine kontextfreie Grammatik $G = (V, \Sigma, P, S)$ ohne ε -Regeln mit $L(G) = L \setminus \{\varepsilon\}$.
- Da G dann auch kontextsensitiv ist, folgt hieraus im Fall $\varepsilon \notin L$ unmittelbar $L(G) = L \in CSL$.
- Im Fall $\varepsilon \in L$ erzeugt die kontextsensitive Grammatik

$$G' = (V \cup \{S'\}, \Sigma, P \cup \{S' \rightarrow S, \varepsilon\}, S')$$

die Sprache L(G') = L, d.h. $L \in CSL$.

Satz

CFL ist abgeschlossen unter Vereinigung, Produkt und Sternhülle.

Beweis

Seien $G_1 = (V_1, \Sigma, P_1, S_1)$ und $G_2 = (V_2, \Sigma, P_2, S_2)$ kontextfreie Grammatiken mit $V_1 \cap V_2 = \emptyset$ und sei S eine neue Variable. Dann erzeugen die kontextfreien Grammatiken

$$G_3 = (V_1 \cup V_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \rightarrow S_1, S_2\}, S)$$

die Vereinigung $L(G_3) = L(G_1) \cup L(G_2)$,

$$G_4 = (V_1 \cup V_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \to S_1 S_2\}, S)$$

das Produkt $L(G_4) = L(G_1)L(G_2)$ und

$$G_5 = (V_1 \cup \{S\}, \Sigma, P_1 \cup \{S \rightarrow S_1 S, \varepsilon\}, S)$$

die Sternhülle $L(G_1)^*$.

Abschlusseigenschaften von CFL

Satz

CFL ist abgeschlossen unter Vereinigung, Produkt und Sternhülle.

Frage

Ist die Klasse CFL auch abgeschlossen unter

- Schnitt und
- Komplement?

Antwort

Nein.

Hierzu müssen wir für bestimmte Sprachen nachweisen, dass sie nicht kontextfrei sind. Dies gelingt mit einem Pumping-Lemma für kontextfreie Sprachen.

Das Pumping-Lemma für kontextfreie Sprachen

Satz (Pumping-Lemma für kontextfreie Sprachen)

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine Zahl I, so dass sich alle Wörter $z \in L$ mit $|z| \ge I$ in z = uvwxy zerlegen lassen mit

- $vx \neq \varepsilon,$
- $|vwx| \le I \text{ und}$
- $uv^i wx^i y \in L$ für alle $i \ge 0$.

Das Pumping-Lemma für kontextfreie Sprachen

Beispiel

- Betrachte die Sprache $L = \{a^n b^n | n \ge 0\}.$
- Dann lässt sich jedes Wort $z = a^n b^n = a^{n-1} ab b^{n-1}$ in L mit $|z| \ge l = 2$ pumpen.
- Zerlegen wir nämlich z in

$$z = uvwxy$$
 mit $u = a^{n-1}$, $v = a$, $w = \varepsilon$, $x = b$ und $y = b^{n-1}$,

dann gilt

- $vx = ab \neq \varepsilon$
- $|vwx| = |ab| \le 2$ und
- $uv^iwx^iy = a^{n-1}a^ib^ib^{n-1} \in L$ für alle $i \ge 0$

Anwendung des Pumping-Lemmas

Beispiel

- Die Sprache $L = \{a^n b^n c^n \mid n \ge 0\}$ ist nicht kontextfrei.
- Für eine vorgegebene Zahl $l \ge 0$ hat nämlich das Wort $z = a^l b^l c^l \in L$ die Länge $|z| = 3l \ge l$.
- Dieses Wort lässt sich aber nicht pumpen:

Für jede Zerlegung z = uvwxy mit $vx \neq \varepsilon$ und $|vwx| \leq I$ gehört $z' = uv^0wx^0y$ nicht zu L:

- Wegen $vx \neq \varepsilon$ ist |z'| < |z|.
- Wegen $|vwx| \le l$ kommen in vx nicht alle drei Zeichen a, b, c vor.
- Kommt aber in vx beispielsweise kein a vor, so ist $\#_a(z) = \#_a(z')$ und somit gilt

$$|z'| < |z| = 3 \#_a(z) = 3 \#_a(z').$$

Also gehört z' nicht zu L.

<

Abschlusseigenschaften von CFL

Wie wir gesehen haben, ist die Klasse CFL abgeschlossen unter

- Vereinigung,
- Produkt und
- Sternhülle.

Satz

CFL ist nicht abgeschlossen unter

- Schnitt und
- Komplement.

Abschlusseigenschaften von CFL

Beweis von $L_1, L_2 \in CFL \not\Rightarrow L_1 \cap L_2 \in CFL$

• Die beiden Sprachen

$$L_1 = \{a^n b^m c^m \mid n, m \ge 0\}$$
 und $L_2 = \{a^n b^n c^m \mid n, m \ge 0\}$ sind kontextfrei (siehe Übungen).

- Nicht jedoch ihr Schnitt $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}.$
- Also ist CFL nicht unter Schnitt abgeschlossen.

Beweis von $L \in CFL \Rightarrow \bar{L} \in CFL$

- Wäre CFL unter Komplement abgeschlossen, so wäre CFL wegen de Morgan auch unter Schnitt abgeschlossen.
- Mit $A, B \in CFL$ wären dann nämlich auch $\overline{A}, \overline{B} \in CFL$, woraus wegen

$$\overline{A}, \overline{B} \in \mathsf{CFL} \Rightarrow \overline{A} \cup \overline{B} = \overline{A \cap B} \in \mathsf{CFL}$$

wiederum $A \cap B \in CFL$ folgen würde.

Definition

Eine Grammatik (V, Σ, P, S) ist in Chomsky-Normalform (CNF), falls $P \subseteq V \times (V^2 \cup \Sigma)$ ist, d.h. alle Regeln haben die Form $A \to BC$ oder $A \to a$.

Satz

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine CNF-Grammatik G' mit $L(G') = L \setminus \{\varepsilon\}$.

Anwendungen der Chomsky-Normalform

- CNF-Grammatiken ermöglichen den Beweis des Pumping-Lemmas für kontextfreie Sprachen.
- Zudem bilden sie die Basis für eine effiziente Lösung des Wortproblems für kontextfreie Sprachen.

Das Wortproblem für CFL

Das Wortproblem für kontextfreie Grammatiken

Gegeben: Eine kontextfreie Grammatik G und ein Wort x.

Gefragt: Ist $x \in L(G)$?

Satz

Das Wortproblem für kontextfreie Grammatiken ist effizient entscheidbar.

Um eine kontextfreie Grammatik in Chomsky-Normalform zu bringen, müssen wir neben den ε -Regeln $A \to \varepsilon$ auch sämtliche Variablenumbenennungen $A \to B$ loswerden.

Definition

Regeln der Form $A \rightarrow B$ heißen Variablenumbenennungen.

Satz

Zu jeder kontextfreien Grammatik G ex. eine kontextfreie Grammatik G' ohne Variablenumbenennungen mit L(G') = L(G).

Beweis

• Zuerst entfernen wir sukzessive alle Zyklen

$$A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_k \rightarrow A_1$$
.

Hierzu entfernen wir diese Regeln aus P und ersetzen alle Vorkommen der Variablen A_2, \ldots, A_k in den übrigen Regeln durch A_1 .

(Sollte sich unter den entfernten Variablen $A_2, ..., A_k$ die Startvariable S befinden, so sei A_1 die neue Startvariable.)

Beispiel (Fortsetzung)

$$P: S \rightarrow aY, bX, Z$$
 $Y \rightarrow b, bS, aYY$ $T \rightarrow U$
 $X \rightarrow a, aS, bXX$ $Z \rightarrow c, S, T, cZ$ $U \rightarrow abc$

• Entferne den Zyklus $S \rightarrow Z \rightarrow S$ und ersetze alle Vorkommen von Z durch S:

$$S \rightarrow aY, bX, c, T, cS$$
 $Y \rightarrow b, bS, aYY$ $T \rightarrow U$
 $X \rightarrow a, aS, bXX$ $U \rightarrow abc$

Satz

Zu jeder kontextfreien Grammatik G ex. eine kontextfreie Grammatik G' ohne Variablenumbenennungen mit L(G') = L(G).

Beweis

• Zuerst entfernen wir alle Zyklen

$$A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_k \rightarrow A_1$$
.

- Nun werden wir sukzessive die restlichen Variablenumbenennungen los, indem wir
 - eine Regel $A \rightarrow B$ wählen, so dass in P keine Variablenumbenennung $B \rightarrow C$ mit B auf der linken Seite existiert,
 - diese Regel $A \rightarrow B$ aus P entfernen und
 - für jede Regel $B \rightarrow v$ in P die Regel $A \rightarrow v$ zu P hinzunehmen.

Beispiel (Fortsetzung)

$$S \rightarrow aY, bX, c, T, cS$$
 $Y \rightarrow b, bS, aYY$ $T \rightarrow U$
 $X \rightarrow a, aS, bXX$ $U \rightarrow abc$

• Entferne die Regel $T \rightarrow U$ und füge die Regel $T \rightarrow abc$ hinzu (wegen $U \rightarrow abc$):

$$S \rightarrow aY, bX, c, T, cS$$
 $Y \rightarrow b, bS, aYY$ $T \rightarrow abc$
 $X \rightarrow a, aS, bXX$ $U \rightarrow abc$

• Entferne dann auch die Regel $S \to T$ und füge die Regel $S \to abc$ (wegen $T \to abc$) hinzu:

$$S \rightarrow abc, aY, bX, c, cS$$
 $Y \rightarrow b, bS, aYY$ $T \rightarrow abc$
 $X \rightarrow a, aS, bXX$ $U \rightarrow abc$

• Da T und U nirgends mehr auf der rechten Seite vorkommen, können wir die Regeln $T \to abc$ und $U \to abc$ weglassen:

Entfernen von ε -Regeln und Variablenumbenennungen

Bereits gezeigt:

Korollar

Zu jeder kontextfreien Grammatik G ex. eine kontextfreie Grammatik G' ohne ε -Regeln und ohne Variablenumbenennungen mit $L(G') = L(G) \setminus \{\varepsilon\}$.

Noch zu zeigen:

Satz

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine CNF-Grammatik G' mit $L(G') = L \setminus \{\varepsilon\}$.

Umwandlung in Chomsky-Normalform

Satz

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine CNF-Grammatik G' mit $L(G') = L \setminus \{\varepsilon\}$.

Beweis

- Sei $G = (V, \Sigma, P, S)$ eine kontextfreie Grammatik ohne ε -Regeln und ohne Variablenumbenennungen für $L \setminus \{\varepsilon\}$.
- Wir transformieren *G* wie folgt in eine CNF-Grammatik.
- Füge für jedes Terminalsymbol $a \in \Sigma$ eine neue Variable X_a zu V und eine neue Regel $X_a \rightarrow a$ zu P hinzu.
- Ersetze alle Vorkommen von a durch X_a , außer wenn a alleine auf der rechten Seite einer Regel steht.
- Ersetze jede Regel $A \rightarrow B_1 \dots B_k$, $k \ge 3$, durch die k-1 Regeln

$$A \to B_1 A_1, A_1 \to B_2 A_2, \dots, A_{k-3} \to B_{k-2} A_{k-2}, A_{k-2} \to B_{k-1} B_k,$$

wobei A_1, \ldots, A_{k-2} neue Variablen sind.

Beispiel (Fortsetzung)

• Betrachte die Regeln

$$S \rightarrow abc, aY, bX, cS, c$$
 $X \rightarrow aS, bXX, a$ $Y \rightarrow bS, aYY, b$

• Ersetze a, b und c durch A, B und C (außer wenn sie alleine rechts vorkommen) und füge die Regeln $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$ hinzu:

$$S \rightarrow ABC, AY, BX, CS, c$$
 $X \rightarrow AS, BXX, a$
 $Y \rightarrow BS, AYY, b$ $A \rightarrow a, B \rightarrow b, C \rightarrow c$

• Ersetze die Regeln $S \rightarrow ABC$, $X \rightarrow BXX$ und $Y \rightarrow AYY$ durch die Regeln $S \rightarrow AS'$, $S' \rightarrow BC$, $X \rightarrow BX'$, $X' \rightarrow XX$ und $Y \rightarrow AY'$, $Y' \rightarrow YY$:

$$S \rightarrow AS', AY, BX, CS, c, S' \rightarrow BC$$
 $X \rightarrow AS, BX', a, X' \rightarrow XX$

$$Y \rightarrow BS, AY', b \quad Y' \rightarrow YY$$
 $A \rightarrow a, \quad B \rightarrow b, \quad C \rightarrow c$

Definition

Sei $G = (V, \Sigma, P, S)$ eine kontextfreie Grammatik.

• Eine Ableitung

$$\underline{S} \Rightarrow l_1 \underline{A_1} r_1 \Rightarrow \cdots \Rightarrow l_{m-1} \underline{A_{m-1}} r_{m-1} \Rightarrow \alpha_m$$

heißt Linksableitung von α_m (kurz $S \Rightarrow_L^* \alpha_m$), falls in jedem Ableitungsschritt die am weitesten links stehende Variable ersetzt wird, d.h. es gilt $l_i \in \Sigma^*$ für $i = 1, \ldots, m-1$.

- Rechtsableitungen $S_0 \Rightarrow_R^* \alpha_m$ sind analog definiert.
- G heißt mehrdeutig, wenn es ein Wort $x \in L(G)$ gibt, das zwei verschiedene Linksableitungen hat. Andernfalls heißt G eindeutig.

Es gilt:

Für alle $x \in \Sigma^*$ gilt: $x \in L(G) \iff S \Rightarrow^* x \iff S \Rightarrow^*_L x \iff S \Rightarrow^*_R x$.

Ein- und mehrdeutige Grammatiken

Beispiel

• In $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ gibt es 8 Ableitungen für aabb:

- Darunter sind genau eine Links- und genau eine Rechtsableitung.
- In $G' = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, ab, \varepsilon\}, S)$ gibt es 3 Ableitungen für ab:

$$\underline{S} \Rightarrow ab, \qquad \underline{S} \Rightarrow a\underline{S}bS \Rightarrow ab\underline{S} \Rightarrow ab, \qquad \underline{S} \Rightarrow aSb\underline{S} \Rightarrow a\underline{S}b \Rightarrow ab$$

• Darunter sind 2 Links- und 2 Rechtsableitungen.

Ein- und mehrdeutige Grammatiken

Beispiel

- Die Grammatik $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ ist eindeutig.
- Dies liegt daran, dass keine Satzform von G das Teilwort Sa enthält.
- ullet Daher muss auf die aktuelle Satzform $y\underline{\mathcal{S}}\,eta$ einer Linksableitung

$$S \Rightarrow_{L}^{*} y\underline{S}\beta \Rightarrow_{L}^{*} yz = x$$

genau dann die Regel $S \to aSbS$ angewandt werden, wenn in x auf das Präfix y ein a folgt.

• Dagegen ist die Grammatik $G' = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, ab, \varepsilon\}, S)$ mehrdeutig, da das Wort x = ab zwei Linksableitungen hat:

$$\underline{S} \Rightarrow ab \text{ und } \underline{S} \Rightarrow a\underline{S}bS \Rightarrow ab\underline{S} \Rightarrow ab.$$

<1

Gerichtete Bäume und Wälder

Sei G = (V, E) ein Digraph.

- Ein (gerichteter) v_0 - v_k -Weg in G ist eine Folge von Knoten v_0, \ldots, v_k mit $(v_i, v_{i+1}) \in E$ für $i = 0, \ldots, k-1$. Seine Länge ist k.
- Ein Weg heißt Pfad, falls alle Knoten paarweise verschieden sind.
- Ein u-v-Weg der Länge ≥ 1 mit u = v heißt Zyklus.
- G heißt azyklisch, wenn es in G keinen Zyklus gibt.
- G heißt gerichteter Wald, wenn G azyklisch ist und jeder Knoten $v \in V$ Eingangsgrad $\deg^-(v) \le 1$ hat.
- Ein Knoten $u \in V$ vom Ausgangsgrad $deg^+(u) = 0$ heißt Blatt.
- Ein Knoten $w \in V$ heißt Wurzel von G, falls alle Knoten $v \in V$ von w aus erreichbar sind (d.h. es gibt einen w-v-Weg in G).
- Ein gerichteter Wald, der eine Wurzel hat, heißt gerichteter Baum.
- Da die Kantenrichtungen durch die Wahl der Wurzel eindeutig bestimmt sind, kann auf ihre Angabe verzichtet werden. Man spricht dann auch von einem Wurzelbaum.

Wir ordnen einer Ableitung

$$A_0 \Rightarrow I_1 A_1 r_1 \Rightarrow \cdots \Rightarrow I_{m-1} A_{m-1} r_{m-1} \Rightarrow \alpha_m$$

den Syntaxbaum (oder Ableitungsbaum, engl. parse tree) T_m zu, wobei die Bäume T_0, \ldots, T_m induktiv wie folgt definiert sind:

- T_0 besteht aus einem einzigen Knoten, der mit A_0 markiert ist.
- Wird im (i+1)-ten Ableitungsschritt die Regel $A_i \rightarrow v_1 \dots v_k$ mit $v_1, \dots, v_k \in \Sigma \cup V$ angewandt, so ensteht T_{i+1} aus T_i , indem wir das Blatt A_i durch folgenden Unterbaum ersetzen:

$$k > 0$$
: A_i $k = 0$: A_i \downarrow \downarrow ε

- Hierbei stellen wir uns die Kanten von oben nach unten gerichtet und die Kinder $v_1 \dots v_k$ von links nach rechts geordnet vor.
- Syntaxbäume sind also geordnete Wurzelbäume.

Beispiel

• Betrachte die Grammatik $G = (\{S\}, \{a,b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ und die Ableitung

$$\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aaSb\underline{S}bS \Rightarrow aa\underline{S}bbS \Rightarrow aabb\underline{S} \Rightarrow aabb$$

Die zugehörigen Syntaxbäume sind dann

Beispiel

• In $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ führen alle acht Ableitungen des Wortes aabb auf denselben Syntaxbaum:

• Dagegen führen in $G' = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, ab, \varepsilon\}, S)$ die drei Ableitungen des Wortes ab auf zwei unterschiedliche Syntaxbäume:

Syntaxbäume und Linksableitungen

- Seien T_0, \ldots, T_m die zu einer Ableitung $S = \alpha_0 \Rightarrow \cdots \Rightarrow \alpha_m$ gehörigen Syntaxbäume.
- Dann haben alle Syntaxbäume T_0, \ldots, T_m die Wurzel S.
- Die Satzform α_i ergibt sich aus T_i , indem wir die Blätter von T_i von links nach rechts zu einem Wort zusammensetzen.
- Auf den Syntaxbaum T_m führen neben $\alpha_0 \Rightarrow \cdots \Rightarrow \alpha_m$ alle Ableitungen, die sich von dieser nur in der Reihenfolge der Regelanwendungen unterscheiden.
- Dazu gehört genau eine Linksableitung.
- Linksableitungen und Syntaxbäume entsprechen sich also eineindeutig.
- Dasselbe gilt für Rechtsableitungen.
- Ist T Syntaxbaum einer CNF-Grammatik, so hat jeder Knoten in T höchstens zwei Kinder (d.h. T ist ein Binärbaum).

Abschätzung der Blätterzahl bei Binärbäumen

Definition

Die Tiefe eines Baumes mit Wurzel w ist die maximale Länge eines Weges von w zu einem Blatt.

Lemma

Ein Binärbaum B der Tiefe $\leq k$ hat $\leq 2^k$ Blätter.

Beweis durch Induktion über k:

k = 0: Ein Baum der Tiefe 0 kann nur einen Knoten haben.

 $k \rightsquigarrow k+1$: Sei *B* ein Binärbaum der Tiefe $\leq k+1$.

Dann hängen an B's Wurzel maximal zwei Unterbäume. Da deren Tiefe $\leq k$ ist, haben sie nach $IV \leq 2^k$ Blätter.

Also hat $B \le 2^{k+1}$ Blätter.

Lemma

Ein Binärbaum B der Tiefe $\leq k$ hat $\leq 2^k$ Blätter.

Korollar

Ein Binärbaum B mit $> 2^{k-1}$ Blättern hat eine Tiefe $\ge k$.

Beweis

Wäre die Tiefe von B kleiner als k (also $\leq k-1$), so hätte B nach obigem Lemma $\leq 2^{k-1}$ Blätter (Widerspruch).

Beweis des Pumping-Lemmas für CFL

Satz (Pumping-Lemma für kontextfreie Sprachen)

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine Zahl I, so dass sich alle Wörter $z \in L$ mit $|z| \ge I$ in z = uvwxy zerlegen lassen mit

- $|vwx| \le l \text{ und}$
- $uv^i wx^i y \in L$ für alle $i \ge 0$.

Beweis

- Sei $G = (V, \Sigma, P, S)$ eine CNF-Grammatik für $L \setminus \{\varepsilon\}$.
- Ist nun $z = z_1 \dots z_n \in L$ mit $n \ge 1$, so ex. in G eine Ableitung $S = \alpha_0 \Rightarrow \alpha_1 \dots \Rightarrow \alpha_m = z$.
- Da *G* in CNF ist, werden hierbei genau n-1 Regeln der Form $A \to BC$ und genau n Regeln der Form $A \to a$ angewandt.

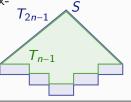
Beweis des Pumping-Lemmas für CFL

Beweis

- Sei $G = (V, \Sigma, P, S)$ eine CNF-Grammatik für $L \setminus \{\varepsilon\}$.
- Ist nun $z = z_1 \dots z_n \in L$ mit $n \ge 1$, so ex. in G eine Ableitung

$$S = \alpha_0 \Rightarrow \cdots \Rightarrow \alpha_m = z$$
 mit zugehörigen Syntaxbäumen T_0, \ldots, T_m

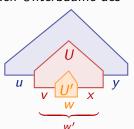
- Da G in CNF ist, werden hierbei genau n-1 Regeln der Form $A \to BC$ und genau n Regeln der Form $A \to a$ angewandt.
- Folglich ist m = 2n 1 und wir können annehmen, dass die Regeln der Form $A \to BC$ vor den Regeln der Form $A \to a$ zur Anwendung kommen.
- Dann besteht α_{n-1} aus n Variablen und die Syntaxbäume T_{2n-1} und T_{n-1} haben genau n Blätter.
- Setzen wir $I = 2^k$, wobei k = ||V|| ist, so hat T_{n-1} im Fall $n \ge I$ mindestens die Tiefe k, da T_{n-1} mindestens $I = 2^k > 2^{k-1}$ Blätter hat.



Beweis des Pumping-Lemmas für CFL

Beweis (Fortsetzung)

- Setzen wir $I = 2^k$, wobei k = ||V|| ist, so hat T_{n-1} im Fall $n \ge I$ mindestens die Tiefe k, da T_{n-1} mindestens $I = 2^k > 2^{k-1}$ Blätter hat.
- Sei π ein von der Wurzel ausgehender Pfad maximaler Länge in T_{n-1} .
- Dann hat π mindestens die Länge k und unter den letzten k+1 Knoten von π müssen zwei mit derselben Variablen A markiert sein.
- Seien U und U' die von diesen Knoten ausgehenden Unterbäume des vollständigen Syntaxbaums T_{2n-1} .
- Nun zerlegen wir z wie folgt:
 - w' ist das Teilwort von z = uw'y, das von U erzeugt wird und
 - w ist das Teilwort von w' = vwx, das von U' erzeugt wird.



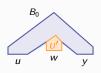
 T_{2n-1}

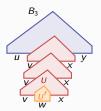
 T_{n-1}

Beweis des Pumping-Lemmas für CFL

Beweis (Schluss)

- Dann ist $vx \neq \varepsilon$ (Bed. 1), da U mehr Blätter hat als U'
- U V W X Y
- Zudem hat U höchstens $2^k = I$ Blätter, da der Baum $U^* = U \cap T_{n-1}$ höchstens die Tiefe k hat (sonst wäre π nicht maximal)
- Folglich ist $|vwx| \le I$ (Bed. 2)
- Schließlich lassen sich Syntaxbäume B_i für die Wörter uv^iwx^iy , $i \ge 0$, wie folgt konstruieren (Bed. 3):
 - B_0 entsteht aus $B_1 = T_{2n-1}$, indem wir U durch U' ersetzen.
 - B_{i+1} entsteht aus B_i , indem wir U' durch U ersetzen:





Das Wortproblem für CFL

Das Wortproblem für kontextfreie Grammatiken

Gegeben: Eine kontextfreie Grammatik G und ein Wort x.

Gefragt: Ist $x \in L(G)$?

Frage

Wie lässt sich das Wortproblem für kontextfreie Grammatiken entscheiden?

- Sei eine Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $x = x_1 \dots x_n$ gegeben.
- Falls $x = \varepsilon$ ist, können wir effizient prüfen, ob $S \Rightarrow^* \varepsilon$ gilt.
- Hierzu genügt es, die Menge $E = \{A \in V \mid A \Rightarrow^* \varepsilon\}$ aller ε -ableitbaren Variablen zu berechnen und zu prüfen, ob $S \in E$ ist.
- Andernfalls bringen wir G in CNF und starten den nach seinen Autoren Cocke, Younger und Kasami benannten CYK-Algorithmus.
- Dieser bestimmt mittels dynamischer Programmierung für l = 1, ..., n und k = 1, ..., n l + 1 die Menge $V_{l,k}$ aller Variablen, aus denen das Teilwort $x_k ... x_{k+l-1}$ ableitbar ist.
- Dann gilt $x \in L(G) \Leftrightarrow S \in V_{n,1}$.

- Sei $G = (V, \Sigma, P, S)$ eine CNF-Grammatik und sei $x \in \Sigma^+$.
- Dann lassen sich die Mengen $V_{l,k} = \{A \in V \mid A \Rightarrow^* x_k \dots x_{k+l-1}\}$ wie folgt bestimmen.
- Für l=1 gehört A zu $V_{1,k}$, falls die Regel $A \rightarrow x_k$ existiert:

$$V_{1,k} = \left\{ A \in V \mid A \to x_k \right\}$$

• Für l > 1 gehört A zu $V_{l,k}$, falls eine Regel $A \rightarrow BC$ und eine Zahl $l' \in \{1, \dots, l-1\}$ ex. mit $B \in V_{l',k}$ und $C \in V_{l-l',k+l'}$:

$$V_{I,k} = \{ A \in V \mid \exists I' < I, B \in V_{I',k}, C \in V_{I-I',k+I'} : A \rightarrow BC \in P \}$$

```
Algorithmus CYK(G,x)
         Input: CNF-Grammatik G = (V, \Sigma, P, S) und Wort x = x_1 \dots x_n
 1
            for k := 1 to n do
 2
              V_{1,k} := \{ A \in V \mid A \rightarrow x_k \in P \}
 3
            for l := 2 to n do
 4
              for k := 1 to n - l + 1 do
                 V_{l,k} := \emptyset
                 for l' := 1 to l - 1 do
                    for all A \rightarrow BC \in P do
 8
                       if B \in V_{l',k} and C \in V_{l-l',k+l'} then
                         V_{l,k} \coloneqq V_{l,k} \cup \{A\}
10
            if S \in V_{n,1} then accept else reject
11
```

Der CYK-Algorithmus lässt sich dahingehend erweitern, dass er im Fall $x \in L(G)$ auch einen Syntaxbaum T von x bestimmt.

Beispiel

• Betrachte die CNF-Grammatik mit den Regeln

$$P: S \rightarrow AS', AY, BX, CS, c, S' \rightarrow BC, X \rightarrow AS, BX', a, X' \rightarrow XX, Y \rightarrow BS, AY', b, Y' \rightarrow YY, A \rightarrow a, B \rightarrow b, C \rightarrow c.$$

• Dann erhalten wir für das Wort x = abb folgende Mengen $V_{I,k}$:

• Wegen $S \notin V_{3,1}$ ist $x \notin L(G)$.

Der CYK-Algorithmus

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

P:
$$S \rightarrow AS'$$
, AY , BX , CS , c , $S' \rightarrow BC$, $X \rightarrow AS$, BX' , a , $X' \rightarrow XX$, $Y \rightarrow BS$, AY' , b , $Y' \rightarrow YY$, $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$.

• Dagegen gehört das Wort y = aababb zu L(G):

а	а	Ь	а	Ь	Ь
{ X , A }	{ X , A }	{ Y , B }	{ X , A }	{ Y , B }	{ Y , B }
{ X' }	{ <i>5</i> }	{ <i>S</i> }	{ <i>S</i> }	{ Y' }	
{ X }	{ X }	{ Y }	{ Y }		
{ X' }	{ <i>5</i> }	{ Y' }			
{ X }	{ Y }				
{ <i>S</i> }					

Ein Maschinenmodell für die kontextfreien Sprachen

Frage

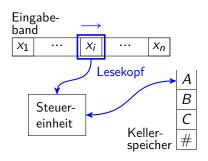
Wie lässt sich das Maschinenmodell des DFA erweitern, um die Sprache

$$L = \{a^n b^n \mid n \ge 0\}$$

und alle anderen kontextfreien Sprachen erkennen zu können?

Antwort

- Ein DFA kann Sprachen wie *L* nicht erkennen, da er nur seinen Zustand als Speicher benutzen kann und die Anzahl der Zustände zwar von *L* aber nicht von der Eingabe abhängen darf.
- Um kontextfreie Sprachen erkennen zu können, genügt bereits ein Kellerspeicher (auch Stapel, engl. *stack* oder *pushdown memory*).
- Dieser erlaubt nur den Zugriff auf die höchste belegte Speicheradresse.



- verfügt zusätzlich über einen Kellerspeicher,
- ullet kann auch arepsilon-Übergänge machen,
- hat Lesezugriff auf das aktuelle Eingabezeichen und auf das oberste Kellersymbol,
- kann das oberste Kellersymbol löschen (durch eine pop-Operation) und
- durch beliebig viele Symbole ersetzen (durch eine push-Operation).

Formale Definition des Kellerautomaten

Notation

Sei M eine Menge. Dann bezeichnet $\mathcal{P}_e(M)$ die Menge aller endlichen Teilmengen von M, d.h. $\mathcal{P}_e(M) = \{A \subseteq M \mid A \text{ ist endlich}\}.$

Definition

Ein Kellerautomat wird durch ein 7-Tupel $M = (Z, \Sigma, \Gamma, \delta, q_0, \#, E)$ beschrieben, wobei

- $Z \neq \emptyset$ eine endliche Menge von Zuständen,
- Σ das Eingabealphabet,
- Γ das Kelleralphabet,
- $\delta: Z \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to \mathcal{P}_e(Z \times \Gamma^*)$ die Überführungsfunktion,
- $q_0 \in Z$ der Startzustand,
- # ∈ Γ das Kelleranfangszeichen und
- $E \subseteq Z$ die Menge der Endzustände ist.

Arbeitsweise eines Kellerautomaten

- Wenn p der momentane Zustand, A das oberste Kellerzeichen und $u \in \Sigma$ das nächste Eingabezeichen (bzw. $u = \varepsilon$) ist, so kann M im Fall $(q, B_1 \dots B_k) \in \delta(p, u, A)$
 - in den Zustand q wechseln,
 - den Lesekopf auf dem Eingabeband um $|u| \in \{0,1\}$ Positionen vorrücken und
 - das Zeichen A aus- sowie die Zeichenfolge $B_1 \dots B_k$ einkellern (danach ist B_1 das oberste Kellerzeichen).
- Hierfür sagen wir auch, M führt die Anweisung

$$puA \rightarrow qB_1 \dots B_k$$

aus.

• Im Fall $u = \varepsilon$ spricht man auch von einem ε -Übergang.

Konfiguration eines Kellerautomaten

• Eine Konfiguration wird durch ein Tripel

$$K = (p, x_i \dots x_n, A_1 \dots A_l) \in Z \times \Sigma^* \times \Gamma^*$$

beschrieben und besagt, dass

- p der momentane Zustand,
- $x_i \dots x_n$ der ungelesene Rest der Eingabe und
- $A_1 \dots A_l$ der aktuelle Kellerinhalt ist (A_1 ist oberstes Symbol).
- In der Konfiguration $K = (p, x_i ... x_n, A_1 ... A_l)$ kann M eine bel. Anweisung $puA_1 \rightarrow qB_1 ... B_k$ mit $u \in \{\varepsilon, x_i\}$ ausführen.

Diese überführt M in die Folgekonfiguration

$$K' = (q, x_1 ... x_n, B_1 ... B_k A_2 ... A_l) \text{ mit } j = i + |u|.$$

Hierfür schreiben wir auch kurz $K \vdash K'$.

• Eine Rechnung von M bei Eingabe x ist eine Folge von Konfigurationen $K_0, K_1, K_2 \dots$ mit $K_0 = (q_0, x, \#)$ und $K_0 \vdash K_1 \vdash K_2 \dots$ K_0 heißt Startkonfiguration von M bei Eingabe x.

Die von einem Kellerautomaten erkannte Sprache

Notation

Die reflexive, transitive Hülle von \vdash bezeichnen wir wie üblich mit \vdash^* .

Definition

Die von einem Kellerautomaten $M = (Z, \Sigma, \Gamma, \delta, q_0, \#, E)$ akzeptierte oder erkannte Sprache ist

$$L(M) = \{x \in \Sigma^* \mid \exists q \in E, \alpha \in \Gamma^* : (q_0, x, \#) \vdash^* (q, \varepsilon, \alpha)\}.$$

Ein Kellerautomat M akzeptiert also genau dann eine Eingabe x, wenn es eine Rechnung gibt, bei der M

- das gesamte Eingabewort liest und
- einen Endzustand $q \in E$ erreicht

Akzeptanz durch Leeren des Kellers

Es gibt noch ein weiteres Akzeptanzkriterium, das die Angabe von Endzuständen überflüssig macht.

Definition

- Ein PDA (engl. *pushdown automaton*) ist ein Kellerautomat $M = (Z, \Sigma, \Gamma, \delta, q_0, \#)$ ohne Endzustandsmenge.
- Die von einem PDA M akzeptierte oder erkannte Sprache ist

$$L(M) = \{x \in \Sigma^* \mid \exists p \in Z : (q_0, x, \#) \vdash^* (p, \varepsilon, \varepsilon)\}$$

- Rechnung gibt, bei der *M*
 - das gesamte Eingabewort liest und den Keller leert
- Man beachte, dass bei leerem Keller kein Übergang mehr möglich ist

• Ein PDA M akzeptiert also genau dann eine Eingabe x, wenn es eine

Es gilt (siehe Übungen)

 $\{L(M) \mid M \text{ ist ein PDA}\} = \{L(M) \mid M \text{ ist ein Kellerautomat}\}$

 $\varepsilon \#, \varepsilon$ (1)

a#, A (2)

aA, AA(3) $bA, \varepsilon(5)$

 bA, ε (4)

Ein PDA für die Sprache $\{a^nb^n \mid n \ge 0\}$

Beispiel

• Sei $M = (Z, \Sigma, \Gamma, \delta, q, \#)$ mit $Z = \{q, p\}$, $\Sigma = \{a, b\}$, $\Gamma = \{A, \#\}$ und

 $qbA \rightarrow p(4) pbA \rightarrow p(5)$

- = $\{a, b\}$, $I = \{A, \#\}$ und $\delta : q\varepsilon\# \to q$ (1) $qa\# \to qA$ (2) $qaA \to qAA$ (3)
- Dann akzeptiert M die Eingabe x = aabb:

$$(q, aabb, \#) \underset{(2)}{\vdash} (q, abb, A) \underset{(3)}{\vdash} (q, bb, AA) \underset{(4)}{\vdash} (p, b, A) \underset{(5)}{\vdash} (p, \varepsilon, \varepsilon)$$

• Allgemeiner akzeptiert M das Wort $x = a^n b^n$ mit folgender Rechnung: n = 0: $(q, \varepsilon, \#) \vdash (q, \varepsilon, \varepsilon)$

• Dies zeigt, dass M alle Wörter der Form $a^n b^n$, $n \ge 0$, akzeptiert.

Ein PDA für die Sprache $\{a^nb^n \mid n \geq 0\}$

Beispiel

- Sei $M = (Z, \Sigma, \Gamma, \delta, q, \#)$ mit $Z = \{q, p\}$, $\Sigma = \{a, b\}, \Gamma = \{A, \#\} \text{ und }$
 - $\delta: q\varepsilon\# \to q$ (1) $qa\# \to qA$ (2) $qaA \to qAA$ (3) $qbA \rightarrow p(4) pbA \rightarrow p(5)$
- $\varepsilon \#, \varepsilon$ (1) aA, AA (3) bA, ε (5) Als nächstes zeigen wir, dass jede von M akzeptierte Eingabe
- $x = x_1 \dots x_m \in L(M)$ die Form $x = a^n b^n$ haben muss. • Ausgehend von der Startkonfiguration (q, x, #) sind nur die
- Anweisungen (1) oder (2) ausführbar. • Führt M zuerst Anweisung (1) aus, so wird der Keller geleert.
- Daher kann M in diesem Fall nur das leere Wort $x = \varepsilon = a^0 b^0$ akzeptieren.
- Falls M mit Anweisung (2) beginnt, muss M später mittels Anweisung (4) in den Zustand p gelangen, da sonst der Keller nicht geleert wird.

 $\varepsilon \#, \varepsilon$ (1)

Ein PDA für die Sprache $\{a^nb^n \mid n \ge 0\}$

Beispiel

- Sei $M = (Z, \Sigma, \Gamma, \delta, q, \#)$ mit $Z = \{q, p\}$, $\Sigma = \{a, b\}$, $\Gamma = \{A, \#\}$ und
- $\Sigma = \{a, b\}, \ I = \{A, \#\} \text{ und}$ $\delta : q\varepsilon\# \to q \ (1) \quad qa\# \to qA \ (2) \quad qaA \to qAA \ (3)$ $qbA \to p \ (4) \quad pbA \to p \quad (5)$ $A = \{a, b\}, \ I = \{A, \#\} \text{ und}$ $a\#, A \ (2)$ $aA, AA \ (3) \quad bA, \varepsilon \ (5)$ $q \quad bA, \varepsilon \ (4) \quad p$
- Falls M mit Anweisung (2) beginnt, muss M später mittels Anweisung (4) in den Zustand p gelangen, da sonst der Keller nicht geleert wird.
- Dies geschieht, sobald M nach Lesen von $n \ge 1$ a's das erste b liest:

$$(q, x_1 \dots x_n, \#) \vdash_{(2)} (q, x_2 \dots x_n, A) \vdash_{(3)}^{n-1} (q, x_{n+1} \dots x_m, A^n)$$

 $\vdash_{(4)} (p, x_{n+2} \dots x_m, A^{n-1})$

- mit $x_1 = x_2 = \dots = x_n = a$ und $x_{n+1} = b$.
- Damit der Keller nach dem Lesen von x leer ist, muss M nun noch genau n-1 b's lesen, weshalb $x=a^nb^n$ folgt.

Ein Maschinenmodell für die Klasse CFL

Ziel

Als nächstes wollen wir zeigen, dass PDAs genau die kontextfreien Sprachen erkennen.

Satz

 $CFL = \{L(M) \mid M \text{ ist ein PDA}\}.$

Idee:

Konstruiere zu einer kontextfreien Grammatik $G = (V, \Sigma, P, S)$ einen PDA $M = (\{z\}, \Sigma, \Gamma, \delta, z, S)$ mit $\Gamma = V \cup \Sigma$ und folgenden Anweisungen:

- für jedes Zeichen $a \in \Sigma$ die Anweisung $zaa \rightarrow z\varepsilon$
- für jede Regel $A \rightarrow_G \alpha$ die Anweisung $z \in A \rightarrow z \alpha$

Beispiel

- Betrachte die Grammatik $G = (\{S\}, \{a, b\}, P, S)$ mit den Regeln
 - $P: S \to aSb \ (1) \ S \to \varepsilon \ (2)$
- Der zugehörige PDA besitzt dann die Anweisungen

$$\delta: zaa \rightarrow z \ (0) \quad zbb \rightarrow z \ \ (0') \quad z\varepsilon S \rightarrow zaSb \ \ (1') \quad z\varepsilon S \rightarrow z \ \ \ (2')$$

$$(z, aabb, S) \vdash_{(1')} (z, aabb, aSb) \vdash_{(0)} (z, abb, Sb)$$

$$\vdash_{(1')} (z, abb, aSbb) \vdash_{(0)} (z, bb, Sbb)$$

$$\vdash_{(1')} (z, bb, bb) \vdash_{(0')} (z, b, b) \vdash_{(0')} (z, \varepsilon, \varepsilon)$$

$$\varepsilon \quad a \quad \varepsilon \quad b \quad b$$

$$\varepsilon \quad a \quad \varepsilon \quad b \quad b$$

von *M* und umgekehrt.

Idee:

Konstruiere zu einer kontextfreien Grammatik $G = (V, \Sigma, P, S)$ einen PDA $M = (\{z\}, \Sigma, \Gamma, \delta, z, S)$ mit $\Gamma = V \cup \Sigma$ und folgenden Anweisungen:

- für jedes Zeichen $a \in \Sigma$ die Anweisung $zaa \rightarrow z\varepsilon$
- für jede Regel $A \rightarrow_G \alpha$ die Anweisung $z \in A \rightarrow z \alpha$
- M versucht also, eine Linksableitung für die Eingabe x zu finden.
 Da M hierbei den Syntaxbaum von oben nach unten aufbaut, wird M als Top-Down Parser bezeichnet.
- Zudem gilt $S \Rightarrow_{L}^{l} x_1 \dots x_n$ gdw. $(z, x_1 \dots x_n, S) \vdash_{l+n}^{l+n} (z, \varepsilon, \varepsilon)$
- Daher folgt

$$x \in L(G) \Leftrightarrow S \Rightarrow_{L}^{*} x \Leftrightarrow (z, x, S) \vdash^{*} (z, \varepsilon, \varepsilon) \Leftrightarrow x \in L(M)$$

Vorbetrachtung:

- Obige Konstruktion eines PDA M aus einer kontextfreien Grammatik lässt sich leicht umdrehen, falls M nur einen Zustand hat.
- Zu einem solchen PDA $M = (\{z\}, \Sigma, \Gamma, \delta, z, \#)$ lässt sich wie folgt eine kontextfreie Grammatik $G = (V, \Sigma, P, X_{\#})$ mit L(G) = L(M) konstruieren:
 - Die Variablenmenge von G ist V = {X_A | A ∈ Γ}
 (im Fall Σ ∩ Γ = Ø können wir auch einfach V = Γ setzen)
 - die Startvariable von G ist X_# und
 - P enthält für jede Anweisung $zuA \rightarrow zA_1 \dots A_k$ von M die Regel

$$X_A \rightarrow uX_{A_1} \dots X_{A_k}$$

• Dann lässt sich jede akzeptierende Rechnung von M(x) direkt in eine Linksableitung $X_{\#} \Rightarrow_L x$ in G transformieren und umgekehrt.

Beweis von $\{L(M) \mid M \text{ ist ein PDA}\} \subseteq CFL$

Regeln $S \to aSb, \varepsilon$ konstruiert haben.

Beispiel

• Betrachte den PDA $M = (\{z\}, \{a, b\}, \{S, a, b\}, \delta, z, S)$ mit

$$\delta: zaa \rightarrow z$$
 (1) $zbb \rightarrow z$ (2) $z\varepsilon S \rightarrow zaSb$ (3) $z\varepsilon S \rightarrow z$ (4) den wir aus der Grammatik $G = (\{S\}, \{a,b\}, P, S)$ mit den beiden

• Dann führt M auf die Grammatik $G' = (\{X_S, X_a, X_b\}, \{a, b\}, P', X_S)$ mit $P' \colon X_a \to a \ (1') \quad X_b \to b \ (2') \quad X_S \to X_a X_S X_b \ (3') \quad X_S \to \varepsilon \ (4')$

 $(z, ab, S) \vdash (z, ab, aSb) \vdash (z, b, Sb) \vdash (z, b, b) \vdash (z, \varepsilon, \varepsilon)$ von M entspricht dann folgende Linksableitung in G (und umgekehrt):

$$X_S \underset{(3')}{\Rightarrow} X_a X_S X_b \underset{(1')}{\Rightarrow} a X_S X_b \underset{(4')}{\Rightarrow} a X_b \underset{(2')}{\Rightarrow} ab$$

Man beachte, dass G' eine aufgeblähte Variante von G ist.

Idee:

Um zu einem PDA $M=(Z,\Sigma,\Gamma,\delta,q_0,\#)$ eine kontextfreie Grammatik $G=(V,\Sigma,P,S)$ mit L(G)=L(M) zu konstruieren, genügt es, M wie folgt in einen äquivalenten PDA $M'=(\{z\}\,,\Sigma,\Gamma',\delta',z,\#)$ mit nur einem Zustand z zu transformieren:

- Das Kelleralphabet von M' ist $\Gamma' = \{\#\} \cup \{X_{pAq} \mid A \in \Gamma, p, q \in Z\}$.
- ullet Zudem fügen wir die folgenden Anweisungen zu δ' hinzu:
 - für jede Anweisung $puA \rightarrow p_1A_1 \dots A_k$ von M und für jede Folge $p_2, \dots, p_{k+1} \in Z$ von k Zuständen die Anweisung

$$zuX_{pAp_{k+1}} \rightarrow zX_{p_1A_1p_2} \dots X_{p_kA_kp_{k+1}}$$

• für jeden Zustand $q \in Z$ die Anweisung

$$z\varepsilon\#\to zX_{q_0\#q}$$

Beispiel

• Betrachte den PDA $M = (\{p,q\},\{a,b\},\{A,\#\},\delta,p,\#)$ mit den Anweisungen

$$\delta: p\varepsilon\# \to q$$
 (1) $pa\# \to pA$ (2) $paA \to pAA$ (3) $pbA \to q$ (4) $qbA \to q$ (5)

• Der zugehörige PDA $M' = (\{z\}, \{a, b\}, \Gamma', \delta', z, \#)$ mit nur einem Zustand hat dann das Kelleralphabet

$$\Gamma' = \{ \#, X_{p\#p}, X_{p\#q}, X_{q\#p}, X_{q\#q}, X_{pAp}, X_{pAq}, X_{qAp}, X_{qAq} \}$$

Beweis von $\{L(M) \mid M \text{ ist ein PDA}\} \subseteq CFL$

Beispiel (Fortsetzung)

• Zudem enthält M' neben den beiden Anweisungen $z\varepsilon\#\to zX_{p\#p}$ (0) und $z\varepsilon\#\to zX_{p\#q}$ (0') die folgenden Anweisungen:

Anweisung vo	on M	k	p_2,\ldots,p_{k+1}	Anweisungen von M'	
<i>p</i> ε# → <i>q</i>	(1)	0	-	$z \varepsilon X_{p\#q} \to z$	(1'
<i>pa#</i> → <i>pA</i>	(2)	1	р	$zaX_{p\#p} \rightarrow zX_{pAp}$	(2'
			q	$zaX_{p\#q} \rightarrow zX_{pAq}$	(2"
$paA \rightarrow pAA$	(3)	2	p, p	$zaX_{pAp} \rightarrow zX_{pAp}X_{pAp}$	(3'
			p,q	$zaX_{pAq} \rightarrow zX_{pAp}X_{pAq}$	(3"
			q, p	$zaX_{pAp} \rightarrow zX_{pAq}X_{qAp}$	(3"
			q,q	$zaX_{pAq} \rightarrow pX_{pAq}X_{qAq}$	(3"
$pbA \rightarrow q$	(4)	0	-	$zbX_{pAq} \rightarrow z$	(4'
$qbA \rightarrow q$	(5)	0	-	$zbX_{qAq} \rightarrow z$	(5'

Beispiel (Schluss)

• Der (akzeptierenden) Rechnung

$$(p, aabb, \#) \vdash_{(2)} (p, abb, A) \vdash_{(3)} (p, bb, AA) \vdash_{(4)} (q, b, A) \vdash_{(5)} (q, \varepsilon, \varepsilon)$$

von M entspricht dann folgende Rechnung von M':

$$(z, aabb, \#) \underset{(0')}{\vdash} (z, aabb, X_{p\#q}) \underset{(2'')}{\vdash} (z, abb, X_{pAq})$$

$$\underset{(3'''')}{\vdash} (z, bb, X_{pAq}X_{qAq}) \underset{(4')}{\vdash} (z, b, X_{qAq}) \underset{(5')}{\vdash} (z, \varepsilon, \varepsilon)$$

⊲

Zusammenfassung:

Fassen wir die beiden Schritte

- PDA $M \rightarrow PDA M'$ mit nur einem Zustand und
- PDA M' mit nur einem Zustand \rightarrow kontextfreie Grammatik G

zu einem Schritt zusammen, so können wir zu einem PDA $M = (Z, \Sigma, \Gamma, \delta, q_0, \#)$ wie folgt eine äquivalente kontextfreie Grammatik $G = (V, \Sigma, P, S)$ mit der Variablenmenge $V = \{S\} \cup \{X_{pAq} \mid A \in \Gamma, p, q \in Z\}$ und folgenden Regeln konstruieren:

• für jeden Zustand $q \in Z$ die Startregel

$$S \rightarrow X_{q_0 \# q}$$

• für jede Anweisung $puA \rightarrow p_1A_1 \dots A_k$ von M und jede Zustandsfolge p_2, \dots, p_{k+1} die Regel

$$X_{pAp_{k+1}} \rightarrow uX_{p_1A_1p_2} \dots X_{p_kA_kp_{k+1}}$$

Beispiel

• Betrachte den PDA $M = (\{p,q\},\{a,b\},\{A,\#\},\delta,p,\#)$ mit den Anweisungen

$$\delta: p\varepsilon\# \to q$$
 (1) $pa\# \to pA$ (2) $paA \to pAA$ (3) $pbA \to q$ (4) $qbA \to q$ (5)

• Dann erhalten wir die Grammatik $G = (V, \Sigma, P, S)$ mit der Variablenmenge

$$V = \{S, X_{p\#p}, X_{p\#q}, X_{q\#p}, X_{q\#q}, X_{pAp}, X_{pAq}, X_{qAp}, X_{qAq}\}$$

• Die Regelmenge P enthält die beiden Startregeln $S \rightarrow X_{p\#p}, X_{p\#q} (0,0')$

Beweis von $\{L(M) \mid M \text{ ist ein PDA}\} \subseteq CFL$

Beispiel (Fortsetzung)

• Zudem enthält *P* die folgenden Produktionen:

Anweisung		k	p_2,\ldots,p_{k+1}	zugehörige Reg	eln
<i>p</i> ε# → <i>q</i>	(1)	0	-	$X_{p\#q} \rightarrow \varepsilon$	(1')
<i>pa</i> # → <i>pA</i>	(2)	1	p	$X_{p\#p} \rightarrow aX_{pAp}$	(2')
			q	$X_{p\#q} \rightarrow aX_{pAq}$	(2")
paA → pAA	(3)	2	p , p	$X_{pAp} \rightarrow aX_{pAp}X_{pAp}$	(3')
			p,q	$X_{pAq} \rightarrow aX_{pAp}X_{pAq}$	(3")
			q, p	$X_{pAp} \rightarrow aX_{pAq}X_{qAp}$	(3''')
			q,q	$X_{pAq} \rightarrow aX_{pAq}X_{qAq}$	(3"")
$pbA \rightarrow q$	(4)	0	-	$X_{pAq} \rightarrow b$	(4')
$qbA \rightarrow q$	(5)	0	-	$X_{qA_{\mathbf{q}}} \rightarrow b$	(5')

Beispiel (Schluss)

• Der akzeptierenden Rechnung

$$(p, aabb, \#) \vdash_{(2)} (p, abb, A) \vdash_{(3)} (p, bb, AA) \vdash_{(4)} (q, b, A) \vdash_{(5)} (q, \varepsilon, \varepsilon)$$

von M entspricht dann in G die Linksableitung

$$S \Rightarrow X_{p\#q} \Rightarrow aX_{pAq} \Rightarrow aaX_{pAq} X_{qAq} \Rightarrow aabX_{qAq} \Rightarrow aabX_{qAq} \Rightarrow aabb$$

Beweis von $\{L(M) \mid M \text{ ist ein PDA}\} \subseteq CFL$

- Es bleibt noch zu zeigen, dass die zu einem PDA $M = (Z, \Sigma, \Gamma, \delta, q_0, \#)$ konstruierte kontextfreie Grammatik $G = (V, \Sigma, P, S)$ mit der Variablenmenge $V = \{S\} \cup \{X_{pAq} \mid A \in \Gamma, p, q \in Z\}$, die
 - für jeden Zustand $q \in Z$ die Startregel $S \to X_{q_0 \# q}$ sowie
 - für jede Anweisung $puA \rightarrow p_1A_1 \dots A_k$ von M und jede Zustandsfolge p_2, \dots, p_{k+1} die Regel $X_{pAp_{k+1}} \rightarrow uX_{p_1A_1p_2} \dots X_{p_kA_kp_{k+1}}$ enthält, die Sprache L(M) erzeugt.
- Hierzu zeigen wir, dass sich aus einer Rechnung $(p, x, A) \vdash^m (q, \varepsilon, \varepsilon)$ der Länge m von M eine Ableitung $X_{pAq} \Rightarrow^m x$ der Länge m gewinnen
- Aus dieser Äquivalenz folgt dann sofort L(G) = L(M):

lässt und umgekehrt.

$$x \in L(M) \iff (q_0, x, \#) \vdash^m (q, \varepsilon, \varepsilon)$$
 für ein $m \ge 1$ und ein $q \in Z$

$$\Leftrightarrow \quad S \Rightarrow X_{q_0 \# q} \Rightarrow^m x \text{ für ein } m \ge 1 \text{ und ein } q \in Z$$

$$\Leftrightarrow x \in L(G)$$

Es bleibt noch zu zeigen, dass für alle $p, q \in Z$, $A \in \Gamma$, $x \in \Sigma^*$ und $m \ge 0$ gilt: $X_{pAq} \Rightarrow^m x$ gdw. $(p, x, A) \vdash^m (q, \varepsilon, \varepsilon)$ (*)

Induktionsanfang
$$(m = 0)$$
:

Da sowohl $X_{pAq} \Rightarrow^0 x$ als auch $(p, x, A) \vdash^0 (q, \varepsilon, \varepsilon)$ falsch sind, gilt die Äquivalenz (*) im Fall m = 0.

Induktionsschritt $(m \rightsquigarrow m+1)$:

- Wir zeigen zuerst die Implikation von links nach rechts.
- Sei x aus X_{pAq} in m+1 Schritten ableitbar und sei α die im ersten Schritt abgeleitete Satzform: $X_{pAq} \Rightarrow \alpha \Rightarrow^m x$
- Wegen $X_{pAq} \rightarrow_G \alpha$ gibt es eine Anweisung $puA \rightarrow p_1A_1 \dots A_k$ und Zustände $p_2, \dots, p_{k+1} \in Z$ mit $p_{k+1} = q$ und

$$\alpha = u X_{p_1 A_1 p_2} \dots X_{p_k A_k p_{k+1}}$$

• Wegen $\alpha \Rightarrow^m x$ ex. eine Zerlegung $x = uu_1 \dots u_k$ von x sowie Zahlen $m_i \ge 1$ mit $m_1 + \dots + m_k = m$ und

$$X_{p_i A_i p_{i+1}} \Rightarrow^{m_i} u_i \text{ für } i = 1, \dots, k$$

Nach IV gibt es somit Rechnungen

$$(p_i, u_i, A_i) \vdash^{m_i} (p_{i+1}, \varepsilon, \varepsilon)$$
 für $i = 1, \ldots, k$

Induktionsschritt $(m \rightsquigarrow m+1)$:

• Nach IV gibt es somit Rechnungen

$$(p_i, u_i, A_i) \vdash^{m_i} (p_{i+1}, \varepsilon, \varepsilon)$$
 für $i = 1, \ldots, k$

aus denen sich die gesuchte Rechnung der Länge m+1 zusammensetzen lässt:

$$(p, x, A) = (p, uu_1 \dots u_k, A) \\ \vdash (p_1, u_1 \dots u_k, A_1 \dots A_k) \\ \vdash^{m_1} (p_2, u_2 \dots u_k, A_2 \dots A_k) \\ \vdots \\ \vdash^{m_{k-1}} (p_k, u_k, A_k)$$

 $\vdash^{m_k} (p_{k+1}, \varepsilon, \varepsilon) = (q, \varepsilon, \varepsilon)$

Beweis von $\{L(M) \mid M \text{ ist ein PDA}\} \subseteq CFL$

Induktionsschritt $(m \rightsquigarrow m+1)$:

- Nun zeigen wir die Implikation von rechts nach links.
- Sei eine Rechnung der Länge m+1 gegeben und sei $puA \rightarrow p_1A_1 \dots A_k$ die erste Anweisung:

$$(p,x,A) \vdash (p_1,x',A_1 \ldots A_k) \vdash^m (q,\varepsilon,\varepsilon)$$

- Im Fall $k \ge 2$ sei p_i für i = 2, ..., k der Zustand, in den M mit dem Kellerinhalt $A_i ... A_k$ gelangt.
- Zudem sei u_i für i = 1, ..., k das zwischen den Besuchen von p_i und p_{i+1} gelesene Teilwort von x, wobei $p_{k+1} = q$ ist.
- Dann gilt x = ux' und $x' = u_1 \dots u_k$ sowie $(p_1, x', A_1 \dots A_k) \vdash^* (p_i, u_i \dots u_k, A_i \dots A_k) \vdash^* (q, \varepsilon, \varepsilon)$
- Für i = 1, ..., k ex. daher Zahlen $m_i \ge 1$ mit $(p_i, u_i, A_i) \vdash^{m_i} (p_{i+1}, \varepsilon, \varepsilon)$ und $m_1 + \cdots + m_k = m$

Beweis von $\{L(M) \mid M \text{ ist ein PDA}\} \subseteq CFL$

Induktionsschritt $(m \rightsquigarrow m+1)$:

- Für i = 1, ..., k ex. daher Zahlen $m_i \ge 1$ mit $(p_i, u_i, A_i) \vdash^{m_i} (p_{i+1}, \varepsilon, \varepsilon)$ und $m_1 + \cdots + m_k = m$
- Nach IV ex. daher für i = 1, ..., k die Ableitungen

$$X_{p_iA_ip_{i+1}} \Rightarrow^{m_i} u_i$$

• Aufgrund der Anweisung $puA \rightarrow p_1A_1 \dots A_k$ enthält P zudem die Regel $X_{pAq} \rightarrow uX_{p_1A_1p_2} \dots X_{p_{k-1}A_{k-1}p_k}X_{p_kA_kq}$, die sich wie folgt mit obigen Ableitungen zusammensetzen lässt:

$$\begin{array}{ccc} X_{pAq} & \Rightarrow & uX_{p_1A_1p_2} \dots X_{p_{k-1}A_{k-1}p_k} X_{p_kA_kq} \\ & \Rightarrow^{m_1} & uu_1 \dots X_{p_{k-1}A_{k-1}p_k} X_{p_{k-1}A_kq} \\ & \vdots & \\ & \Rightarrow^{m_{k-1}} & uu_1 \dots u_{k-1} X_{p_kA_kq} \\ & \Rightarrow^{m_k} & uu_1 \dots u_k = x \end{array}$$

In der Praxis spielen det. Kellerautomaten eine wichtige Rolle.

Definition

• Ein Kellerautomat heißt deterministisch, falls ⊢ rechtseindeutig ist:

$$K \vdash K_1 \land K \vdash K_2 \Rightarrow K_1 = K_2$$

Äquivalent hierzu ist, dass die Überführungsfunktion δ für alle $(q, a, A) \in Z \times \Sigma \times \Gamma$ folgende Bedingung erfüllt:

$$\|\delta(q, a, A)\| + \|\delta(q, \varepsilon, A)\| \le 1$$

• Ein Kellerautomat $M = (Z, \Sigma, \Gamma, \delta, q_0, \#, E)$ ist ein DPDA (engl. deterministic pushdown automaton), falls M für alle $(q, a, A) \in Z \times \Sigma \times \Gamma$ zusätzlich folgende Bedingung erfüllt:

$$\|\delta(q, a, A)\| + \|\delta(q, \varepsilon, A)\| \le 1$$

• Weiter sei DCFL = $\{L(M) | M \text{ ist ein DPDA}\}$.