
Balancing Parallel Adaptive FEM Computations
by Solving Systems of Linear Equations ?

Henning Meyerhenke and Stefan Schamberger

Universität Paderborn,
Fakultät für Elektrotechnik, Informatik und Mathematik

Fürstenallee 11, D-33102 Paderborn
{henningm|schaum}@uni-paderborn.de

Abstract. Load balancing plays an important role in parallel numer-
ical simulations. State-of-the-art libraries addressing this problem base
on vertex exchange heuristics that are embedded in a multilevel scheme.
However, these are hard to parallelize due to their sequential nature. Fur-
thermore, libraries like Metis and Jostle focus on a small edge-cut and
cannot obey constraints like connectivity and straight partition bound-
aries, which are important for some numerical solvers.
In this paper we present an alternative approach to balance the load in
parallel adaptive finite element simulations. We compute a distribution
that is based on solutions of linear equations. Integrated into a learning
framework, we obtain a heuristic that contains a high degree of paral-
lelism and computes well shaped connected partitions. Furthermore, our
experiments indicate that we can find solutions that are comparable to
those of the two state-of-the-art libraries Metis and Jostle also regarding
the classic metrics like edge-cut and boundary length.

Keywords: Parallel adaptive FEM computations, load balancing, graph
partitioning.

1 Introduction

Finite Element Methods (FEM) are used extensively by engineers to analyze a
variety of physical processes which can be expressed via Partial Differential Equa-
tions (PDE). The domain on which the PDEs have to be solved is discretized
into a mesh, and the PDEs are transformed into a set of equations defined on
the mesh’s elements (see e. g. [1]). These can then be solved by iterative methods
such as Conjugate Gradient (CG) and Multigrid. Due to the very large amount
of elements needed to obtain an accurate approximation of the original problem,
this method has become a classical application for parallel computers. The paral-
lelization of numerical simulation algorithms usually follows the Single-Program
Multiple-Data (SPMD) paradigm: Each processor executes the same code on
a different part of the data. This means that the mesh has to be split into P
sub-domains and each sub-domain is then assigned to one of the P processors.
To minimize the overall computation time, all processors should thereby roughly

? This work is supported by the German Science Foundation (DFG) project SFB-376
and by DFG Research Training Group GK-693.

contain the same amount of elements. Since iterative solution algorithms per-
form mainly local operations, i. e. data dependencies are defined by the mesh,
the parallel algorithm mainly requires communication at the partition bound-
aries. Hence, these should be as small as possible. Depending on the application,
some areas of the simulation space require a higher resolution and therefore
more elements. Since the location of these areas is not known beforehand or can
even vary over time, the mesh is refined and coarsened during the computation.
However, this can cause imbalance between the processors’ load and therefore
delay the simulation. Hence, the element distribution needs to be rebalanced.
The application is interrupted and the at this point static repartitioning prob-
lem is solved. Though this interruption should be as short as possible, it is also
important to find a new balanced partitioning with small boundaries that does
not cause too many elements to change their processor. Migrating elements can
be an extremely costly operation since large amounts of data have to be sent
over communication links and stored in complex data structures.

The described problem can be expressed as a graph (re-)partitioning problem.
The mesh is transformed into a graph where the vertices represent the compu-
tational work and the edges their interdependencies. Due to the complexity of
the problem, the large input sizes and the given time constraints, existing li-
braries that address the graph (re-)partitioning problem are based on heuristics.
State-of-the-art implementations like Metis [2], Jostle [3] or Party [4] follow the
multilevel scheme [5]. Vertices of the graph are contracted according to a match-
ing and a new level consisting of a smaller graph with a similar structure is
generated. This is repeated, until in the lowest level only a small graph remains.
The (re-)partitioning problem is then solved for this small graph and vertices in
higher levels are assigned to partitions according to their representatives in the
next lower level. Additionally, a local improvement heuristic is applied in every
level. By exchanging vertices between partitions, it reduces the number of cut
edges or the boundary size as well as balances the partition sizes. Hence, the final
solution quality mainly depends on this heuristic. Implementations are usually
based on the Kerninghan-Lin (KL) heuristic [6], while the local refinement in
Party is derived from theoretical analysis with Helpful-Sets (HS) [7].

To address the load balancing problem during parallel computations, dis-
tributed versions of the libraries Metis and Jostle have been developed. Both of
them apply about the same multilevel techniques as their single processor ver-
sion, but special attention must be paid to the local improvement heuristic due
to its sequential nature. As an example, a coloring of the graph’s vertices assures
in the parallel library ParMetis [8] that during the KL refinement no two neigh-
boring vertices change their partition simultaneously and therefore destroy the
consistency of the data structures. In contrast to Metis, where vertices stay on
their partition until a new distribution has been computed, the parallel version
of Jostle [9] maps each sub-domain to a single processor and vertices which mi-
grate do so already during the computation of the repartitioning. Usually, Metis
is very fast while Jostle takes longer but often computes better solutions. The
HS heuristic in Party exchanges sets between partitions that sometimes contain
a large number of vertices. Hence, even more overhead would be necessary to
ensure data consistency in a parallel implementation.

2

While the global edge-cut is the classical metric that most graph partition-
ers optimize, it is not necessarily the best metric to follow because it does not
model the real communication and runtime costs of FEM computations as de-
scribed in [10]. Hence, different metrics have been implemented inside the local
refinement process modeling the real objectives more closely. In [11], the costs
emerging from vertex transfers is taken into consideration while Metis is also
capable of minimizing the number of boundary vertices.

A completely different approach is undertaken in [12]. Since the convergence
rate of the CGBI domain decomposition solver in the PadFEM environment
depends on the geometric shape of a partition, the integrated load balancer iter-
atively decreases the aspect ratios by applying a bubble like algorithm. Although
different to the multilevel-schemes, this approach also contains a strictly sequen-
tial section and suffers from some other difficulties that are described in [13].
However, the latter paper introduces an implementation that eliminates most
of these problems by replacing the sequential growing mechanism of the bubble
framework by a few iterations of the first order diffusion scheme (FOS) [14].
This leads to a graph partitioning algorithm that contains a high degree of par-
allelism and produces well shaped partitions. Unfortunately, it is unclear how
many FOS iterations must be performed. This question is overcome in [15] intro-
ducing FOS/A. This diffusion scheme does not balance the load but converges
to a state with a load distribution similar to the situation after a few FOS iter-
ations. Its drawback is the long execution time, and its fine-grain parallelism is
hard to exploit on today’s processors.

In this paper we present the (re-)partitioning heuristic MF(φ), which is based
on the same framework as the implementations from [13] and [15]. However, in
contrast to the latter that distribute the vertices of a graph according to their
load, our approach is based on the flow over the edges. The main advantage
is that the computation of a ‖ · ‖2-minimal balancing flow, which is equivalent
to solving a system of linear equations, has been studied very well and that a
variety of methods addressing it exist. Among them are faster diffusion schemes
like the second order scheme (SOS) [14] as well as algorithms that require more
global knowledge like CG solvers. Thus, one can choose the most appropriate
implementation according to the underlying hardware. The remaining part of
the paper is organized as follows. The next section briefly recaptures the bubble
framework from [12] and explains the main idea. In Sec. 3 we propose a new
growing mechanism which we integrate into this framework in Sec. 4. Afterwards,
we present our experiments in Sec. 5 before we give a short conclusion.

2 The Bubble Framework

The idea of the bubble framework is to start with an initial, often randomly
chosen vertex (seed) per partition, and all sub-domains are then grown simulta-
neously in a breadth-first manner. Colliding parts form a common border and
keep on growing along this border – “just like soap bubbles”. After the whole
mesh has been covered and all vertices of the graph have been assigned this
way, each component computes its new center that acts as the seed in the next
iteration. This is usually repeated until a stable state, where the movement of
all seeds is small enough, is reached. This procedure is based on the observation

3

Fig. 1. The three operations of the learning bubble framework: Init: Determination of
initial seeds for each partition (left). Grow: Growing around the seeds (middle). Move:
Movement of the seeds to the partition centers (right).

that within “perfect” bubbles, the center and the seed vertex coincide. Figure 1
illustrates the three main operations.

The growing mechanisms from [13] and [15] are based on diffusion. The main
idea behind applying it in a graph partitioning heuristic is the fact that load
primarily diffuses into densely connected regions of the graph rather than into
sparsely connected ones. Following this observation one can expect to identify
seeds inside such regions and therefore small partition boundaries in less dense
areas. Additionally, since the load spreads around a seed vertex, the partitions
should be connected and well shaped.

The remaining part of this paper is based on the following thought: If load
diffuses faster into dedicated regions, then the flow over the edges directing
there must be higher than the flow over edges pointing elsewhere. Hence, a
‖ · ‖2-minimal flow should provide similar information as a load distribution
computed by the FOS/A scheme from [15], with the advantage that a variety of
faster methods are known to compute it.

3 A Growing Mechanism based on Linear Equations

In this section we propose a new growing mechanism that is based on a ‖ · ‖2-
minimal flow in a network. This network Gφ is composed of the dual graph G
corresponding to the mesh, and an extra vertex x that is connected with every
other vertex of G. All edges e ∈ E of G are assigned a weight of we = 1 while
the weight of the edges incident to x are set to some constant φ > 0. Now,
independently for each partition p, we place a total of |V | load equally on p’s
vertices and compute a ‖ · ‖2-minimal flow fp over the edges that transports
all load to the extra vertex x. Since we minimize fp according to the ‖ · ‖2-
norm, the load will not be sent directly to x, but also makes some ’detours’ via
other vertices in G. According to the idea mentioned in the last section, the flow
thereby prefers densely connected regions of the graph. The weight constant φ
determines the spreading of the flow. If φ is large, it is cheaper to send most
load directly to x, while if φ is small, the costs of the ’detour’ into the graph
are compensated by less utilized edges incident to x that can be chosen. In the
extreme cases, if φ→∞, all load is sent directly to x, while if φ→ 0, the ‖ · ‖2-
minimal flow will converge towards the balancing flow that distributes the load
equally in the original graph G.

The assignment of the vertices to the partitions is based on the amount of
flow over the edges incident to x. We define a height function hp : V ∪ {x} → R

4

for each partition p, such that hp(v) = hp(u) + fp(u,v) ·w(u,v) ∀u ∈ adj(v). Since

fp is the ‖ · ‖2-minimal flow, this function is well defined and unique except for
a constant, which we determine by setting the height of x to hp(x) = 0. Now,
we assign each vertex to that partition with the maximal height, meaning that
the new partitioning π is defined by π(v) = p : hp(v) ≥ hq(v)∀q ∈ {1, . . . , P}. If
the maximum is not unique, we choose one of the eligible partitions arbitrarily.

Formally, let G = (V,E) be an undirected, connected graph and A ∈ {−1, 0,
+1}|V |×|E| its unweighted vertex-edge incidence matrix. A contains in each col-
umn corresponding to edge e = (u, v) the entries −1 and +1 in the rows u and v,
and 0 elsewhere. The unweighted Laplacian L ∈ Z|V |×|V | is defined as L = AAT.
If we extend G by an additional vertex x and connect it to every other vertex with
an edge of weight φ, we obtain the graph Gφ = (V ∪ {x}, E ∪ {{v, x} : v ∈ V })
with edge weights we = 1 ∀e ∈ E and w{v,x} = φ ∀v ∈ V . The weighted Lapla-

cian matrix Lφ ∈ R|V |+1×|V |+1 of Gφ is defined as Lφ = AφWAφ
T, where Aφ

denotes the unweighted vertex-edge incidence matrix of Gφ, and the entries of

the diagonal matrix W ∈ R|E|+|V |×|E|+|V | are set to (wee) = we. Hence, with I
being the identity, Lφ can be written as:

Lφ =



 L + φI


−φ

...

−φ
−φ · · · −φ |V | · φ

 (1)

Our goal is to compute a ‖ · ‖2-minimal flow fp from the vertices of the

partition p to the additional vertex x. By setting the vectors sp, t ∈ R|V |+1 to

(spv) =

{
|V |/|{v : πp(v) = p}| : π(v) = p

0 : otherwise
(tv) =

{
|V | : v = x

0 : otherwise

we place |V | load equally on p’s vertices and the corresponding ’negative’ load
on x. Then, we have to solve the quadratic minimization problem

min!
1

2
fp

TW−1fp with respect toAφfp = sp − t . (2)

Due to [16], we know that we can find the optimal fp for (2) by first solving the
linear equation

Lφλp = sp − t . (3)

Lφ is sparse and symmetric positive semidefinite. Since 〈sp − t, 1l〉 = 0 and the
rank of Lφ is |V |, the solution of (3) is unique except for a constant. Neverthe-
less, we now can determine the unique ‖ · ‖2-minimal flow from the computed
potential λp as

fp(u,v) = w{u,v} · (λpu − λpv) . (4)

Since we are interested in the height function hp(v), we can skip the flow com-
putation (4) and assign hp(v) = λpv − λpx. The new partitioning π can then be
determined as described above, while the new partition seed is the vertex with
the highest load according to hp.

5

00 Algorithm MF(G, π, φ, l, i)
01 in each loop l
02 if π is undefined
03 π = determine-seeds(G) /* initial seeds */
04 else
05 parallel for each partition p /* contraction */
06 solve Lφλp = sp − t and compute hp

08 π(v) =

{
p :hp(v) ≥ hp(u)∀u ∈ V
−1 : otherwise

09 parallel for each partition p /* consolidation */
10 solve Lφλp = sp − t and compute hp
12 π(v) = p : hp(v) ≥ hq(v)∀q ∈ {1, . . . , P}
13 in each iteration i
14 parallel for each partition p /* consolidation with ... */
15 solve Lφλp = sp − t and compute hp
17 π(v) = p : hp(v) ≥ hq(v)∀q ∈ {1, . . . , P}
18 scale-balance(π) /* ... scale balancing */
19 greedy-balance(π) /* greedy balancing */
20 return smooth(π) /* smoothing */

Fig. 2. Sketch of the MF(φ) heuristic.

4 The MF(φ) Heuristic

In this section we describe the integration of the proposed growing mechanism
into the bubble framework. The resulting algorithm is sketched in Fig. 2. It
can either be invoked with or without a valid partitioning π. In the latter case,
we determine initial seeds randomly (line 3). Otherwise, we contract the given
partitions (lines 5-8) applying the mechanism proposed in Sec. 3. Note that in ei-
ther case π only contains a single vertex for each partition when entering line 9.
Following the bubble framework, we then grow the partitions from the seeds.
However, if we determined single seeds right after the last contraction, these
would be the same ones as before and no movement would occur. Hence, it is
necessary to apply at least one consolidation (lines 9-12) between two contrac-
tions. In contrast to a contraction that determines a single vertex per partition
(line 8), a consolidation results in a partitioning (lines 12/17). In the following
step, the load is placed equally on the vertices of the whole partition, which
causes it to move into denser regions of the graph as mentioned before.

To further enhance the solution quality, additional consolidations can be
performed (lines 13-18). Furthermore, these are used for balancing by scaling
the height functions hp. If a partition is too small, hp is multiplied by a constant
bp > 1, while if it is too large, a constant bp < 1 is chosen. Although the choice
of b is limited because no partition must become empty, this approach can find
almost balanced solutions in most cases. To ensure a certain size, we perform a
greedy balancing operation (line 19), where we compute a ‖ · ‖2-minimal flow in
the partition graph and move the vertices that cause the least error according to
the height functions. The whole learning process is then repeated several times.
Before returning the partitioning π, we migrate vertices if the number of their
adjacent vertices in another partition is larger than the number in the current

6

partition. This compensates numerical imprecisions that occur during the flow
computation and further smoothes the partition boundaries. However, if the
number of vertices in a partition is small compared to its boundary length, it
might also lead to a higher imbalance.

An interesting point is the lack of an explicit objective function. Except for
the balancing, the MF(φ) heuristic does not contain any directives what metric
to minimize. This is also the case for the algorithms from [13, 15].

The run-time of MF(φ) greatly depends on the linear equation solver. Cur-
rently, we apply a basic CG implementation. However, due to the special struc-
ture of Lφ, several optimizations are possible. As indicated in lines 5, 9 and 14,
all P linear systems can be solved independently. Hence, even if we apply solvers
other than diffusive ones which require more global knowledge, a large amount
of parallelism remains.

5 Experiments

In this section we describe our experiments with the new heuristic MF(φ) and
compare its solutions to those of the parallel versions of the state-of-the-art
graph (re-)partitioning libraries Metis and Jostle. Furthermore, we include the
results of the Party/DB library from [15]. The benchmark instances are created
as described in [17] and are available via [18]. Each benchmark consists of 101
frames, each containing a graph of around 15000 vertices. Though the instances
are quite small, important observations can already be made. Due to space lim-
itations we only present the data of a single benchmark here. The results of the
omitted experiments are similar, however.

The libraries Metis (version 3.1) and Jostle (version 3.0) both offer a large
number of options. For the presented evaluation, we chose the recommended
values from their manual, respectively, and left the remaining parameters at
their default. This means that Metis operates with an itr value of 1000.0 and
Jostle uses the options threshold = 20, matching = local, imbalance = 3. Note
that Jostle seems to ignore the imbalance setting and computes totally balanced
partitions, except for the initial solution where the sequential versions of the
libraries are applied. The MF(φ) heuristic is invoked with φ = 0.01 and performs
2 loops with 4 iterations, respectively.

We measure the partitioning quality according to a number of metrics, be-
cause it is known that the edge-cut does not necessarily model the real costs [10].
Depending on the application, some of the metrics described in the following
might be more important than others. External edges: Number of edges that
are incident to exactly one vertex of partition p. Boundary vertices: Number of
vertices of partition p that are adjacent to at least one vertex from a different
partition. Send volume: The amount of outgoing information is the sum of the
adjacent partitions different to p that each vertex residing inside partition p has.
Receive volume: The amount of incoming information is the number of vertices of
partitions different to p adjacent to at least one vertex of partition p. Diameter:
The longest shortest path between two vertices of the same partition. Infinity,
if the partition is not connected. Outgoing migration: Number of vertices that
have to be migrated to a different partition. Incoming migration: Number of
vertices that have to be migrated from a different partition. Furthermore, the

7

Fig. 3. Partitionings in frame 50 of the ’ring’ benchmark computed by Metis (left),
Jostle (middle) and the MF(φ) heuristic (right).

quality of a partitioning depends on its balance. A less balanced solution allows
other metrics to improve further and makes comparisons less meaningful. Please
note that we have omitted the run-times since our prototypic implementation is
some magnitudes slower than its competitors.

In addition, for the listed metrics we consider three different norms. Given
the values x1, . . . , xP , the norms are defined as follows: ‖X‖1 := x1 + . . .+ xP ,

‖X‖2 := (x21+ · · ·+x2P)1/2 and ‖X‖∞ := maxi=1..P xi. The ‖ · ‖1-norm (summa-
tion norm) is a global norm. The global edge-cut belongs into this category (it
equals half the external edges in this norm). In contrast to the ‖ · ‖1-norm, the
‖ · ‖∞-norm (maximum norm) is a local norm only considering the worst value.
This norm is favorable if synchronized processes are involved. The ‖ · ‖2-norm
(Euclidean norm) lays in between the ‖ · ‖1 and the ‖ · ‖∞-norm and reflects the
global situation as well as local peaks, but is omitted here.

Figure 3 displays a single frame from the ’ring’ benchmark. In this bench-
mark, a circle and the refined area around it rotate through a narrow ring. One
can see that the partitions computed by Metis have quite large fringes, while
Jostle and especially MF(φ) find smoother partition boundaries. Though the
visual display of the mesh provides a first impression of the solution quality,
the numerical data of all 101 frames listed in Fig. 4 reveals many more details.
Looking at the first row, we can see that Metis usually allows up to 3% imbal-
ance, while Jostle ignores this parameter and totally equalizes the partition sizes.
The solutions of the MF(φ) heuristic usually have an imbalance of less than 3%,
while the Party/DB library has some difficulties to maintain an equal distribu-
tion. The next three rows contain the metrics ’external edges’, ’boundary length’
and ’communication volume’. Their values are similar. The right column, dis-
playing the sum for all partitions, reveals that Metis computes the worst results.
The three other libraries find comparable solutions, while MF(φ) and Party/DB
show a slight advantage. This advantage is larger in the maximum norm given in
the right column. One can see that the boundaries are more equally distributed
between all partitions when using the latter heuristics. Row 5 displays the par-
tition ’diameter’. Missing values indicate unconnected partitions, what can be
observed several times for Metis and Jostle. MF(φ) cannot reach the results from
Part/DB in the ‖ · ‖1-norm, but this might result from the different imbalance
values. Concerning the maximum norm, there is no difference between all li-

8

braries in this benchmark. The last row shows the ’migration’. Metis migrates
most, and from other experiments we know that it either transfers very few or
very many vertices. The values for the other libraries are smaller, and MF(φ)
and Party/DB behave more constant than Jostle, what we could also confirm in
other benchmarks. Concerning the parameters of MF(φ), our experiments show
that the number of loops/iterations is a trade-off between the first four met-
rics ’external edges’, ’boundary length’, ’communication’ and ’diameter’, and
the ’migration’. A good choice of φ depends on the amount of vertices and the
number of partitions, but more theoretical analysis is needed to determine the
optimal value, which is beyond the scope of this paper.

6 Conclusion

We have presented the new graph (re-)partitioning heuristic MF(φ), which is
based on solutions of linear equations inside a learning framework. Our experi-
ments with FEM like graphs indicate that it can find comparable or even better
partitionings than state-of-the-art libraries concerning a variety of metrics, while
important additional constraints like connectivity can be fulfilled.

However, due to its longer run-time, the current implementation of MF(φ)
cannot compete with Metis or Jostle. Nevertheless, we think that further inves-
tigations are justified since a variety of techniques like the multilevel approach,
faster diffusion schemes, optimized CG preconditioners or multigrid solvers are
known to speed up the computations.

References

[1] G. Fox, R. Williams, and P. Messina. Parallel Computing Works! Morgan Kauf-
mann, 1994.

[2] G. Karypis and V. Kumar. MeTis: A Software Package for Partitioning Unstrc-
tured Graphs, Partitioning Meshes, [...], Version 4.0, 1998.

[3] C. Walshaw. The parallel JOSTLE library user guide: Version 3.0, 2002.
[4] S. Schamberger. Graph partitioning with the Party library: Helpful-sets in prac-

tice. In Comp. Arch. and High Perf. Comp., SBAC-PAD’04, pages 198–205, 2004.
[5] B. Hendrickson and R. Leland. A multi-level algorithm for partitioning graphs.

In Supercomputing’95, 1995.
[6] B. W. Kernighan and S. Lin. An efficient heuristic for partitioning graphs. Bell

Systems Technical Journal, 49:291–308, 1970.
[7] J. Hromkovic and B. Monien. The bisection problem for graphs of degree 4. In

Math. Found. Comp. Sci. (MFCS ’91), volume 520 of LNCS, pages 211–220, 1991.
[8] Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion schemes

for repartitioning of adaptive meshes. J. Par. Dist. Comp., 47(2):109–124, 1997.
[9] C. Walshaw and M. Cross. Parallel optimisation algorithms for multilevel mesh

partitioning. J. Parallel Computing, 26(12):1635–1660, 2000.
[10] B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor no

clothes? In Irregular’98, number 1457 in LNCS, pages 218–225, 1998.
[11] L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive unstructured

meshes. J. Par. Dist. Comp., 52(2):150–177, 1998.
[12] R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw. Shape-opt. mesh part.

and load bal. for par. adap. FEM. J. Parallel Computing, 26:1555–1581, 2000.

9

 1

 1.02

 1.04

 1.06

 1.08

 1.1

ba
la

nc
e

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

ex
. e

dg
es

 (m
ax

)

 400

 450

 500

 550

 600

 650

 700

ex
. e

dg
es

 (s
um

)

 50

 55

 60

 65

 70

 75

 80

 85

 90

bo
un

da
ry

 (m
ax

)

 400

 450

 500

 550

 600

 650

bo
un

da
ry

 (s
um

)

 100

 110

 120

 130

 140

 150

 160

 170

 180

co
m

m
un

ic
at

io
n

(m
ax

)

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

co
m

m
un

ic
at

io
n

(s
um

)

 100

 105

 110

 115

 120

 125

 130

 135

 140

 145

di
am

et
er

 (m
ax

)

 800

 820

 840

 860

 880

 900

 920

 940

 960

di
am

et
er

 (s
um

)

 600

 800

 1000

 1200

 1400

 1600

 1800

m
ig

ra
tio

n
(m

ax
)

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

m
ig

ra
tio

n
(s

um
)

Fig. 4. Numerical results of the ’ring’ benchmark for Metis (blue triangles), Jostle (red
squares), Party/DB (green pentagons) and MF(φ) (black circles).

[13] S. Schamberger. On partitioning FEM graphs using diffusion. In HPGC, Intern.
Parallel and Distributed Processing Symposium, IPDPS’04, page 277 (CD), 2004.

[14] R. Elsässer, B. Monien, and R. Preis. Diffusion schemes for load balancing on
heterogeneous networks. Theory of Computing Systems, 35:305–320, 2002.

[15] S. Schamberger. A shape optimizing load distribution heuristic for parallel adap-
tive FEM computations. Accepted at PACT’05.

[16] Y. F. Hu and R. F. Blake. An improved diffusion algorithm for dynamic load
balancing. Parallel Computing, 25(4):417–444, 1999.

[17] O. Marquardt and S. Schamberger. Open benchmarks for load balancing heuristics
in parallel adaptive finite element computations. Accepted at PDPTA’05.

[18] S. Schamberger. http://www.upb.de/cs/schaum/benchmark.html.

10

