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1 Kryptografische Hashverfahren

1.1 Einführung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
• Vertraulichkeit

– Geheimhaltung
– Anonymität (z.B. Mobiltelefon)
– Unbeobachtbarkeit (von Transaktionen)

• Integrität
– von Nachrichten und Daten

• Zurechenbarkeit
– Authentikation
– Unabstreitbarkeit
– Identifizierung

• Verfügbarkeit
– von Daten
– von Rechenressourcen
– von Informationsdienstleistungen

Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der In-
tegrität von Nachrichten oder generell von digitalisierten Daten. In der Tat nehmen
kryptografische Hashverfahren beim Schutz der Datenintegrität eine ähnlich herausragen-
de Stellung ein wie sie Kryptosystemen bei der Wahrung der Vertraulichkeit zukommt.
Daneben finden kryptografische Hashfunktionen aber auch vielfach als Bausteine von
komplexeren Systemen Verwendung. Wie wir noch sehen werden, sind kryptografische
Hashfunktionen etwa bei der Bildung von digitalen Signaturen sehr nützlich. Auf weitere
Anwendungsmöglichkeiten werden wir später eingehen.
Den überaus meisten Anwendungen von kryptografischen Hashfunktionen h liegt die
Idee zugrunde, dass sie zu einem vorgegebenen Text x eine zwar kompakte aber dennoch
repräsentative Darstellung h(x) liefern, die unter praktischen Gesichtspunkten als eine
eindeutige Identifikationsnummer von x fungieren kann. Die Berechnungsvorschrift für
h muss daher gewissermaßen darauf abzielen, „charakteristische Merkmale“ von x in
den Hashwert h(x) einfließen zu lassen. Da der Fingerabdruck eines Menschen ganz
ähnliche Eigenschaften besitzt (was ihn für Kriminalisten bekanntlich so wertvoll macht),
wird der Hashwert h(x) auch oft als ein digitaler Fingerabdruck von x bezeichnet.
Gebräuchlich sind auch die Bezeichnungen kryptografische Prüfsumme oder message
digest (englische Bezeichnung für „Nachrichtenextrakt“).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.
• „Nachrichtenauthentikation“ (message authentication)
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Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

– Wie lässt sich sicherstellen, dass eine Nachricht (oder eine Datei) während einer
(räumlichen oder auch zeitlichen) Übertragung nicht verändert wurde?

– Wie lässt sich der Urheber (oder Absender) einer Nachricht zweifelsfrei feststellen?
• „Teilnehmerauthentikation“ (entity authentication, identification)

– Wie kann sich eine Person (oder ein Gerät) anderen gegenüber zweifelsfrei auswei-
sen?

Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhängigkeit vom Eingabetext berechnet wird oder zusätzlich von einem
symmetrischen Schlüssel abhängt (siehe Abbildung 1.1).
Kryptografische Hashfunktionen, bei deren Berechnung keine Schlüssel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kürzel MDC auch als eine Abkürzung für Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integrität eines Datensatzes x sicherzustellen, der über einen ungesicherten
Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren Webserver
abgelegt) wird, kann man wie folgt verfahren. Man sendet den MDC-Hashwert
von x über einen authentisierten Kanal und prüft, ob der Datensatz nach der
Übertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schlüsseln finden hauptsächlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schlüsseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschließlich digitale Unterschriften gebildet werden. Wie sich Nachrichten
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mit einem MAC authentisieren lassen, ist in Abbildung 1.3 dargestellt. Man beachte,
dass nun auch der Hashwert über den unsicheren Kanal gesendet wird.

Möchte Bob eine Nachricht x an Alice übermitteln, so berechnet er den zuge-
hörigen MAC-Hashwert y = hk(x) und fügt diesen der Nachricht x hinzu. Alice
überprüft die Echtheit der empfangenen Nachricht (x′, y′), indem sie ihrerseits
den zu x′ gehörigen Hashwert hk(x′) berechnet und das Ergebnis mit y′ ver-
gleicht. Der geheime Authentikationsschlüssel k muss hierbei genau wie bei einem
symmetrischen Kryptosystem über einen gesicherten Kanal vereinbart werden.

Indem Bob seine Nachricht x um den Hashwert y = hk(x) ergänzt, gibt er Alice nicht
nur die Möglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu
überprüfen. Die Benutzung des geheimen Schlüssels k erlaubt zudem eine Überprüfung
der Herkunft der Nachricht.

1.2 Schlüssellose Hashfunktionen (MDCs)

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h öffentlich bekannt ist, d.h. h ist eine
schlüssellose Hashfunktion (MDC).
Sei h : X → Y eine Hashfunktion. Ein Paar (x, y) ∈ X × Y heißt gültig für h, falls
h(x) = y ist. Ein Paar (x, x′) mit h(x) = h(x′) heißt Kollisionspaar für h. Die Anzahl
‖Y ‖ der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, ‖X‖ = n,
so heißt h eine (n,m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n ≥ 2m
ist, und wir nennen h dann eine Kompressionsfunktion (compression function).
Da h öffentlich bekannt ist, ist es sehr einfach, für einen vorgegebenen Text x ein gültiges
Paar (x, y) zu erzeugen. Für bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht möglich ist, falls der Hashwert y vorgegeben wird.

Problem P1: Bestimmung eines Urbilds
Gegeben: Eine Hashfkt. h : X → Y und ein Hashwert y ∈ Y .
Gesucht: Ein Text x ∈ X mit h(x) = y.

Falls es einen immensen Aufwand erfordert, für einen vorgegebenen Hashwert y einen Text
x mit h(x) = y zu finden, so heißt h Einweg-Hashfunktion (one-way hash function bzw.

x x′

y y
?= h(x′)

h h

echt

falsch

Ungesicherter Kanal

Authentisierter Kanal

Abbildung 1.2: Einsatz eines MDC h zur Überprüfung der Integrität eines Datensatzes
x.
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x x′

y hk(x′)
?= y′

hk hk

echt

falsch

Ungesicherter

Kanal

Gesicherter Kanal

Bob Alicek

k: Symmetrischer Authentikationsschlüssel
y = hk(x): MAC-Hashwert für x unter k

Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

preimage resistant hash function). Diese Eigenschaft wird beispielsweise benötigt, wenn
die Hashwerte der Benutzerpasswörter in einer öffentlich zugänglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.

Problem P2: Bestimmung eines zweiten Urbilds
Gegeben: Eine Hashfkt. h : X → Y und ein Text x ∈ X.
Gesucht: Ein Text x′ ∈ X \ {x} mit h(x′) = h(x).

Falls sich für einen vorgegebenen Text x nur mit großem Aufwand ein weiterer Text x′ 6= x
mit dem gleichen Hashwert h(x′) = h(x) finden lässt, heißt h schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benötigt. Beim Versuch, eine
digitale Signatur zu fälschen (siehe unten), sieht sich der Gegner dagegen mit folgender
Problemstellung konfrontiert.

Problem P3: Bestimmung einer Kollision
Gegeben: Eine Hashfkt. h : X → Y .
Gesucht: Texte x 6= x′ ∈ X mit h(x′) = h(x).

Falls sich dieses Problem nur mit einem immensen Aufwand lösen lässt, heißt h (stark)
kollisionsresistent (collision resistant).
Obwohl die schwache Kollisionsresistenz eine gewisse Ähnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade für diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.
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Prozedur FindPreimage(h, y, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do
3 if h(xi) = y then return(xi) else return(?)

Abbildung 1.4: Bestimmung eines Urbilds für einen Hashwert

1.2.1 Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, die Effizienz verschiedener Angriffe auf eine Hashfunktion h : X → Y
nach oben abzuschätzen. Sind X und Y vorgegeben, so können wir eine Hashfunktion
h : X → Y dadurch „konstruieren“, dass wir für jedes x ∈ X zufällig ein y ∈ Y wählen
und h(x) auf y setzen. Äquivalent hierzu ist, für h eine zufällige Funktion aus der
Klasse F (X, Y ) aller nm Funktionen von X nach Y zu wählen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = ‖X‖ eine bestimmte
Größe übersteigt. Es liefert uns aber ein theoretisches Modell für eine Hashfunktion
mit „idealen“ kryptografischen Eigenschaften. Offensichtlich besteht für den Gegner die
einzige Möglichkeit, Informationen über h zu erhalten, darin, sich für eine Reihe von
Texten die zugehörigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).
Dass eine Zufallsfunktion h gute kryptografische Eigenschaften aufweist, rührt daher,
dass der Hashwert h(x) für einen neuen Text x auch dann noch schwer vorhersagbar ist,
wenn der Gegner bereits die Hashwerte einer beliebigen Zahl von Texten kennt.

Proposition 1. Sei X0 = {x1, . . . , xk} eine beliebige Menge von k verschiedenen Texten
aus X und seien y1, . . . , yk ∈ Y . Dann gilt für eine zufällig aus F (X, Y ) gewählte Funktion
h und für jedes Paar (x, y) ∈ (X −X0)× Y ,

Pr[h(x) = y |h(xi) = yi für i = 1, . . . , k] = 1/m.

Um eine obere Komplexitätsschranke für das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.4 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter q die Anzahl der Hashwertberechnungen (also
die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) wider. Der Zeitaufwand
der Berechnung ist dabei proportional zu q.

Satz 2. FindPreimage(h, y, q) gibt mit Wahrscheinlichkeit ε = 1 − (1 − 1/m)q ein
Urbild von y aus (unabhängig von der Wahl der Menge X0).

Beweis. Sei y ∈ Y fest und sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das
Ereignis “h(xi) = y”. Nach Proposition 1 sind diese Ereignisse stochastisch unabhängig
und ihre Wahrscheinlichkeit ist Pr[Ei] = 1/m (i = 1, . . . , q). Also folgt

Pr[E1 ∪ . . . ∪ Eq] = 1− Pr[E1 ∩ . . . ∩ Eq] = 1− (1− 1/m)q.
�

Der in Abbildung 1.5 dargestellte Algorithmus liefert uns eine obere Schranke für die
Komplexität des Problems, ein zweites Urbild für h(x) zu bestimmen. Die Erfolgswahr-
scheinlichkeit lässt sich vollkommen analog zum vorherigen Satz bestimmen.
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Prozedur FindSecondPreimage(h, x, q)
1 y := h(x)
2 wähle eine beliebige Menge X0 = {x1, . . . , xq−1} ⊆ X − {x}
3 for each xi ∈ X0 do
4 if h(xi) = y then return(xi)
5 return(?)

Abbildung 1.5: Bestimmung eines 2. Urbilds für einen Hashwert

Satz 3. FindSecondPreimage(h, x, q) gibt mit Wahrscheinlichkeit ε = 1−(1−1/m)q−1

ein zweites Urbild x0 6= x von y = h(x) aus.
Ist q vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen ε ≈ q/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist q ≈ m/2 zu wählen.
Geht es lediglich darum, irgendein Kollisionspaar (x, x′) aufzuspüren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.
Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer

Wahrscheinlichkeit größer 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag
(dies erscheint zwar verblüffend, wird aber durch die Praxis mehr als bestätigt).

Tatsächlich zeigt der nächste Satz, dass bei q-maligem Ziehen (mit Zurücklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

1− (m− 1)(m− 2) · · · (m− q + 1)/mq−1

eine Kugel zweimal gezogen wird. Für m = 365 und q = 23 ergibt dies einen Wert von
ungefähr 0, 507.
Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.6 dargestellten Algorithmus.
Bei einer naiven Implementierung würde zwar der Zeitaufwand für die Auswertung der if-
Bedingung quadratisch von q abhängen. Trägt man aber jeden Text x unter dem Suchwort
h(x) in eine (herkömmliche) Hashtabelle der Größe q ein, so wird der Zeitaufwand für
die Bearbeitung jedes einzelnen Textes x im wesentlichen durch die Berechnung von h(x)
bestimmt.

Satz 4. Collision(h, q) gibt mit Erfolgswahrscheinlichkeit

ε = 1− (m− 1)(m− 2) · · · (m− q + 1)
mq−1

ein Kollisionspaar (x, x′) für h aus.

Prozedur Collision(h, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X − {x}
2 for each xi ∈ X0 do yi := h(xi)
3 if ∃i 6= j : yi = yj then return(xi, xj) else return(?)

Abbildung 1.6: Bestimmung eines Kollisionspaares
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1 wähle zufällig x ∈ X
2 x′ := A(x)
3 if x′ 6= ? then return(x, x′) else return(?)

Abbildung 1.7: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

Beweis. Sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das Ereignis

“h(xi) 6∈ {h(x1, . . . , h(xi−1}.”

Dann beschreibt E1∩. . .∩Eq das Ereignis “Collision(h, q) gibt ? aus” und für i = 1, . . . , q
gilt

Pr[Ei |E1 ∩ . . . ∩ Ei−1] = m− i+ 1
m

.

Dies führt auf die Erfolgswahrscheinlichkeit

ε = 1− Pr[E1 ∩ . . . ∩ Eq]
= 1− Pr[E1]Pr[E2 |E1] · · ·Pr[Eq |E1 ∩ . . . ∩ Eq−1]

= 1−
(
m− 1
m

)(
m− 2
m

)
· · ·

(
m− q + 1

m

)
.

�

Mit 1− x ≈ e−x folgt

ε = 1−
q−1∏
i=1

(
1− i

m

)
≈ 1−

q−1∏
i=1

e
−i
m = 1− e− 1

m

∑q−1
i=1 i = 1− e−

q(q−1)
2m ≈ q2/2m.

Somit erhalten wir die Abschätzung

q ≈ cε
√
m

mit cε =
√

2ε. Für ε = 1/2 ergibt sich also q ≈
√
m. Besitzt also eine binäre Hashfunktion

h : {0, 1}n → {0, 1}m die Hashwertlänge m = 128 Bit, so müssen im ZOM q ≈ ·264 Texte
gehasht werden, um mit einer Wahrscheinlichkeit von 1/2 eine Kollision zu finden. Um
einem Geburtstagsangriff widerstehen zu können, sollte eine Hashfunktion mindestens
eine Hashwertlänge von 128 oder besser 160 Bit haben.

1.2.2 Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sein müssen.

Satz 5. Sei h : X → Y eine (n,m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
lisionspaar für h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,
reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

Beweis. Sei A ein Las-Vegas Algorithmus, der für ein zufällig aus X gewähltes x mit
Erfolgswahrscheinlichkeit ε ein zweites Urbild x′ für h liefert. Dann ist klar, dass der in
Abbildung 1.7 dargestellte Las-Vegas Algorithmus mit Wahrscheinlichkeit ε ein Kollisi-
onspaar ausgibt. �
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1 wähle zufällig x ∈ X
2 y := h(x)
3 x′ := A(y)
4 if x 6= x′ then return(x, x′) else return(?)

Abbildung 1.8: Reduktion des Kollisionsproblems auf das Urbildproblem

Als nächstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lässt.

Satz 6. Sei h : X → Y eine (n,m)-Hashfunktion mit n ≥ 2m. Dann ist das Problem P3,
ein Kollisionspaar für h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus für h, d.h. A berechnet für jeden Hashwert y
in W (h) = {h(x) | x ∈ X} ein Urbild x mit h(x) = y. Betrachte den in Abbildung 1.8
dargestellten Las-Vegas Algorithmus B.
Sei C = {h−1(y) | y ∈ Y }. Dann hat B eine Erfolgswahrscheinlichkeit von

∑
C∈C

‖C‖
‖X‖

· ‖C‖ − 1
‖C‖

= 1
n

∑
C∈C

(‖C‖ − 1) = (n−m)/n ≥ 1
2 .

�

1.2.3 Iterierte Hashfunktionen

In diesem Abschnitt beschäftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h : {0, 1}m+t → {0, 1}m

eine kollisionsresistente Hashfunktion

ĥ : {0, 1}∗ → {0, 1}l

konstruieren lässt. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.
Preprocessing: Transformiere x ∈ {0, 1}∗ mittels einer Funktion

y : {0, 1}∗ →
⋃
r≥1
{0, 1}rt

zu einem String y(x) mit der Eigenschaft |y(x)| ≡t 0.
Processing: Sei IV ∈ {0, 1}m ein öffentlich bekannter Initialisierungsvektor und sei

y(x) = y1 · · · yr mit |yi| = t für i = 1, . . . , r. Berechne eine Folge z0, . . . , zr von Strings
zi ∈ {0, 1}m wie folgt:

zi =

IV, i = 0,
h(zi−1yi), i = 1, . . . , r.

Optionale Ausgabetransformation: Berechne den Hashwert ĥ(x) = g(zr), wobei
g : {0, 1}m → {0, 1}l eine öffentlich bekannte Funktion ist. (Meist wird für g die
Identität verwendet.)
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Um ĥ(x) zu berechnen, muss also die Kompressionsfunktion h genau r-mal aufgeru-
fen werden. Wir formulieren nun eine für Preprocessing-Funktionen wünschenswerte
Eigenschaft.

Definition 7. Eine Funktion y : {0, 1}∗ → {0, 1}∗ heißt suffixfrei, falls es keine Strings
x 6= x̃ und z in {0, 1}∗ mit y(x̃) = zy(x) gibt (d.h. kein Funktionswert y(x) ist Suffix
eines Funktionswertes y(x̃) an einer Stelle x̃ 6= x).

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist.

Satz 8. Falls die Preprocessing-Funktion y suffixfrei und die Ausgabetransformation g
injektiv ist, so ist mit h auch ĥ kollisionsresistent.

Beweis. Angenommen, es gelingt, ein Kollisionspaar x, x̃ für ĥ mit ĥ(x) = ĥ(x̃) zu finden.
Sei

y(x) = y1y2 . . . yk−1yk und y(x̃) = ỹ1ỹ2 . . . ỹl−1ỹl mit k ≤ l.

Da y suffixfrei ist, muss ein Index i ∈ {1, . . . , k} mit yi 6= ỹl−k+i existieren. Weiter seien
zi (i = 0, . . . , k) und z̃j (j = 0, . . . , l) die in der Processing-Phase berechneten Hashwerte.
Da g injektiv ist, muss mit g(zk) = ĥ(x) = ĥ(x̃) = g(z̃l) auch zk = z̃l gelten. Sei imax
der größte Index i ∈ {1, . . . , k} mit zi−1yi 6= z̃l−k+i−1ỹl−k+i. Dann bilden zimax−1yimax und
z̃l−k+imax−1ỹl−k+imax wegen

h(zimax−1yimax) = zimax = z̃l−k+imax = h(z̃l−k+imax−1ỹl−k+imax)

ein Kollisionspaar für h. �

1.2.4 Die Merkle-Damgard-Konstruktion

Merkle und Damgard schlugen 1989 folgende konkrete Realisierung ihrer Konstruktion
vor. Als Initialisierungsvektors wird der Nullvektor IV = 0m benutzt, die optionale
Ausgabetransformation entfällt, und für y(x) wird im Fall t ≥ 2 die folgende Funktion
verwendet. (Den Fall t = 1 betrachten wir später.)
Für x = ε sei y(x) = 0t und für x ∈ {0, 1}n mit n > 0 sei k = d n

t−1e und x =
x1x2 . . . xk−1xk mit |x1| = |x2| = . . . = |xk−1| = t − 1 sowie |xk| = t − 1 − d, wobei
0 ≤ d < t − 1. Im Fall k = 1 ist dann y(x) = 0x0d1bint−1(d) und für k > 1 ist
y(x) = y1 · · · yk+1, wobei

yi =



0x1, i = 1,
1xi, 2 ≤ i < k,

1xk0d, i = k,

1bint−1(d), i = k + 1,

(1.1)

und bint−1(d) die durch führende Nullen auf die Länge t− 1 aufgefüllte Binärdarstellung
von d ist.

Satz 9. Die durch (1.1) definierte Preprocessing-Funktion y ist suffixfrei.

Beweis. Seien x 6= x̃ zwei Texte mit |x| ≤ |x̃|. Wir müssen zeigen, dass y(x) = y1y2 . . . yk+1
kein Suffix von y(x̃) = ỹ1ỹ2 . . . ỹl+1 ist. Im Fall x = ε ist dies klar. Für x 6= ε machen wir
folgende Fallunterscheidung.



10 1 Kryptografische Hashverfahren

1. Fall: |x| 6≡t−1 |x̃|. Dann folgt d 6= d̃ und somit yk+1 6= ỹl+1.
2. Fall: |x| = |x̃|. In diesem Fall ist k = l. Wegen x 6= x̃ existiert ein Index i ∈
{1, . . . , k} mit xi 6= x̃i. Dies impliziert yi 6= ỹi, also ist y(x) kein Suffix von y(x̃).

3. Fall: |x| 6= |x̃| und |x| ≡t−1 |x
′|. In diesem Fall ist k < l. Da y(x) mit einer Null

beginnt, aber das (l − k + 1)-te Bit von y(x̃) eine Eins ist, kann y(x) kein Suffix von
y(x̃) sein. �

Nun kommen wir zum Fall t = 1. Sei y die durch y(x) := 11f(x) definierte Funktion,
wobei f wie folgt definiert ist:

f(x1, . . . , xn) = f(x1) . . . f(x2) mit f(0) = 0 und f(1) = 01.

Dann ist leicht zu sehen, dass y suffixfrei ist. Da die Kompressionsfunktion h bei der
Berechnung von ĥ(x) im Fall t = 1 für jedes Bit von y(x) einmal aufgerufen wird, wird h
genau |y(x)| ≤ 2(n+1)-mal aufgerufen. Im Fall t > 1 werden dagegen nur k+1 = d n

t−1e+1
Aufrufe benötigt.

1.2.5 Die MD4-Hashfunktion

Die MD4-Hashfunktion (Message Digest) wurde 1990 von Rivest vorgeschlagen. Die
Bitlänge von MD4 beträgt l = 128 Bit. Bei einer Wortlänge von 32 Bit entspricht
dies 4 Wörtern. Die im Folgenden vorgestellten Hashfunktionen benutzen u.a. folgende
Operationen auf Wörtern.

Operatoren auf {0, 1}32

X ∧ Y bitweises „Und“ von X und Y
X ∨ Y bitweises „Oder“ von X und Y
X ⊕ Y bitweises „exklusives Oder“ von X und Y
¬X bitweises Komplement von X

X + Y Ganzzahl-Addition modulo 232

X → s Rechtsshift um s Stellen
X ←↩ s zirkulärer Linksshift um s Stellen

Während die Ganzzahl-Addition bei MD4 und MD5 in little endian Architektur (d.h.
ein aus 4 Bytes a3a2a1a0, 0 ≤ ai ≤ 255 zusammengesetztes Wort repräsentiert die Zahl
a0224 + a1216 + a228 + a3) ausgeführt wird, verwendet SHA-1 eine big endian Architektur
(d.h. a3a2a1a0, 0 ≤ ai ≤ 255 repräsentiert die Zahl a3224 + a2216 + a128 + a0). Der
MD4-Algorithmus benutzt die folgenden Konstanten yj, zj, sj, j = 0, . . . , 47

yj (in Hexadezimaldarstellung)
j = 0, . . . , 15 0
j = 16, . . . , 31 5a827999
j = 32, . . . , 47 6ed9eba1
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zj
j = 0, . . . , 15 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
j = 16, . . . , 31 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15
j = 32, . . . , 47 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

sj
j = 0, . . . , 15 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19
j = 16, . . . , 31 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13
j = 32, . . . , 47 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15

und folgende Funktionen fj, j = 0, . . . , 47

fj(X, Y, Z) :=


(X ∧ Y ) ∨ (¬X ∧ Z), j = 0, . . . , 15,
(X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z), j = 16, . . . , 31,
X ⊕ Y ⊕ Z, j = 32, . . . , 47.

Für MD4 konnten nach ca. 220 Hashwertberechnungen Kollisionen aufgespürt werden.
Deshalb gilt MD4 nicht mehr als kollisionsresistent.

MD4(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 (A,B,C,D) := (H1, H2, H3, H4)
8 for j := 0 to 47 do
9 (A,B,C,D) := (D, (A+ fj(B,C,D) +X[zj] + yj)←↩ sj, B, C)

10 (H1, H2, H3, H4) := (H1 + A,H2 +B,H3 + C,H4 +D)
11 output H1H2H3H4

1.2.6 Die MD5-Hashfunktion

Der MD5 ist eine 1991 von Rivest präsentierte verbesserte Version von MD4. Die Bitlänge
von MD5 beträgt wie bei MD4 l = 128 Bit. Bei einer Wortlänge von 32 Bit entspricht
dies 4 Wörtern. In MD5 werden teilweise andere Konstanten als in MD4 verwendet.
Zudem besitzt MD5 eine zusätzliche 4. Runde (j = 48, . . . , 63), in der die Funktion
fj(X, Y, Z) = Y ⊕ (X ∨ ¬Z) verwendet wird. Außerdem wurde die in Runde 2 von MD4
verwendete Funktion durch fj(X, Y, Z) := (X ∧ Z) ∨ (Y ∧ ¬Z), j = 16 . . . 31, ersetzt.
Die y-Konstanten sind definiert als yj := die ersten 32 Bit der Binärdarstellung von
abs(sin(j + 1)), 0 ≤ j ≤ 63, und für zj und sj werden folgende Konstanten benutzt.
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zj
j = 0, . . . , 15 zj = j : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
j = 16, . . . , 31 zj = (5j + 1) mod 16 : 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12
j = 32, . . . , 47 zj = (3j + 5) mod 16 : 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2
j = 48, . . . , 63 zj = 7j mod 16 : 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9

sj
j = 0, . . . , 15 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22
j = 16, . . . , 31 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20
j = 32, . . . , 47 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23
j = 48, . . . , 63 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21

Für MD5 konnten in 2004 ebenfalls Kollisionspaare gefunden werden (für die Kompressi-
onsfunktion von MD5 gelang dies bereits 1996).

MD5(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 (A,B,C,D) := (H1, H2, H3, H4)
8 for j := 0 to 63 do
9 (A,B,C,D) := (D,B + (A+ fj(B,C,D) +X[zj] + yj)←↩ sj, B, C)

10 (H1, H2, H3, H4) := (H1 + A,H2 +B,H3 + C,H4 +D)
11 output H1H2H3H4

1.2.7 Die SHA-1-Hashfunktion

Der Secure Hash Algorithm (SHA-1) ist eine Weiterentwicklung des MD4 bzw. MD5
Algorithmus. Er gilt in den USA als Standard und ist Bestandteil des DSS (Digital
Signature Standard). Die Bitlänge von SHA-1 beträgt l = 160 Bit. Bei einer Wortlänge
von 32 Bit entspricht dies 5 Wörtern. SHA-1 unterscheidet sich nur geringfügig von
der SHA-0 Hashfunktion, in der eine Schwachstelle dazu führt, dass nach Berechnung
von ca. 261 Hashwerten ein Kollisionspaar gefunden werden kann (obwohl bei einem
Geburtstagsangriff auf Grund der Hashwertlänge von 160 Bit ca. 280 Berechnungen
erforderlich sein müssten). Diese potentielle Schwäche von SHA-0 wurde im SHA-1
dadurch entfernt, dass SHA-1 in Zeile 8 einen zirkulären Shift um eine Bitstelle ausführt.
Der SHA-1-Algorithmus benutzt die folgenden Konstanten Kj, j = 0, . . . , 79

Kj (in Hexadezimaldarstellung)
j = 0, . . . , 19 5a827999
j = 20, . . . , 39 6ed9eba1
j = 40, . . . , 59 8f1bbcdc
j = 60, . . . , 79 ca62c1d6
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und folgende Funktionen fj, j = 0, . . . , 79

fj(X, Y, Z) :=



(X ∧ Y ) ∨ (¬X ∧ Z), j = 0, . . . , 19,
X ⊕ Y ⊕ Z, j = 20, . . . , 39,
(X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z), j = 40, . . . , 59,
X ⊕ Y ⊕ Z, j = 60, . . . , 79.

SHA-1(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H0, H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476, c3d2e1f0)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 for t := 16 to 79 do
8 X[t] := (X[t− 3]⊕X[t− 8]⊕X[t− 14]⊕X[t− 16])←↩ 1
9 (A,B,C,D,E) := (H0, H1, H2, H3, H4)

10 for j := 0 to 79 do
11 temp := (A←↩ 5) + fj(B,C,D) + E +X[j] +Kj

12 (A,B,C,D,E) := (temp,A,B ←↩ 30, C,D)
13 (H0, H1, H2, H3, H4) := (H0 + A,H1 +B,H2 + C,H3 +D,H4 + E)
14 output H1H2H3H4

1.2.8 Die SHA-2-Familie

Im Jahr 2001 veröffentlichte NIST 4 weitere Hashfunktionen der SHA-Familie: SHA-224,
SHA-256, SHA-384, and SHA-512. Diese Funktionen werden auch als SHA-2 Hashfunk-
tionen bezeichnet. In 2004 kam noch SHA-224 als fünfte Variante hinzu.
SHA-256 und SHA-512 haben denselben Aufbau, unterscheiden sich aber in erster Linie
in der benutzten Wortlänge: 32 Bit bei SHA-256 und 64 Bit bei SHA-512. Zudem werden
unterschiedliche Shift- und Summationskonstanten verwendet und auch die Rundenzahlen
differieren. SHA-224 und SHA-384 sind reduzierte Varianten von SHA-256 und SHA-
512. Der SHA-256-Algorithmus benutzt die folgenden Konstanten Kj, j = 0, . . . , 63 (in
Hexadezimaldarstellung).

428a2f98, 71374491, b5c0fbcf, e9b5dba5, 3956c25b, 59f111f1, 923f82a4, ab1c5ed5,
d807aa98, 12835b01, 243185be, 550c7dc3, 72be5d74, 80deb1fe, 9bdc06a7, c19bf174,
e49b69c1, efbe4786, 0fc19dc6, 240ca1cc, 2de92c6f, 4a7484aa, 5cb0a9dc, 76f988da,
983e5152, a831c66d, b00327c8, bf597fc7, c6e00bf3, d5a79147, 06ca6351, 14292967,
27b70a85, 2e1b2138, 4d2c6dfc, 53380d13, 650a7354, 766a0abb, 81c2c92e, 92722c85,
a2bfe8a1, a81a664b, c24b8b70, c76c51a3, d192e819, d6990624, f40e3585, 106aa070,
19a4c116, 1e376c08, 2748774c, 34b0bcb5, 391c0cb3, 4ed8aa4a, 5b9cca4f, 682e6ff3,
748f82ee, 78a5636f, 84c87814, 8cc70208, 90befffa, a4506ceb, bef9a3f7, c67178f2

Dies sind jeweils die ersten 32 Bit der binären Nachkommastellen der dritten Wurzeln
der ersten 64 Primzahlen 2, . . . , 311. SHA-256 arbeitet wie folgt.
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SHA-256(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H0, H1, H2, H3, H4, H5, H6, H7) := (6a09e667, bb67ae85, 3c6ef372, a54ff53a,
4 510e527f, 9b05688c, 1f83d9ab, 5be0cd19)
5 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
6 for i := 1 to r do
7 sei Mi = X[0] · · ·X[15]
8 for t := 16 to 63 do
9 s0 := (X[t− 15] ↪→ 7)⊕ (X[t− 15] ↪→ 18)⊕ (X[t− 15]→ 3)

10 s1 := (X[t− 2] ↪→ 17)⊕ (X[t− 2] ↪→ 19)⊕ (X[t− 2]→ 10)
11 X[t] := X[t− 16] + s0 +X[t− 7] + s1
12 (A,B,C,D,E, F,G,H) := (H0, H1, H2, H3, H4, H5, H6, H7)
13 for j := 0 to 63 do
14 s0 := (a ↪→ 2)⊕ (a ↪→ 13)⊕ (a ↪→ 22)
15 maj := (a ∧ b)⊕ (a ∧ c)⊕ (b ∧ c)
16 t2 := s0 +maj
17 s1 := (e ↪→ 6)⊕ (e ↪→ 11)⊕ (e ↪→ 25)
18 ch := (e ∧ f)⊕ ((note) ∧ g)
19 t1 := h+ s1 + ch+ k[i] +X[i]
20 (A,B,C,D,E, F,G,H) := (t1 + t2, A,B,C,D + t1, E, F,G)
21 (H0, H1, H2, H3, H4, H5, H6, H7)
22 := (H0 + A,H1 +B,H2 + C,H3 +D,H4 + E,H5 + F,H6 +G,H7 +H)
23 output H0H1H2H3H4H5H6H7

Die Initialwerte von H0, . . . , H7 in den Zeilen 3 und 4 sind jeweils die ersten 32 Bit der
binären Nachkommastellen der Wurzeln der Primzahlen 2, 3, 5, 7, 11, 13, 17, 19.

1.2.9 Kryptoanalyse von Hashfunktionen

Bereits 1991 wurden von Den Boer und Bosselaers Schwächen im MD4 aufgedeckt. Im
August 2004 erschien ein Bericht [1] mit einer Anleitung, wie sich Kollisionen für MD4
mittels “hand calculation” finden lassen.
In 1993, fanden den Boer und Bosselaers einen Weg, so genannte “Pseudo-Kollisionen” für
die MD5 Kompressionsfunktion zu generieren. In 1996, fand Dobbertin ein Kollisionspaar
für die MD5 Kompressionsfunktion.
Im August 2004 wurden schließlich Kollisionen für MD5 von Xiaoyun Wang, Dengguo
Feng, Xuejia Lai and Hongbo Yu berechnet. Der benötigte Aufwand wurde mit ca. 1
Stunde auf einem IBM p690 Cluster abgeschätzt.
Im März 2005 veröffentlichten Arjen Lenstra, Xiaoyun Wang, and Benne de Weger zwei
X.509 Zertifikate mit unterschiedlichen Public-keys, die auf denselben MD5-Hashwert
führten. Nur wenige Tage später beschrieb Vlastimil Klima eine Möglichkeit, Kollisionen
für MD5 innerhalb weniger Stunden auf einem Notebook zu berechnen. Mittels der so
genannten Tunneling-Methode wurde die Rechenzeit vom gleichen Autor im März 2006
auf eine Minute verkürzt.
Auf der CRYPTO 98 stellten Chabaud und Joux einen Angriff auf SHA-0 vor, der ein
Kollisionspaar mit nur 261 Hashwertberechnungen (anstelle von 280 bei einem Geburts-
tagsangriff) aufspürt.
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In 2004 fanden Biham und Chen Beinahe-Kollisionen für den SHA-0, bei denen sich die
Hashwerte nur an 18 von den 160 Bitpositionen unterschieden. Zudem legten sie volle
Kollisionen für den auf 62 Runden reduzierten SHA-0 Algorithmus vor.
Schließlich wurde im August 2004 die Berechnung einer Kollision für den vollen 80-Runden
SHA-0 Algorithmus von Joux, Carribault, Lemuet and Jalby bekannt gegeben. Hierzu
wurden lediglich 251 Hashwerte berechnet, die ca. 80 000 Stunden CPU-Rechenzeit auf
einem 2-Prozessor 256-Itanium Supercomputer benötigten.
Im August 2004 wurde von Wang, Feng, Lai und Yu auf der CRYPTO 2004 eine
Angriffsmethode für MD5, SHA-0 und andere Hashfunktionen vorgestellt, mit der sich
die Anzahl der Hashwertberechnungen auf 240 senken lässt. Dies wurde im Februar 2005
von Xiaoyun Wang, Yiqun Lisa Yin und Hongbo Yu leicht auf 239 Hashwertberechnungen
verbessert.
Aufgrund der erfolgreichen Angriffe auf SHA-0 rieten mehrere Experten von einer weiteren
Anwendung des SHA-1 ab. Daraufhin kündigte die amerikanische Behörde NIST an,
SHA-1 in 2010 zugunsten der SHA-2 Varianten abzulösen.
In 2005 veröffentlichten Rijmen und Oswald einen Angriff, der mit weniger als 280

Hashwertberechnungen ein Kollisionspaar für den auf 53 Runden reduzierten SHA-1
Algorithmus findet. Nur wenig später kündigten Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu einen Angriff auf den vollen 80-Runden SHA-1 mit 269 Hashwertberechnungen
an. Im August 2005 erfuhr der benötigte Aufwand von Xiaoyun Wang, Andrew Yao and
Frances Yao auf der CRYPTO 2005 eine weitere Reduktion auf 263 Berechnungen.
Die besten bekannten Angriffe gegen SHA-2 brechen die von 64 auf 41 Runden reduzierte
Variante von SHA-256 und die von 80 auf 46 Runden reduzierte Variante von SHA-512.

1.3 Nachrichten-Authentikationscodes (MACs)

Definition 10. Eine Hashfamilie H = (X ,Y ,K,H) wird durch folgende Komponenten
beschrieben:
• X, eine endliche oder unendliche Menge von Texten,
• Y , endliche Menge aller möglichen Hashwerte, ‖Y ‖ ≤ ‖X‖,
• K, endlicher Schlüsselraum (key space), wobei jeder Schlüssel k ∈ K eine Hash-
funktion hk : X → Y spezifiziert.

Im folgenden werden wir die Größe ‖X‖ des Textraumes mit n, die des Hashwertbereiches
Y mit m und die des Schlüsselraumes K mit l bezeichnen. Wir nennen dann H auch eine
(n,m, l)-Hashfamilie.
Damit ein geheimer Schlüssel k für die Authentifizierung mehrerer Nachrichten benutzt
werden kann, ohne dass dies einem potentiellen Gegner zur nichtautorisierten Berechnung
von gültigen MAC-Werten verhilft, sollte folgende Bedingung erfüllt sein.

Berechnungsresistenz: Auch wenn eine Reihe von unter einem Schlüssel k generierten
Text-Hashwert-Paaren (x1, hk(x1)), . . . , (xn, hk(xn)) bekannt ist, erfordert es einen
immensen Aufwand, ohne Kenntnis von k ein weiteres Paar (x, y) mit y = hk(x) zu
finden.

Bei Verwendung einer berechnungsresistenten Hashfunktion ist es einem Gegner nicht
möglich, an Alice eine Nachricht x zu schicken, die Alice als von Bob stammend anerkennt.
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Verwendung eines MAC zur Versiegelung von Software

Mithilfe einer berechnungsresistenten Hashfunktion kann der Integritätsschutz für mehrere
Datensätze auf die Geheimhaltung eines Schlüssels k zurückgeführt werden.

Um die Datensätze x1, . . . , xn gegen unbefugt vorgenommene Veränderungen zu
schützen, legt man sie zusammen mit ihren Hashwerten y1 = hk(x1), . . . , yn =
hk(xn) auf einem unsicheren Speichermedium ab und bewahrt den geheimen
Schlüssel k an einem sicheren Ort auf. Bei einem späteren Zugriff auf einen
Datensatz xi lässt sich dessen Unversehrtheit durch einen Vergleich von yi mit
dem Ergebnis hk(xi) einer erneuten MAC-Berechnung überprüfen.

Da auf diese Weise ein wirksamer Schutz der Datensätze gegen Viren und andere
Manipulationen erreicht wird, spricht man von einer Versiegelung der gespeicherten
Datensätze.

1.3.1 Angriffe gegen symmetrische Hashfunktionen

Ein Angriff gegen einen MAC hat die unbefugte Berechnung von Hashwerten zum Ziel.
Das heißt, der Gegner versucht, Hashwerte hk(x) ohne Kenntnis des geheimen Schlüssels
k zu berechnen. Entsprechend der Art des zur Verfügung stehenden Textmaterials lassen
sich die Angriffe gegen einen MAC wie folgt klassifizieren.
Impersonation

Der Gegner kennt nur den benutzten MAC und versucht ein Paar (x, y) mit hk(x) = y
zu generieren, wobei k der (dem Gegner unbekannte) Schlüssel ist.

Substitution
Der Gegner versucht in Kenntnis eines Paares (x, hk(x)) ein Paar (x′, y′) mit x′ 6= x
und hk(x′) = y′ zu generieren.

Angriff bei bekanntem Text (known-text attack)
Der Gegner kennt für eine Reihe von Texten x1, . . . , xr (die er nicht selbst wählen
konnte) die zugehörigen MAC-Werte hk(x1), . . . , hk(xr) und versucht, ein Paar (x′, y′)
mit hk(x′) = y′ und x′ 6∈ {x1, . . . , xr} zu generieren.

Angriff bei frei wählbarem Text (chosen-text attack)
Der Gegner kann die Texte xi selbst wählen.

Angriff bei adaptiv wählbarem Text (adaptive chosen-text attack)
Der Gegner kann die Wahl des Textes xi von den zuvor erhaltenen MAC-Werten
hk(xj), j < i, abhängig machen.

Wechseln die Anwender nach jeder Hashwertberechnung den Schlüssel, so genügt es, dass
H einem Impersonationsangriff widersteht.

1.3.2 Informationstheoretische Sicherheit von MACs

Modell: Schlüssel k und Nachrichten x werden unabhängig gemäß einer Wahrscheinlich-
keitsverteilung p(k, x) = p(k)p(x) generiert, welche dem Gegner (im Folgenden auch
Oskar genannt) bekannt ist. Wir nehmen o.B.d.A. an, dass p(x) > 0 und p(k) > 0
für alle x ∈ X und alle k ∈ K gilt.
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Erfolgswahrscheinlichkeit für Impersonation

α: Wahrscheinlichkeit mit der sich ein Gegner bei optimaler Strategie als Bob ausgeben
kann, ohne dass Alice dies bemerkt.

Für ein Paar (x, y) sei p(x 7→ y) die Wahrscheinlichkeit, dass ein zufällig gewählter
Schlüssel den Text x auf den Hashwert y abbildet:

p(x 7→ y) =
∑

k∈K(x,y)
p(k).

wobei K(x, y) = {k ∈ K | hk(x) = y} alle Schlüssel enthält, die x auf y abbilden. D.h.
p(x 7→ y) ist die Wahrscheinlichkeit, dass Alice das (vom Gegner gewählte) Paar (x, y)
als echt akzeptiert. Dann gilt α = max{α(x) | x ∈ X}, wobei

α(x) = max{p(x 7→ y) | y ∈ Y }

die Wahrscheinlichkeit ist, mit der ein Gegner bei optimaler Strategie Alice den Text x
als von Bob stammend zukommen lassen kann.

Beispiel 11. Sei K = {1, 2, 3}, X = {a, b, c, d} und Y = {0, 1}.

0,1 0,2 0,3 0,4
hk(x) a b c d

0,25 1 0 0 0 1
0,30 2 1 1 0 1
0,45 3 0 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k) an. Dann hat der
Gegner folgende Erfolgsaussichten α(x, y), falls er das Paar (x, y) an Alice sendet.

0 1
a 0,7 0,3
b 0,25 0,75
c 0,55 0,45
d 0,45 0,55

Folglich ist α = 0, 75. /

Beispiel 12. Sei X = Y = {0, 1, 2} = Z3 und sei K = Z3 × Z3. Für k = (a, b) ∈ K und
x ∈ X sei

hk(x) = ax+ b mod 3.

Die zugehörige Authentikationsmatrix erhalten wir, indem wir die Zeilen mit den
Schlüsseln k ∈ K und die Spalten mit den Texten x ∈ X indizieren und in Zeile k und
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Spalte x den Hashwert hk(x) eintragen.

0 1 2
(0, 0) 0 0 0
(0, 1) 1 1 1
(0, 2) 2 2 2
(1, 0) 0 1 2
(1, 1) 1 2 0
(1, 2) 2 0 1
(2, 0) 0 2 1
(2, 1) 1 0 2
(2, 2) 2 1 0

Angenommen, jeder Schlüssel (a, b) hat die gleiche Wk p(a, b) = 1/9. Versucht der Gegner
dann eine Impersonation mit dem Paar (x, y), so akzeptieren genau 3 der 9 möglichen
Schlüssel dieses Paar. Dies liegt daran, dass in jeder Spalte jeder Hashwert genau dreimal
vorkommt. Also gilt p(x 7→ y) = 3/9 = 1/3 für alle Paare (x, y) ∈ X × Y , was für α
ebenfalls den Wert α = 1/3 ergibt.

Satz 13. Für alle x ∈ X ist α(x) ≥ 1
m

und daher gilt α ≥ 1
m
.

Beweis. Sei x ∈ X beliebig. Dann gilt∑
y∈Y

p(x 7→ y) =
∑
y∈Y

∑
k∈K(x,y)

p(k) =
∑
k∈K

p(k) = 1.

Somit existiert für jedes x ∈ X ein y ∈ Y mit p(x 7→ y) ≥ 1
m

und dies impliziert

α(x) = max
y∈Y

p(x 7→ y) ≥ 1
m
.

�

Bemerkung 14. Wie der Beweis zeigt, gilt α = 1
m

genau dann, wenn für alle Paare
(x, y) ∈ X × Y gilt, ∑

k∈K(x,y)
p(k) = 1

m
.

D.h. bei Gleichverteilung der Schlüssel muss in jeder Spalte der Authentikationsmatrix
jeder Hashwert gleich oft vorkommen.

Erfolgswahrscheinlichkeit für Substitution

β: Wahrscheinlichkeit mit der ein Gegner bei optimaler Strategie eine von Bob gesendete
Nachricht (x, y) durch eine andere Nachricht (x′, y′) ersetzen kann, ohne dass Alice
dies bemerkt.

Angenommen, Bob sendet die Nachricht (x, y) und der Gegner ersetzt diese durch (x′, y′).
Dann ist die Erfolgswahrscheinlichkeit des Gegners gleich der bedingten Wk

p(x′ 7→ y′ |x 7→ y) = p(x 7→ y, x′ 7→ y′)
p(x 7→ y) =

∑
k∈K(x,y,x′,y′) p(k)∑
k∈K(x,y) p(k) ,



1.3 Nachrichten-Authentikationscodes (MACs) 19

dass ein zufällig gewählter Schlüssel k den Text x′ auf y′ abbildet, wenn bereits bekannt
ist, dass er x auf y abbildet. Falls Bob also das Paar (x, y) sendet, so kann der Gegner
bestenfalls die Erfolgswahrscheinlichkeit

β(x, y) = max{p(x′ 7→ y′ |x 7→ y) | x′ ∈ X − {x}, y′ ∈ Y }

erzielen. Da Bob auf die Wahl von (x, y) keinen Einfluss hat, berechnet sich β als der
erwartete Wert von β(x, y), wobei das Paar (x, y) von Bob mit Wk

p(x, y) = p(x)p(y|x) = p(x)p(x 7→ y)

gesendet wird. Somit ergibt sich β zu

β =
∑

x∈X,y∈Y
p(x, y)β(x, y) =

∑
x∈X

p(x)
∑
y∈Y

β′(x, y),

wobei
β′(x, y) = max{p(x 7→ y, x′ 7→ y′) | x′ ∈ X − {x}, y′ ∈ Y }

ist.
Beispiel 15.

p(x 7→y,x′ 7→y′)
(x,y)

(a,0) (a,1) (b,0) (b,1) (c,0) (c,1) (d,0) (d,1)
β′(x,y) β(x,y)

(a,0) 0,25 0,45 0,25 0,45 0,45 0,25 0,45 0,643
(a,1) 0 0,3 0,3 0 0 0,3 0,3 1
(b,0) 0,25 0 0,25 0 0 0,25 0,25 1
(b,1) 0,45 0,3 0,3 0,45 0,45 0,3 0,45 0,6
(c,0) 0,25 0,3 0,25 0,3 0 0,55 0,55 1
(c,1) 0,45 0 0 0,45 0,45 0 0,45 1
(d,0) 0,45 0 0 0,45 0 0,45 0,45 1
(d,1) 0,25 0,3 0,25 0,3 0,55 0 0,55 1

Für β erhalten wir also den Wert

β = 0, 1 · (0, 45 + 0, 3) + 0, 2 · (0, 25 + 0, 45) + 0, 3 · (0, 55 + 0, 45) + 0, 4 · (0, 45 + 0, 55)
= 0, 915.

Satz 16. Für jeden MAC (X, Y,K,H) gilt β ≥ 1
m
.

Beweis. Sei (x, y) ∈ X×Y ein Paar mit p(x, y) > 0. Dann gilt für beliebige x′ ∈ X−{x},
∑
y′∈Y

p(x′ 7→ y′ |x 7→ y) =
∑
y′∈Y

∑
k∈K(x′,y′;x,y) p(k)∑

k∈K(x,y) p(k) = 1.

Somit existiert ein y′ ∈ Y mit p(x′ 7→ y′ |x 7→ y) ≥ 1
m

und dies impliziert für alle (x, y)
mit p(x, y) > 0,

β(x, y) = max{p(x′ 7→ y′ |x 7→ y) | x′ ∈ X − {x}, y′ ∈ Y } ≥ 1
m
, (1.2)

was wiederum

β =
∑

x∈X,y∈Y
p(x, y)β(x, y) ≥ 1

m

∑
x∈X,y∈Y

p(x, y) = 1
m

impliziert. �
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Lemma 17. Sei (X, Y,K,H) ein MAC mit β = 1
m
. Dann gilt

p(x′ 7→ y′ |x 7→ y) = 1/m

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′.

Beweis. Wir zeigen zuerst, dass im Fall

β = 1
m

für alle Paare (x, y) ∈ X × Y
p(x 7→ y) > 0

ist. Ist nämlich
p(w 7→ z) = 0,

so ist auch
p(w 7→ z |u 7→ v) = 0,

wobei (u, v) ∈ X × Y ein beliebiges Paar mit

p(u 7→ v) > 0

ist. Wegen
1 =

∑
z′∈Y

p(w 7→ z′ |u 7→ v) =
∑

z′∈Y−{z}
p(w 7→ z′ |u 7→ v)

impliziert dies die Existenz eines Hashwertes z′ mit

p(w 7→ z′ |u 7→ v) ≥ 1/(m− 1) > 1/m.

Dann ist aber auch

β(u, v) = max{p(u′ 7→ v′ |u 7→ v) | u′ ∈ X − {u}, v′ ∈ Y } > 1/m.

Da
β(x, y) ≥ 1/m

für alle Paare (x, y) gilt (siehe (1.2)) und da

p(u, v) = p(u)p(u 7→ v) > 0

ist, folgt
β =

∑
x∈X,y∈Y

p(x, y)β(x, y) > 1/m.

Ist nun
p(x′ 7→ y′ |x 7→ y) 6= 1/m

für ein Doppelpaar (x, y, x′, y′) mit x 6= x′, so muss wegen∑
z′∈Y

p(x′ 7→ z′ |x 7→ y) = 1

auch ein Doppelpaar (x, z′, x′, y′) mit

p(x′ 7→ z′ |x 7→ y) > 1/m

existieren, was genau wie im ersten Teil des Beweises zu einem Widerspruch führt. �



1.3 Nachrichten-Authentikationscodes (MACs) 21

Satz 18. Ein MAC (X, Y,K,H) erfüllt β = 1
m

genau dann, wenn

p(x 7→ y, x′ 7→ y′) = 1/m2

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt.

Beweis. Sei (X, Y,K,H) ein MAC mit β = 1
m
. Nach obigem Lemma impliziert dies, dass

p(x′ 7→ y′ |x 7→ y) = 1/m

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt. Dies impliziert nun

p(x′ 7→ y′) =
∑
y

p(x 7→ y)p(x′ 7→ y′ |x 7→ y) = 1/m

und daher
p(x 7→ y, x′ 7→ y′) = p(x′ 7→ y′)p(x 7→ y |x′ 7→ y′) = 1/m2.

Umgekehrt rechnet man leicht nach, dass H tatsächlich die Bedingung

β = 1
m

erfüllt, wenn
p(x 7→ y, x′ 7→ y′) = 1/m2

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt. �

Bemerkung 19. Nach obigem Satz gilt β = 1
m

genau dann, wenn für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ gilt,

p(x 7→ y, x′ 7→ y′) =
∑

k∈K(x,y,x′,y′)
p(k) = 1

m2 .

D.h. bei Gleichverteilung der Schlüssel gilt β = 1
m

genau dann, wenn in je zwei Spalten
der Authentikationsmatrix jedes Hashwertpaar gleich oft vorkommt.

Ab jetzt setzen wir voraus, dass der Schlüssel unter Gleichverteilung gewählt wird, d.h.
es gilt p(k) = 1

‖K‖ für alle k ∈ K.

Definition 20. Ein MAC (X, Y,K,H) heißt 2-universal, falls für alle x, x′ ∈M mit
x 6= x′ und alle y, y′ ∈ Y gilt:

‖K(x, y, x′, y′)‖ = ‖K‖
m2 .

Bemerkung 21. Bei der Konstruktion von 2-universalen Hashfamilien spielt der Pa-
rameter λ = ‖K‖

m2 eine wichtige Rolle. Da λ notwendigerweise positiv und ganzzahlig ist,
muss insbesondere ‖K‖ ≥ m2 gelten.

Im folgenden nennen wir eine 2-universale (n,m, l)-Hashfamilie mit λ = l/m2 kurz einen
(n,m, l, λ)-MAC.
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Beispiel 22. Betrachten wir den MAC (X, Y,K,H) mit X = {0, 1, 2, 3}, Y = {0, 1, 2},
K = {0, 1, . . . , 8}, wobei H durch folgende Authentikationsmatrix beschrieben wird.

0 1 2 3
0 0 0 0 0
1 1 1 1 0
2 2 2 2 0
3 0 1 2 1
4 1 2 0 1
5 2 0 1 1
6 0 2 1 2
7 1 0 2 2
8 2 1 0 2

Da in je zwei Spalten jedes Hashwertpaar genau einmal vorkommt, ist (X, Y,K,H) ein
(4, 3, 9, 1)-MAC.

Auf Grund von Bemerkung 19 ist klar, dass ein MAC bei gleichverteilten Schlüsseln genau
dann die Bedingung β = 1

m
erfüllt, wenn er 2-universal ist. Auf Grund von Bemerkung 14

nimmt in diesem Fall auch α den optimalen Wert 1
m

an.
Der nächste Satz zeigt für primes p eine Konstruktionsmöglichkeit von 2-universalen
MACs mit dem Parameterwert λ = 1.

Satz 23. Sei p prim und für a, b, x ∈ Zp sei

ha,b(x) = ax+ b mod p.

Dann ist (X, Y,K,H) mit X = Y = Zp und K = Zp × Zp ein (p, p, p2, 1)-MAC.

Beweis. Wir müssen zeigen, dass die Größe von K(x, y, x′, y′) für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ konstant ist. Ein Schlüssel (a, b) gehört genau dann zu dieser
Menge, wenn er die beiden Kongruenzen

ax+ b ≡p y,

ax′ + b ≡p y′

erfüllt. Da dies jedoch nur auf den Schlüssel (a, b) mit

a = (y′ − y)(x′ − x)−1 mod p,
b = y − x(y′ − y)(x′ − x)−1 mod p

zutrifft, folgt ‖K(x′, y′, x, y)‖ = 1. �

Die Hashfunktionen des vorigen Satzes erfüllen wegen n = m = p nicht die Kompressi-
onseigenschaft. Zwar lässt sich n noch geringfügig von p auf p+ 1 vergrößern, ohne K
und Y (und damit λ) zu verändern (siehe Übungen), aber eine stärkere Kompression ist
mit dem Parameterwert λ = 1 nicht realisierbar.

Satz 24. Für einen (n,m, l, 1)-MAC gilt

n ≤ m+ 1

und somit l = m2 ≥ (n− 1)2.
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Beweis. O.B.d.A. sei ‖K‖ = {1, . . . , l} und Y = {1, . . . ,m}. Es ist leicht zu sehen, dass
eine (bijektive) Umbenennung π : Y → Y der Hashwerte in einer einzelnen Spalte der
Authentikationsmatrix A wieder auf einen 2-universalen MAC führt. Also können wir
weiterhin annehmen, dass die erste Zeile der Authentikationsmatrix A nur Einsen enthält.
Da A 2-universal ist, gilt:
• In jeder Zeile i = 2, . . . ,m2 kommt höchstens eine Eins vor.
• Jede Spalte j enthält eine Eins in Zeile 1 und m− 1 Einsen in den übrigen Zeilen.

Da in den Zeilen i = 2, . . . ,m2 insgesamt genau n(m− 1) Einsen vorkommen, folgt

Anzahl der Zeilen︸ ︷︷ ︸
m2

≥ Anzahl der Zeilen mit einer Eins︸ ︷︷ ︸
1+n(m−1)

,

was m2 − 1 ≥ n(m− 1) bzw. n ≤ m+ 1 impliziert. �

Der nächste Satz liefert 2-universale MACs mit beliebig großem Kompressionsfaktor. Für
den Beweis benötigen wir das folgende Lemma.

Lemma 25. Sei A eine k × `-Matrix über einem endlichen Körper F, deren k Zeilen
linear unabhängig sind. Dann besitzt das lineare Gleichungssystem

Ax = y

für jedes y ∈ Fk genau ‖F‖`−k Lösungen x ∈ F`.

Beweis. Siehe Übungen. �

Satz 26. Sei p prim und für x = (x1, . . . , x`) ∈ {0, 1}` und k = (k1, . . . , k`) ∈ Z`p sei

hk(x) = kx =
∑̀
i=1

kixi mod p.

Dann ist (X, Y,K,H) mit X = {0, 1}`−{0`}, Y = Zp und K = Z`p ein (2`−1, p, p`, p`−2)-
MAC.

Beweis. Wir müssen zeigen, dass die Größe von K(x, y, x′, y′) für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ konstant ist. Es gilt

k ∈ K(x, y, x′, y′) ⇔ hk(x) = y ∧ hk(x′) = y′

⇔ k · x = y ∧ k · x′ = y′.

Fassen wir x = x1 · · ·x` und x′ = x′1 · · ·x′` zu einer Matrix A zusammen, so ist dies
äquivalent zu (

x1 · · · x`
x′1 · · · x′`

)
·


k1...
k`

 =
(
y

y′

)
.

Da die beiden Zeilen von A verschieden und damit linear unabhängig sind, folgt mit
obigem Lemma, dass genau ‖K(x, y, x′, y′)‖ = p`−2 Schlüssel k = (k1, . . . , k`) mit dieser
Eigenschaft existieren. �
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Bemerkung 27. Obige Konstruktion liefert einen λ-Wert von ‖K‖
m2 = p`−2. Durch Er-

weiterung von X auf eine geeignete Teilmenge X ′ ⊆ Z`p lässt sich der Textraum von
2` − 1 auf p`−1

p−1 vergrößern (siehe Übungen). Dies führt auf einen beliebig groß wählbaren
Kompressionsfaktor von p`−1

p(p−1) bei einem λ-Wert von λ = p`−2. Wie der nächste Satz
zeigt, lässt sich dies nicht mit einem kleineren λ-Wert erreichen.

Im Beweis des nächsten Satzes benötigen wir folgendes Lemma.

Lemma 28. Für beliebige reelle Zahlen b1, . . . , bm ∈ R gilt
(∑m

i=1 bi
)2
≤ m

∑m
i=1 b

2
i .

Beweis. Siehe Übungen. �

Satz 29. Für einen (n,m, l, λ)-MAC gilt

λ ≥ n(m− 1) + 1
m2

und somit l ≥ n(m− 1) + 1.

Beweis. O.B.d.A. können wir wieder ‖K‖ = {1, . . . , l} und Y = {1, . . . ,m} annehmen,
und dass die 1. Zeile der Authentikationsmatrix A nur aus Einsen besteht. Für jede Zeile
i = 1, . . . , l bezeichne xi die Anzahl der Einsen in dieser Zeile (also x1 = n). Da in jeder
Spalte jeder Hashwert genau λm-mal vorkommt, gilt

l∑
i=1

xi = λnm und
l∑

i=2
xi = λnm− n = n(λm− 1).

Nun ist die Anzahl z der Vorkommen von Indexpaaren (j, j′) mit A[i, j] = A[i, j′] = 1 in
den Zeilen i = 2, . . . , l gleich

z =
l∑

i=2
xi(xi − 1) =

l∑
i=2

x2
i −

l∑
i=2

xi =
l∑

i=2
x2
i − n(λm− 1).

Mit obigem Lemma ergibt sich
l∑

i=2
x2
i ≥

(∑l
i=2 xi

)2

l − 1 = (n(λm− 1))2

l − 1 .

Da andererseits in jedem Spaltenpaar das Hashwert-Paar (1, 1) in genau λ Zeilen vor-
kommt (genauer: einmal in Zeile 1 und (λ− 1)-mal in den Zeilen i = 2, . . . , l), und da
n(n−1) solche Spaltenpaare existieren, ist die Anzahl z der Vorkommen von Indexpaaren
(j, j′) mit A[i, j] = A[i, j′] = 1 in den Zeilen i = 2, . . . , l gleich

z = (λ− 1)n(n− 1).
Somit ergibt sich

(λ− 1)n(n− 1) =
l∑

i=2
x2
i − n(λm− 1) ≥ (n(λm− 1))2

l − 1 − n(λm− 1)

⇒ ((λ− 1)n(n− 1) + n(λm− 1))(λm2 − 1) ≥ (n(λm− 1))2

⇒ (λn− n− λ+ λm)(λm2 − 1) ≥ n(λm− 1)2

⇒ −λ2m2 + λ2m3 ≥ λnm2 + λn− λ+ λm− 2λnm
⇒ λ2(m3 −m2) ≥ λ(n(m− 1)2 +m− 1)
⇒ λm2 ≥ n(m− 1) + 1
⇒ l ≥ n(m− 1) + 1

�
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Für den Beweis des nächsten Satzes benötigen wir folgendes Lemma (Beweis siehe
Übungen).

Lemma 30. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X ) ⊇ R+. Dann
gilt logE(X ) ≥ E(logX ).

Satz 31. Für jeden MAC (X, Y,K,H) gilt:

α ≥ 1
2H(K)−H(K|X ,Y) .

Hierbei sind X ,Y ,K Zufallsvariablen, die die Verteilungen der Nachrichten, der Has-
hwerte und der Schlüssel beschreiben.

Beweis. Wir zeigen: logα ≥ H(K | X ,Y)−H(K). Es gilt: α = maxx,y p(x 7→ y), wobei

p(x 7→ y) = Probk[hk(x) = y]
= Prob[Y = y | X = x]
=: py|x

⇒ α ≥
∑
x,y

Prob[X = x,Y = y] · p(x 7→ y)

= E(α(X ,Y))
⇒ logα ≥ logE(α(X ,Y))

≥ E(logα(X ,Y))(∗)
=

∑
x,y

px,y · log py|x

=
∑
x,y

px · py|x · log py|x

= −H(Y | X )
≥ H(K | X ,Y)−H(K)(∗∗)

Hierbei gilt (*) wegen obigem Lemma und (**) ergibt sich aus

H(K,Y ,X ) = H(X ) +H(Y | X ) +H(K | X ,Y)
= H(K,X )︸ ︷︷ ︸

=H(K)+H(X )

+H(Y | K,X )︸ ︷︷ ︸
=0

.

�

1.3.3 MACs auf der Basis einer schlüssellosen Hashfunktion

Sei h : {0, 1}m+t → {0, 1}m die Kompressionsfunktion einer schlüssellosen Hashfunktion
ĥ (etwa MD5). Dann können wir mithilfe von h einen MAC konstruieren, indem wir als
Initialisierungsvektor IV den symmetrischen Schlüssel k ∈ K benutzen. Wir betrachten
zunächst den Fall, dass auf das Preprocessing verzichtet wird.
Sei H = (X, Y,K) die Hashfamilie mit X = ∪n≥1{0, 1}n·t, Y = {0, 1}m = K und
H = {hk | k ∈ K}, wobei hk(x) wie folgt berechnet wird:

1 Sei x = x1, . . . , xn, |xi| = t für i = 1, . . . , n
2 z0 := k
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3 for i := 1 to n do
4 zi := h(zi−1xi)
5 output zn

Bei diesem MAC führt beispielsweise folgender Substitutionsangriff zum Erfolg.
Sei (x, z) ein Paar mit hk(x) = z, wobei k der dem Gegner unbekannte Schlüssel ist.
Dann lässt sich für einen beliebigen String u ∈ {0, 1}t leicht der MAC-Wert des Textes
x′ = xu mittels hk(x′) = h(zu) berechnen.
Ein ähnlicher Angriff ist auch bei Verwendung einer Preprocessing-Funktion möglich.
Hat diese beispielsweise die Form y(x) = xpad(x), so lässt sich obiger Angriff wie folgt
modifizieren.
Sei (x, z) gegeben mit hk(y(x)) = z und sei y(x) = xpad(x) = y1 . . . yn. Dann können
wir für einen beliebigen String u ∈ {0, 1}∗ den MAC-Wert hk(y(x′)) für den Text
x′ = xpad(x)u wie folgt berechnen. Wegen

y(x′) = x′pad(x′) = xpad(x)upad(x′) = y1 . . . ynupad(x′)

lässt sich das Suffix upad(x′) in eine Folge u1 . . . um von Blöcken ui der Länge |ui| = t
zerlegen. Setzen wir nun zn = z und

zn+i := h(zn+i−1un+i)

für i = 1, . . . ,m, so erhalten wir den gewünschten MAC-Wert hk(y(x′)) = zn+m.

1.3.4 CBC-MACs

Als Basis für die Konstruktion eines MAC kann auch ein symmetrisches Kryptosystem
dienen.
Sei (M,C,K,E,D) ein endomorphes Kryptosystem (d.h. M = C) mit M = {0, 1}t. Sei
IV := 0t und sei k ∈ K ein geheimer Schlüssel. Sei y eine Funktion für den Preprocessing-
Schritt.
Berechnung von hk(x):

1 y := y(x) = y1 . . . yn, n ≥ 1, |yi| = t
2 z0 := IV
3 for i = 1 to n do
4 zi := E(k, zi−1 ⊕ yi)
5 output hk(x) = zn

Die Hashwertlänge beträgt also t Bit. Wird auf den Preprocessing-Schritt verzichtet,
so lässt sich leicht ein Angriff mit 2 adaptiven Fragen ausführen. Kennt der Gegner
die MAC-Werte z = hk(x) und z′ = hk(x′) für die Texte x = x1 · · ·xn und x′ =
(xn+1 ⊕ IV ⊕ z)xn+2 · · ·xn+m, wobei |xi| = t für i = 1, . . . , n+m ist, so muss auch der
Text x′′ = x1 · · ·xn+m den MAC-Wert hk(x′′) = z′ haben.
Diesen Angriff kann man zwar ausschließen, indem man eine feste Länge für die Texte
x vorschreibt. Dies schränkt jedoch die Anwendbarkeit des CBC-MACS erheblich ein.
Zudem ist dann immer noch folgender Geburtstagsangriff auf den CBC-MAC möglich.
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Geburtstagsangriff auf einen CBC-MAC

Dieser Angriff ermöglicht es, mit q + 1 ≈ 2 t
2 Hashwertfragen den MAC-Wert hk(x) für

einen zuvor nicht erfragten Text x zu finden, wobei x = x1, . . . , xn ∈ {0, 1}tn abgesehen
vom ersten t-Bitblock x1 beliebig wählbar ist. Hierzu wählt der Gegner zunächst n− 2
beliebige Blöcke x3, . . . , xn ∈ {0, 1}t und q ≈ 1, 17 · 2 t

2 paarweise verschiedene Blöcke
x1

1, . . . , x
q
1 ∈ {0, 1}t. Anschließend wählt er zufällig q weitere Blöcke x1

2, . . . , x
q
2 ∈ {0, 1}t

und erfragt die MAC-Werte zi = hk(xi) für die Texte xi = xi1x
i
2x3 · · ·xn, i = 1, . . . , q.

Wegen xi1 6= xj1 für i 6= j sind auch die Texte x1, . . . , xq paarweise verschieden. Seien
z1

1 , . . . , z
q
1 die nach der ersten Iteration des CBC-MACs berechneten Kryptotexte zi1 =

Ek(IV ⊕ xi1). Da die Blöcke xi2 zufällig gewählt werden, sind auch die Eingangsblöcke
zi1 ⊕ xi2 für die 2. Iteration zufällig, d.h. es gilt

Pr[∃i 6= j : zi1 ⊕ xi2 = zj1 ⊕ x
j
2] = Pr[∃i 6= j : xi2 = xj2] ≈ 1

2 .

Da die Gleichheit der Eingangsblöcke für die 2. Iteration mit der Gleichheit der Ausgangs-
blöcke für die n-te Iteration und damit mit der Gleichheit der zugehörigen MAC-Werte
zi und zj äquivalent ist, kann der Gegner das Indexpaar (i, j) mit zi1⊕ xi2 = zj1 ⊕ x

j
2 auch

leicht finden, sofern es existiert.
Befindet sich unter den erfragten Texten ein Kollisionspaar (xi, xj) mit zi = zj, so
erfragt der Gegner für einen beliebigen Bitblock u ∈ {0, 1}t − {0t} den MAC-Wert
z̄i = hk(x̄i) für den Text x̄i = xi1(xi2⊕ u)x3 · · ·xn, welcher zugleich MAC-Wert des Textes
x̄j = xj1(xj2 ⊕ u)x3 · · ·xn ist, den er zuvor nicht erfragt hat.

Definition 32. Sei 0 ≤ ε ≤ 1 und sei q ∈ N. Ein (ε, q)-Fälscher für eine Hashfamilie
H ist ein probabilistischer Algorithmus A, der q Fragen x1, . . . , xq stellt und aus den
Antworten zi = hk(xi) mit Wahrscheinlichkeit mindestens ε (bei zufällig gewähltem
Schlüssel k) ein Paar (x, z) berechnet mit x 6∈ {x1, . . . , xq} und hk(x) = z.

Wir unterscheiden zwischen adaptiven Fragen (d.h. der Text xi darf von den Hashwerten
der Texte x1, . . . , xi−1 abhängen) und nicht-adaptiven Fragen. Zudem unterscheiden wir
zwischen selektiven Fälschungen (d.h. der Gegner kann den Hashwert für einen Text seiner
Wahl generieren) und existientiellen Fälschungen (d.h. der Gegner kann den Hashwert für
irgendeinen Text x 6∈ {x1, . . . , xq} generieren, auf dessen Wahl er keinen Einfluss hat).

Beispiel 33. Der betrachtete Geburtstagsangriff auf einen CBC-MAC führt auf einen
(1

2 , q + 1)-Fälscher für q ≈ 1, 17 · 2 t
2 . Dabei ist nur die letzte Hashwertfrage adaptiv und

der Text x kann abgesehen vom ersten t-Bitblock beliebig vorgegeben werden.

1.3.5 Kombination einer Hashfunktion mit einem MAC (HMAC)

Falls der Textraum einer Hashfamilie den Hashwertraum einer anderen Hashfamilie
enthält, lassen sich diese leicht komponieren (Nested-MAC).

Definition 34. Seien H1 = (X, Y,K1, F ) mit F = {fk | k ∈ K1} und H2 = (X, Y,K2, G)
mit G = {gk | k ∈ K2} Hashfamilien. Dann ist H1 ◦ H2 = (X,Z,K,H) die Komposition
von H1 und H2, wobei K = K1 ×K2 und H = {gk2 ◦ fk1 | (k1, k2) ∈ K} ist.

Beispiel 35. Wählt man für H2 eine 2-universale Hashfamilie und für H1 eine schlüssel-
lose Hashfunktion (etwa SHA-1), so erhält man einen so genannten HMAC (Hash-MAC).
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Eine Variante hiervon ist der auf SHA-1 basierende H-MAC, bei dem zwei Varianten
von SHA-1 mit symmetrischen Schlüsseln komponiert werden, wobei jedoch beidesmal
derselbe Schlüssel benutzt wird. Seien

ipad = 36 . . . 36︸ ︷︷ ︸
64mal

und opad = 5C . . . 5C︸ ︷︷ ︸
64mal

512 Bit Konstanten. Dann berechnet sich H-MAC wie folgt:

H-MACk(x) = SHA-1((k ⊕ opad)SHA-1((k ⊕ ipad)x)).

Hierbei fungiert die Funktion fk(x) = SHA-1((k⊕ ipad)x) als Hashfunktion mit Schlüssel,
die beliebig lange Texte hasht, und der MAC gk(x) = SHA-1((k ⊕ ipad)x) wird nur
auf Bitstrings der Länge 512 angewendet. Wie der folgende Satz zeigt, genügt es, wenn
fk kollisionsresistent und gk berechnungsresistent ist, um einen berechnungsresistenten
HMAC zu erhalten.

Definition 36. Ein (ε, q)-Kollisionsangreifer für eine Hashfamilie H ist ein probabi-
listischer Algorithmus A, der q Fragen x1, . . . , xn stellt und aus den Antworten mit
Wahrscheinlichkeit mindestens ε ein Paar (x, x′) berechnet mit hk(x) = hk(x′), wobei k
der dem Gegner unbekannte (und zufällig gewählte) Schlüssel ist.

Da der Gegner den Schlüssel k nicht kennt, ist ein Kollisionsangriff gegen eine Hashfamilie
H schwieriger zu realisieren als ein Kollisionsangriff gegen eine schlüssellose Hashfunktion.

Satz 37. Seien H1 = (X, Y,K1, F ), H2 = (X, Y,K2, G) und H = (X,Z,K,H) = H1◦H2
Hashfamilien. Falls für H1 kein adaptiver (ε1, q + 1)-Kollisionsangriff und für H2 kein
adaptiver (ε2, q)-Fälscher existieren, dann gilt für jeden adaptiven (ε, q)-Fälscher für H,
dass ε ≤ ε1 + ε2 ist.

Beweis. Sei A ein adaptiver (ε, q)-Fälscher für H. Wir müssen zeigen, dass ε ≤ ε1 + ε2
ist. Wir betrachten zunächst folgenden adaptiven Kollisionsangreifer A′ gegen H1: A′
wählt zufällig einen Schlüssel k2 ∈ K2 und simuliert A, wobei A′ für jede Anfrage xi von
A das Orakel fk1 (mit unbekanntem, aber zufällig gewähltem Schlüssel k1) nach dem
Wert yi = fk1(xi) fragt und an A die Antwort zi = gk2(yi) zurückgibt. Sobald A ein Paar
(x, z) ausgibt, fragt A′ das Orakel fk1 nach dem Hashwert y = fk1(x) und gibt im Fall
y ∈ {y1, . . . , yq} das Paar (x, xi) für einen beliebigen Index i mit y = yi aus.
Da A′ genau im Fall y ∈ {y1, . . . , yq} Erfolg hat, tritt dieser Fall mit Wahrscheinlichkeit
< ε1 ein. Da A aber ein (ε, q)-Fälscher für H ist, muss mit Wahrscheinlichkeit ≥ ε
z = gk2(y) gelten. Folglich sind mit Wahrscheinlichkeit ≥ ε− ε1 die beiden Bedingungen
y 6∈ {y1, . . . , yq} und z = gk2(y) erfüllt. In diesem Fall hat jedoch der adaptive Fälscher
A′′ gegen H2 Erfolg, der zufällig einen Schlüssel k1 ∈ K1 wählt und A wie folgt simuliert.
A′′ gibt bei jeder Anfrage xi von A die Antwort des Orakels gk2 auf die Frage yi = fk1(xi)
zurück und sobald A ein Paar (x, z) ausgibt, gibt A′′ das Paar (fk1(x), z) aus. Da es nach
Voraussetzung keinen adaptiven (ε2, q)-Fälscher gegen H2 gibt, muss ε− ε1 < ε2 sein. �
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2 Elliptische Kurven

2.1 Elliptische Kurven über den reellen Zahlen

Definition 38. Seien a, b ∈ R. Eine elliptische Kurve E enthält alle Lösungen (x, y) ∈ R2

der Gleichung y2 = x3 + ax+ b und zusätzlich den Punkt O. Im Fall 4a3 + 27b2 = 0 heißt
E singulär, sonst nicht-singulär.

Auf den nicht-singulären Punkten von E lässt sich eine additive Gruppenoperation +
definieren. Die Idee dabei ist, dass die Summe aller Punkte von E, die auf einer Geraden
liegen gleich dem neutralen Element O sein soll (hierbei werden Tangentialpunkte doppelt
gezählt). Da maximal drei Punkte von E auf einer Geraden liegen können wir auf der
Basis dieser Regel die Summe P +Q zweier Punkte P und Q leicht bestimmen.
Am einfachsten ist der Fall, dass die Gerade g parallel zur y-Achse verläuft. Besteht
die Schnittmenge S von g und E aus 2 Punkten P = {x1, y1} und Q = {x2, y2}, so gilt
offensichtlich x1 = x2 und y1 = −y2 und wir erhalten P +Q = O bzw. −P = (x1,−y1).
Diese Gleichung gilt auch für den Fall, dass S nur aus einem Punkt P = {x1, y1} besteht,
da P dann wegen y1 = 0 ein Tangentialpunkt ist.
Es bleibt der Fall, dass g nicht parallel zur y-Achse verläuft. Hier gibt es 2 Unterfälle:
P 6= Q, d.h. x1 6= x2: Dann ist g = {(x, y) ∈ R2|y = λx + µ} mit λ = y2−y1

x2−x1
und

µ = y1 − λx1 = y2 − λx2. Wir zeigen zuerst, dass

E ∩ g = {P,Q,R}

ist, wobei R = (x3, y3) folgende Koordinaten hat:

x3 = λ2 − x1 − x2 und y3 = λ(x3 − x1) + y1, mit λ = y2 − y1

x2 − x1
.

Für alle (x, y) ∈ E ∩ g gilt

(λx+ µ)2 = x3 + ax+ b

; x3 − λ2x2 + (a− 2µλ)x+ b− µ2︸ ︷︷ ︸
p(x)

= 0.

p läßt sich in C vollständig in Linearfaktoren zerlegen,

p(x) = (x− x1)(x− x2)(x− x3).

Da x1, x2 ∈ R sind, muss auch x3 ∈ R sein. Der Koeffizient −λ2 von x2 berechnet
sich aus der linearen Zerlegung von p(x) zu

−λ2 = −x1 − x2 − x3 ; x3 = λ2 − x1 − x2.

Wegen λ = y3−y1
x3−x1

erhalten wir dann y3 = λ(x3 − x1) + y1.
Folglich ist P +Q = −R = (x3,−y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1).
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P = Q, d.h. x1 = x2, y1 = y2 6= 0: Sei t die Tangente durch P an E. Wir zeigen, dass es
einen Punkt R = (x3, y3) ∈ R2 gibt mit

t ∩ E = {P,R},

wobei x3 = λ2 − 2x1 und y3 = λ(x3 − x1) + y1 ist. Die Steigung λ von t erhalten wir
durch implizites Differenzieren:

λ = dy

dx
=
− δF

δx
(x1, y1)

δF
δy

(x1, y1)
= 3x2

1 + a

2y1

wobei F (x, y) = y2 − x3 − ax− b ist. Zur Begründung sei

T (x, y) = c(x− x1) + d(y − y1)

die Tangentialebene an F (x, y) im Punkt (x1, y1, F (x1, y1)) = (x1, y1, 0). Dann gilt

c = δF

δx
(x1, y1) = −3x2

1 − a

und
d = δF

δy
(x1, y1) = 2y1.

t ist dann der Schnitt von T mit der x, y-Ebene, d.h.

(x, y) ∈ t ⇔ T (x, y) = 0
⇔ y − y1 = − c

d
(x− x1),

woraus sich λ = − c
d
erbibt. Genau wie im 1. Fall erhalten wir nun P +Q = P + P =

2P = −R = (x3,−y3)) = (λ2 − x1 − x2, λ(x1 − x3)− y1) mit λ = 3x2
1+a

2y1
.

Satz 39. E bildet mit O als neutralem Element und + als Addition eine abelsche Gruppe,
d.h.
• + ist abgeschlossen auf E.
• + ist kommutativ
• Jeder Punkt hat ein Inverses −P . P ist selbstinvers, falls P = −P ist. Dies gilt für
P = O und alle Kurvenpunkte der Form P = (x, 0).
• + ist assoziativ. (ohne Beweis!)

2.2 Elliptische Kurven über endlichen Körpern

Definition 40. Sei Fq ein endlicher Körper mit q = pn für eine Primzahl p > 3. Für
a, b ∈ Fq mit 4a3 + 27b2 6= 0 heißt

E = {(x, y) ∈ Z2
p | y2 ≡p x3 + ax+ b} ∪ {O}

elliptische Kurve über Fq. Die Gruppenoperation + ist auf E wie folgt definiert.
• O ist neutrales Element, d.h. ∀P ∈ E : P +O = O + P = P .
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• Für P,Q ∈ E − {O} ist

P +Q =

O, P = Q

R, sonst

wobei sich R = (x3, y3) wie folgt aus P = (x1, y1) und Q = (x2, y2) berechnet:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

wobei λ =

(y2 − y1)(x2 − x1)−1, P 6= Q

(3x2
1 + a)(2y1)−1, P = Q

Satz 41. (E,O,+) bildet eine abelsche Gruppe

Beweis. ohne Beweis �

Beispiel 42. p = 11, E definiert durch y2 = x3 + x+ 6. Zur Erinnerung: Im Fall p ≡4 3
lassen sich für z ∈ QRp die Wurzeln y durch ±z p+1

4 bestimmen.

x 0 1 2 3 4 5 6 7 8 9 10
z = x3 + x+ 6 6 8 5 3 8 4 8 4 9 7 4
z ∈ QR11 − − x x − x − x x − x

y − − 4; 7 5; 6 − 2; 9 − 2; 9 3; 8 − 2; 9

Da die Gruppe (E,O,+) ]E = ‖E‖ = 13 Elemente enthält, und 13 eine Primzahl ist,
haben alle Elemente entweder die Ordnung 1 oder 13. Da nur das neutrale Element
O die Ordnung 1 hat, haben alle anderen Elemente P ∈ E − {O} die Ordnung 13,
sind also Erzeuger der Gruppe. Folglich ist (E,O,+) zyklisch und somit isomorph zu
Z13: (E,O,+) ∼= (Z13, 0,+). Da die Gruppenordnung prim ist, ist sogar jedes Element
p ∈ E − {O} ein Erzeuger. Folglich
Berechnung von 2g = (2, 7) + (2, 7):

λ = (3 · 22 + 1)(2 · 7)−1 mod 11
= 2 · 3−1

= 2 · 4 = 8
x3 = 82 − 2− 2 mod 11 = 5
y3 = 8(2− 5)− 7 mod 11 = 2

⇒ 2g = (5, 2)
Berechnung von 3g = 2g + g = (5, 2) + (2, 7):

λ = (7− 2)(2− 5)−1 mod 11
= 5 · (−3)−1

= 2
x3 = 22 − 5− 2 mod 11 = 8
y3 = 2 · (5− 8)− 2 mod 11 = 3

⇒ 3g = (8, 3)

k 1 2 3 4 5 6 7 8 9 10 11 12 13
k · g (2, 7) (5, 2) (8, 3) (10, 2) (3, 6) (7, 9) (7, 2) (3, 5) (10, 9) (8, 8) (5, 9) (2, 4) O
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Satz 43. (Hasse) Für die Anzahl ]E von Punkten einer elliptischen Kurve über einem
endlichen Körper Fq gilt

q + 1− 2√q ≤ ]E ≤ q + 1 + 2√q.

Beweis. (ohne Beweis) �

PointCompress: E − {O} → Zp × Z2: PointCompress(x, y) := (x, y mod 2)

Prozedur PointDeCompress(x, i)
1 z := x3 + ax+ b mod p
2 if z ∈ QRp then
3 y :=

√
z mod p

4 if y 6≡2 i then
5 y := p− y
6 output (x, y)
7 output (‘‘error’’)

Bemerkung 44. Es gibt einen effizienten Algorithmus (von Schoof) mit Zeitkomplexität
O(log8 q), der ]E bei Eingabe von a, b und q berechnet.

Satz 45. Sei E eine elliptische Kurve über Fq. Dann ist (E,O,+) isomorph zu Zn1×Zn2,
wobei n1, n2 ∈ N+ sind und n2 Teiler von n1 und von q − 1 ist.

Bemerkung 46. Zyklische (Unter)-Gruppe. Wegen ]E = n1 ·n2 und da n2 Teiler von n1
ist, muss E im Fall, dass ]E prim oder das Produkt von zwei verschiedenen Primzahlen ist,
zyklisch sein (d.h. n2 = 1). Im Fall n2 > 1 hat E eine nicht-triviale zyklische Untergruppe,
die zu Zn1 isomorph ist und für kryptografische Anwendungen benutzt werden kann.

Effiziente Berechnung von Vielfachen von Punkten auf E

In Z∗m berechnen wir Potenzen ae mod m durch ‘wiederholtes Quadieren und Multiplizie-
ren’. Ähnlich können wir in einer elliptischen Kurve E die Vielfachen mP eines Punktes
P durch ‘wiederholtes Verdoppeln und Addieren’ berechnen. Da in E additiv Inverse
sehr leicht zu berechnen sind, kann mP durch ‘wiederholtes Verdoppeln, Addieren und
Subtrahieren’ noch effizienter berechnen werden. Hierzu stellen wir m in NAF (non
adjacent form) dar.

Definition 47. (cl−1, . . . , c0) ∈ {−1, 0, 1}l heißt SBR-Darstellung (signial binary repre-
sentation) einer Zahl c ∈ Z, falls

l−1∑
i=0

ciz
i = c

ist. Ist von je zwei benachbarten ci’s mindestens eines 0, so heißt (cl−1, . . . , c0) NAF-
Darstellung von c.

Beispiel 48. Sowohl (0, 1, 0, 1, 1) als auch (1, 0,−1, 0,−1) sind SBR-Darstellungen von
c = 1 + 2 + 8 = 11 = −1− 4 + 16.

Satz 49. Jede Zahl c ∈ Z hat eine eindeutige NAF-Darstellung.

Beweis. (siehe Übungen) �
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Berechnung einer NAF-Darstellung aus der Binärdarstellung: Ersetze jeden Teilstring
der Form (0, 1, . . . , 1) von rechts beginnend durch den Teilstring (1, 0, . . . , 0,−1).
Algorithmen zur Berechnung von Vielfachen von Punkten auf E:

Prozedur DoubleAdd(P, cl−1, . . . , c0)
1 Q := O
2 for i := l − 1 to 0 do
3 Q := 2 ·Q
4 if ci = 1 then
5 Q := Q+ P
6 output (Q)

Prozedur DoubleAddSub(P, cl−1, . . . , c0)
1 Q := O
2 for i := l − 1 to 0 do
3 Q := 2 ·Q
4 if ci = 1 then Q := Q+ P
5 if ci = 1 then Q := Q+ (−P )
6 output (Q)

Da eine l-Bitzahl im Durchschnitt l
2 -Nullen in Binärdarstellung und 2l

3 -Nullen in NAF-
Darstellung enthält, ist DoubleAddSub um 11 Prozent effizienter als DoubleAdd.
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3 Algorithmen zur Berechnung des diskreten
Logarithmus

Sei (G, ∗, 1) eine Gruppe und sei α ∈ G. Weiter bezeichne 〈α〉 = {αi|i = 0 · · ·n − 1}
die von α in G erzeugte Untergruppe, wobei n = ordG(a) = min{e ≥ 1 | αe = 1} die
Ordnung von α ist. Dann heißt die eindeutig bestimmte Zahl e ∈ {0, . . . , n − 1} mit
β = αe der diskrete Logarithmus von β zur Basis α in G (kurz: e = logG,α(β)).
Das diskrete Logarithmusproblem (DLP):

Gegeben: Gruppe G, ein Element α ∈ G und die Ordnung n = ordG(a) von α sowie
ein Element β ∈ 〈α〉.
Gesucht: Der diskrete Logarithmus e = logG,α(β) von β zur Basis α in G.

Für viele Gruppen G ist die Funktion e 7→ αe effizient mittels wiederholtem Quadieren
und Multiplizieren berechenbar. In einigen Fällen ist jedoch kein effizienter Algorithmus
zur Bestimmung der Umkehrfunktion, also von logα(β) bekannt, d.h. e 7→ αe ist Kandidat
für eine Einwegfunktion.

Beispiel 50. Sei G = (Z∗p, ∗), p prim, und sei α ein Erzeuger von Z∗p. Dann ist 〈α〉 = Z∗p
und α hat die Ordnung n = p−1. Ist p hinreichend groß und enthält p−1 mindestens einen
großen Primfaktor, so sind keine effiziente Algorithmen zur Berechnung von logp,α(β)
bekannt.

Die Ordnung der Potenzen eines Elements α ∈ G der Ordnung n lässt sich wie folgt
berechnen:

ordG(αi) = n/ ggT(n, i).

Ist insbesondere q ein Teiler von n, so hat αn/q die Ordnung q.
Wir betrachten zunächst eine Reihe von naiven Algorithmen für das DLP.

Berechnung von logG,α(β)
1 γ := 1
2 for i := 0 to n− 1 do
3 if γ = β then output(i)
4 γ := αγ

Dieser Algorithmus läuft in Zeit O(n) (wobei wir annehmen, dass elementare Grup-
penoperationen in konstanter Zeit ausführbar sind) und benötigt nur logarithmischen
Speicherplatz. Falls wir im Vorfeld eine Tabelle mit den Logarithmen aller möglichen
Werte für β erstellen, können wir danach für jedes β den diskreten Logarithmus durch
eine Binärsuche in Zeit O(log n) bestimmen. Für die Precomputation fallen jedoch Zeit
O(n) und Platz O(n log n) an.

DLP-Berechnung mittels Precomputation
1 Precomputation: Sortiere die Paare (αi, i), i = 0, . . . , n− 1, nach der

ersten Komponente in eine Tabelle T
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2 Computation: Ermittle in T mittels Binärsuche den Eintrag (β, i)
und gib i aus

Der folgende Algorithmus von Shanks berechnet ebenfalls im Vorfeld eine Tabelle von
DLP-Werten, allerdings nur für Potenzen der Form αjm, j = 0, . . . ,m−1, wobeim = d

√
ne

ist. Dadurch erhöht sich zwar die Laufzeit zur Bestimmung des diskreten Logarithmus
für β von O(log n) auf O(

√
n), im Gegenzug geht jedoch der Speicherplatzverbrauch von

O(n log n) auf O(
√
n log n) zurück.

Algorithmus Shanks(G, n, α, β)
1 Precomputation:
2 m := d

√
ne

3 sortiere die Paare (αjm, j), j = 0, . . . ,m− 1, nach der ersten
Komponente in eine Tabelle T1

4 Computation:
5 sortiere die Paare (βα−i, i) nach der ersten Komponente in eine

Tabelle T2
6 ermittle durch parallele sequentielle Suche Paare (γ, j) in T1

und (γ, i) in T2 mit derselben ersten Komponente
7 output(mj + i)

3.1 Die Rho-Algorithmen von Pollard

Von Pollard wurde eine heuristische Strategie entwickelt, die sich sowohl zur Lösung
des DLP als auch des Faktorisierungsproblems eignet. Die Idee dabei ist, mit wenig
Speicherplatz eine Kollision ai = aj mit i 6= j für eine Folge (an) der Form an+1 = f(an)
zu finden. Zahlenfolgen dieser Bauart haben die Eigenschaft, dass ai = aj die Gleichheit
ai+k = aj+k für alle k ≥ i impliziert.

Der Rho-Faktorisierungsalgorithmus

Sei n eine Zahl mit mindestens 2 verschiedenen Primteilern p < q (falls n nur einen
Primteiler hat, also eine Primzahlpotenz ist, lässt sich n leicht durch Berechnung der
k-ten Wurzeln für k = 2, . . . , log2(n) faktorisieren).
Angenommen, wir wählen zufällig eine Menge X ⊆ Zn der Größe √p, so enthält X mit
großer Wahrscheinlichkeit 2 Elemente x 6= x′ mit x ≡p x′, die auf den nichttrivialen
Faktor d = ggT(x− x′, n) von n führen.
Wählen wir nun anstelle von X eine pseudozufällige Menge der Form X = {x1, x2 =
f(x1), . . . , xj = f(xj−1)}, wobei x1 ein zufällig gewählter Startwert ist, so tritt bei
geeigneter Wahl von f : Zn → Zn für j ≈ √p mit großer Wahrscheinlichkeit eine
Kollision auf. Eine gute Wahl für f ist beispielsweise f(x) = x2 ± 1 mod n.
Werden zur Berechnung von f nur die Ringoperationen von Zn verwendet, so impliziert
xi ≡p xj die Kongruenz f(xi) ≡p f(xj), was wiederum für l = j − i die Kongruenz
xk ≡p xk+dl für alle k ≥ i und d ≥ 1 impliziert. Insbesondere folgt also xk ≡p x2k für alle
k ≥ i mit k ≡l 0. Daher können wir in X ein Kollisionspaar (xi, xj) mit xi ≡p xj wie
folgt bestimmen (ohne p zu kennen).
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Algorithmus Pollard-Rho-Factorize(n)
1 wähle zufällig x ∈ Zn
2 y := x2 + 1 mod n
3 while ggT(x− y, n) = 1 do
4 x := f(x)
5 y := f(f(y))
6 if d = ggT(x− y, n) < n then output(d)
7 else output(?)

Der Rho-DLP-Algorithmus

Dieser Algorithmus berechnet eine pseudozufällige Folge von Paaren (ci, di) ∈ Zn × Zn.
Ziel ist es, zwei Paare verschiedene (ci, di) und (cj, dj) mit αciβdi = αcjβdj zu finden. Im
Fall ggT(dj − di, n) = 1 lässt sich hieraus wegen

αci+adi = αciβdi = αcjβdj = αcj+adj

der diskrete Logarithmus logG,α(β) = (ci − cj)(dj − di)−1 mod n leicht bestimmen. An-
dernfalls erhalten wir g = ggT(f − d, n) Kandidaten a1, . . . , ag, unter denen der richtige
leicht zu ermitteln ist. Zur Bildung der Pseudozufallsfolge kann bspw. die Funktion f in
folgendem Algorithmus benutzt werden. Aus Effizienzgründen berechnet sie auch gleich
die Werte xi = αciβdi . Die Mengen S1, S2, S3 bilden eine Partition von G in drei etwa
gleich große Mengen, wobei das neutrale Element 1 von G nicht in S2 enthalten sein
sollte.

Algorithmus Pollard-Rho-DLP(G, n, α, β)
1 function f(x, c, d)
2 case
3 x ∈ S1: return(βx, c, d+ 1 mod n)
4 x ∈ S2: return(x2, 2c mod n, 2d mod n)
5 x ∈ S3: return(αx, c+ 1 mod n, d)
6

7 wähle zufällig c, d ∈ Zn
8 x := αcβd

9 (y, e, f) := f(x, c, d)
10 while x 6= y do
11 (x, c, d) := f(x, c, d)
12 (y, e, f) := f(f(y, e, f))
13 g := ggT(f − d, n)
14 bestimme alle Lösungen a1, . . . , ag von (f − d)a ≡n (c− e)
15 output ai mit αai = β

Ähnlich wie beim Rho-Faktorisierungsalgorithmus lässt sich argumentieren, dass die
while-Schleife nach ca.

√
n Iterationen abbricht.

3.2 Der Pohlig-Hellman-Algorithmus

Sei n = ∏k
i=1 p

ei
i die Primfaktorzerlegung von n und sei a = logG,α(β) der diskrete

Logarithmus von β zur Basis α in G. Falls wir für i = 1, . . . , k die Werte xi = a mod pei
i



3.3 Die Index-Calculus-Methode 37

kennen, so lässt sich daraus a leicht mit dem Chinesischen Restsatz berechnen. Schreiben
wir xi als Zahl zur Basis pi, so erhalten wir Ziffern a0, . . . , aci−1 mit xi = ∑ci−1

j=0 ajp
j
i .

Weiter ex. eine Zahl si mit a = xi + sip
ei
i .

Um nun die Ziffern a0, . . . , aci−1 zu berechnen, betrachten wir für j = 0, . . . , ei − 1 und
βj = βα−a0−a1pi−a2p2

i ···−aj−1p
j−1
i die Gleichung

β
n/pj+1

i
j = αajn/pi ,

die sich leicht verifizieren lässt:

β
n/pj+1

i
j = (αa−a0−a1pi−a2p2

i ···−aj−1p
j−1
i )n/p

j+1
i

= (αajp
j
i +aj+1p

j+1
i +···+aci−1p

ci−1
i +sip

ci
i )n/p

j+1
i

= (αajp
j
i +tpj+1

i )n/p
j+1
i für eine Zahl t

= αajn/piαtn

= αajn/pi

Der folgende Algorithmus berechnet sukzessive die Zahlen βj und dazu die Ziffern
aj = logG,αn/pi (βn/p

j+1
i ), die sich wegen ordG(αn/pi) = pi in Zeit O(√pi) (etwa mit dem

Algorithmus von Shanks) ermitteln lassen. Insgesamt erhalten wir somit eine Laufzeit
von O(ci

√
pi) zur Bestimmung von xi.

Algorithmus Pohlig-Hellman-DLP(G, n, α, β, pi, ei)
1 for j := 0 to ei − 1 do
2 aj := logG,αn/pi (βn/p

j+1
i )

3 β := βα−ajp
j
i

4 output(a0 · · · aci−1)

3.3 Die Index-Calculus-Methode

Hierbei handelt es sich nicht um einen generischen DLP-Algorithmus, da er nur im Fall
G = Z∗p, p prim, und ord(α) = p − 1 anwendbar ist. Der Algorithmus benutzt eine
Faktorbasis B = {p1, . . . , pb}, wobei wir annehmen, dass B die ersten b Primzahlen
enthält.

Algorithmus Index-Calculus(p, α, β)
1 Precomputation:
2 bestimme li = logα pi für i = 1, . . . , b
3 Computation:
4 wähle zufällig eine Zahl s ∈ {0, . . . , p− 2}
5 γ := βαs mod p
6 if (γ ist über B faktorisierbar) then
7 berechne Exponenten c1, . . . , cb mit γ = pc1

1 · · · pcb
b

8 output (c1l1 + · · ·+ cblb mod p− 1)

Zur Bestimmung der Zahlen li kann man wie folgt vorgehen. Wähle c etwas größer als b
(z.B. c = b+ 10) und generiere c Kongruenzen der Form

αxj ≡p p
a1j

1 · · · p
abj

b , j = 1, . . . , c.
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Hierzu kann man xj zufällig wählen und testen, ob yj = αxj mod p über B faktorisierbar
ist. Die Wahrscheinlichkeit hierfür hängt natürlich von der Größe von B ab. Aus den
Kongruenzen lässt sich ein lineares Kongruenzgleichungssystem der Form

a11 · · · ab1
. . .

a1c · · · abc


︸ ︷︷ ︸

A


l1
...
lb

 ≡p−1


x1
...
xc



für die Unbekannten l1, . . . , lb gewinnen, das die gewünschten Werte liefert, falls A durch
Streichen von c− b Zeilen in eine b× b-Matrix A′ mit detA′ 6≡p−1 0 transformiert werden
kann.
Durch eine heuristische Komplexitätsanalyse lässt sich zeigen, dass die
Precomputation-Phase in Zeit O(e(1+o(1))

√
ln p lnln p) und die Computation-Phase

in Zeit O(e(1/2+o(1))
√

ln p lnln p) ausführbar ist.

3.4 Eine untere Komplexitätsschranke für generische
DLP-Algorithmen

In diesem Abschnitt gehen wir der Frage nach, wie effizient der diskrete Logarithmus
logα,G β berechenbar ist, wenn über die Gruppe G nichts bekannt ist, außer dass α ∈ G die
Ordnung n hat und β ∈ 〈α〉 ist. Ein Algorithmus, der das DLP unter dieser Voraussetzung
löst, heißt generisch.
Dabei nehmen wir an, dass sich die Gruppenoperation und auch die Potenzierung von
Elementen in 〈α〉 effizient ausführen lassen. Um zu verhindern, dass der DLP-Algorithmus
spezielle Eigenschaften von G ausnützen kann (bspw. lässt sich das DLP in der additiven
Gruppe (Zn,+) sehr effizient lösen), gehen wir davon aus, dass die Elemente von 〈α〉
durch beliebige Binärstrings kodiert sind. Formal verwenden wir hierzu eine injektive
Kodierungsfunktion σ : Zn → {0, 1}l, die jedem Exponenten i ∈ Zn eine (zufällig
gewählte) Kodierung σ(i) ∈ {0, 1}l des Elements αi zuweist.
Da ein generischer DLP-Algorithmus A zu Beginn der Rechnung nur die (Kodierungen
der) beiden Elemente α und β kennt, kann er durch wiederholte Ausführung von Gruppen-
und Potenzoperationen nur Elemente der Form αcβd berechnen. Der Einfachheit halber
nehmen wir an, dass A die Möglichkeit hat, für beliebige Paare (c, d) ∈ Zn×Zn die Kodie-
rung von αcβd in einem Rechenschritt zu erfragen. Seien also C = {(c1, d1), . . . , (cm, dm)
die während seiner Rechnung erfragten Paare.
Offensichtlich kann A den gesuchten Wert a = logα,G β genau dann berechnen, wenn
er für zwei verschiedene Paare (ci, di) und (cj, dj) die gleiche Antwort erhält. Wegen
αciβdi = αcjβdj gilt dann nämlich αci−cj = βdj−di und daher

a = (ci − cj)(dj − di)−1 mod n.
Genauer folgt aus der Gleichheit αci−cj = βdj−di , dass a = (ci − cj)(dj − di)−1 mod n,
und aus αci−cj 6= βdj−di , dass a 6≡n (ci − cj)(dj − di)−1 ist. Falls also A auf n− 1 Fragen
lauter verschiedene Antworten erhalten hat, lässt sich daraus auch auf den Wert von a
schließen.
Wir betrachten zuerst den einfacheren Fall, dass A nur nichtadaptive Fragen stellt (bspw.
ist der Shanks-Algorithmus ein nichtadaptiver generischer DLP-Algorithmus). Weiterhin
nehmen wir an, dass β (und damit der Wert a = logα,G) zufällig gewählt wird.
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Sei Good(C) = {(ci−cj)(dj−di)−1 mod n | 1 ≤ i < j ≤ m}. Dann kann A den Wert a im
Fall a ∈ Good(C) mit Sicherheit bestimmen. Dagegen gelingt dies A im Fall a 6∈ Good(C)
nur mit Wk (n − m)−1, und zwar unabhängig davon, nach welcher Strategie A den
Ausgabewert aus der Menge Zn −Good(C) auswählt. Somit gilt für die Erfolgswk γ von
A,

γ ≤ Pr[A gibt a aus | a ∈ Good(C)] · δ + Pr[A gibt a aus | a 6∈ Good(C)] · (1− δ)

≤ δ + (n−m)−1(1− δ) = m/n+ 1/n ≤

(
m
2

)
+ 1
n

,

wobei δ = Pr[a ∈ Good(C)] = m/n ist. Um also eine Erfolgswk γ = Ω(1) zu erreichen,
muss A mindestens m = Ω(

√
n) Fragen stellen.

Abschließend betrachten wir den Fall, dass A adaptive Fragen stellt. Da die Antworten
zufällig gewählte Binärstrings sind, können sie offensichtlich nicht bei der Suche nach
nachfolgenden Fragen von Nutzen sein. Der einzige Vorteil, den ein adaptiver generischer
DLP-Algorithmus A hat, besteht darin, dass er sofort die Rechnung beenden kann, sobald
er auf zwei verschiedene Fragen die gleiche Antwort erhält. Legen wir aber von vornherein
eine Obergrenze für die Anzahl der Fragen fest, so ergibt sich genau die gleiche Erfolgswk
wie im nichtadaptiven Fall.
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4 Digitale Signaturverfahren

Handschriftliche Signaturen

• Die durch die Unterschrift gekennzeichnete Person hat überprüfbar die Unterschrift
geleistet.
• Die Unterschrift ist nicht auf ein anderes Dokument übertragbar.
• Das signierte Dokument kann nachträglich nicht unbemerkt verändert werden.

Eine direkte Übertragung dieser Eigenschaften in die digitale Welt ist nicht möglich.
Lösung: Die digitale Unterschrift wird nicht physikalisch, sondern logisch (inhaltlich) an

das elektronische (digitale) Dokument gebunden.

Definition 51. Ein digitales Signaturverfahren besteht aus:
• endlicher Menge X von Dokumenten,
• endlicher Menge Y von Unterschriften,
• endlicher Menge K von Schlüsseln,
• einer Menge S ⊆ K ×K von Schlüsselpaaren (k̂, k),
• einem Signaturalgorithmus sig : K ×X → Y und
• einem Verifikationsalgorithmus ver : K ×X × Y → {0, 1}

mit
ver(k, x, y) =

{
1, sig(k̂, x) = y,

0, sonst

für alle (k̂, k) ∈ S.

Klassifikation von Angriffen gegen Signaturverfahren

Angriff bei bekanntem Verifikationsschlüssel (key-only attack)
Angriff bei bekannter Signatur (known signature attack): für eine Reihe von Doku-

menten x ist die zugehörige Signatur y = sig(k̂, x) bekannt, auf deren Auswahl der
Gegner keinen Einfluß hat.

Angriff bei frei wählbaren Dokumenten (chosen document attack): d.h. der Geg-
ner war für eine gewisse Zeit in der Lage, für von ihm gewählte Dokumente die
zugehörige Signatur in Erfahrung zu bringen und versucht nun für ein “neues” Doku-
ment die Unterschrift zu bestimmen.

adaptiver Angriff bei frei wählbaren Dokumenten: d.h. der Gegner wählt jeweils das
nächste Dokument in Abhängigkeit von der Signatur des vorigen.

Erfolgskriterien für die Fälschung digitaler Signaturen

uneingeschränktes Fälschungsvermögen (total break): d.h. der Gegner hat einen
Weg gefunden, die Funktion x 7→ sig(k̂, x), effizient zu berechnen ohne k̂ als Eingabe
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zu benutzen. (k ist ohnehin bekannt).
selektives Fälschungsvermögen (selective forgery): d.h. der Gegner kann für Doku-

mente seiner Wahl die zugehörigen Signaturen bestimmen (eventuell mit Hilfe des
legalen Unterzeichners).

nichtselektives (existentielles) Fälschungsvermögen: d.h. der Gegner kann für irgend-
ein Dokument x die zugehörige digitale Signatur bestimmen.

Beim RSA-Signaturverfahren ist K = {(a, n)|n = pq für Primzahlen p, q und a ∈
Z∗ϕ(n)} und S die Relation S = {(d, n, e, n) ∈ K ×K|de ≡ϕ(n) 1}. Signiert wird mittels
sig(d, n, x) := xd mod n, x ∈ X = Zn und die Verifikationsbedingung ist

ver(e, n, x, y) =
{

1, ye ≡n x ∀x, y ∈ Y = X

0, sonst.

Satz 52. Für alle (d, n, e, n) ∈ S und x, y ∈ Zn gilt:

ver(e, n, x, y) =
{

1, sig(d, n, x) = y,

0, sonst.

Beweis. Folgt direkt aus der Korrektheit des RSA-Kryptosystems. �

Es ist nicht schwer, eine nichtselektive Fälschung beibekanntem Verifikationsschlüssel
durchzuführen. Hierzu wählt der Gegner zu einer beliebigen Signatur y ∈ Y das Dokument
x = ye mod n. Diesen Angriff kann man vereiteln, indem man das Dokument x mit
Redundanz versieht (z.B. anstelle von x den Text xx signiert). Effizienter ist es jedoch,
nicht das gesamte Dokument x, sondern nur den Hashwert h(x) zu signieren.

Von h benötigte Eigenschaften

• h sollte eine Einweg-Hashfunktion sein, da sonst der Gegner zu h(x) ein passen-
des x bestimmen kann (zumindest wenn das Signaturverfahren anfällig gegen eine
existentielle Fälschung ist, wie etwa RSA).
• Angenommen der Gegner kennt bereits ein Paar (x, y) mit ver(k, h(x), y) = 1. Dann
sollte h zumindest schwach kollisionsresistent sein, da sonst der Gegner ein x′ mit
h(x′) = h(x) berechnen und das Paar (x′, y) bestimmen könnte.
• Falls sich der Gegner für bestimmte von ihm selbst gewählte Dokumente x die
zugehörige Signatur y beschaffen kann, so sollte h sogar kollisionsresistent sein, da
sonst der Gegner ein Kollisonspaar (x, x′) für h berechnen kann (und sich zu x die
zugehörige Signatur beschaffen). Dann gilt ver(k, x′, y) = 1.

Wird keine Hashfunktion benutzt, sind noch weitere Angriffe möglich.
• Falls der Gegner zwei signierte Dokumente (x1, y1), (x2, y2) mit ver(k, xi, yi) = 1

kennt, so ist eine existentielle Fälschung bei bekannten Signaturen möglich: Wegen
yei ≡n xi für i = 1, 2 folgt nämlich (y1y2)e ≡n ye1ye2 ≡n x1x2 und somit ver(k, x1x2 mod
n, y1y2 mod n) = 1.
• Weiterhin ist eine selektive Fälschung bei frei wählbaren Dokumenten denkbar. Kennt

der Gegner bereits die Signatur für ein beliebiges Dokument x′ ∈ Z∗n und kann er sich
die Signatur für das Dokument x′′ = x · x′−1 mod n beschaffen, so kann er daraus wie
oben die Signatur für das Dokument x berechnen.
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4.1 Das ElGamal-Signaturverfahren

Das Signaturverfahren von ElGamal (1985) ist wie das gleichnamige asymmetrische
Kryptosystem probabilistisch und beruht wie dieses auf dem diskreten Logarithmus.
Wir beschreiben nun das Signaturverfahren von El Gamal. Sei p eine große Primzahl und
α ein Erzeuger von Z∗p (p und α sind öffentlich). Jeder Teilnehmer B erhält als geheimen
Signierschlüssel eine Zahl a ∈ Z∗p = {1, . . . , p− 1} und gibt β = αa mod p als öffentlichen
Verifikationsschlüssel bekannt:
Signierschlüssel: k̂ = (p, α, a),
Verifikationsschlüssel: k = (p, α, β).
Signaturerstellung: Um ein Dokument x ∈ Zp−1 zu signieren, wählt der Signierer
zufällig eine Zahl z ∈ Z∗p−1 und berechnet sig(k̂, x, z) = (γ, δ) mit γ ≡ αz mod p und
δ = (x− aγ)z−1 mod p− 1. Falls δ = 0 ist, muss eine neue Zufallszahl z gewählt werden.
Verifikation: ver(k, x, (γ, δ)) = 1, falls βγγδ ≡p αx ist.

Lemma 53. Die Bedingung βγγδ ≡p αx ist genau dann erfüllt, wenn es ein z ∈ Z∗p−1

mit sig(k̂, x, z) = (γ, δ) gibt.

Beweis. Wegen γ ≡ αz mod p ist z durch γ (und γ durch z) eindeutig bestimmt. Weiter
ist βγγδ ≡p αaγαzδ ≡p αaγ+zδ ≡(∗)

p αx. Da α ein Erzeuger von Z∗p ist, gilt die Kongruenz
(∗) genau dann, wenn aγ + zδ ≡p−1 x ist. �

Zur Sicherheit des El Gamal-Systems

1. Falls Oskar den diskreten Logarithmus bestimmen kann, so kann er den geheimen
Schlüssel a = logα β berechnen.

2. Als nächstes betrachten wir verschiedene Szenarien für einen selektiven Angriff bei
gegebenem Klartext x.
a) Oskar wählt zuerst γ und versucht ein passendes δ zu finden. Mit αx ≡ βγγδ mod

p folgt δ = logγ αxβ−γ. D.h. die Bestimmung von δ ist Instanz des dikreten
Logarithmus.

b) Oscar wählt zuerst δ und versucht dann γ aus αx ≡ βγγδ mod p zu bestimmen.
Dazu ist kein effizientes Verfahren bekannt.

c) Oscar wählt γ und δ gleichzeitig. Auch hierfür ist kein effizientes Verfahren bekannt.
3. Versucht Oskar bei einem nichtselektiven Angriff, zuerst γ und δ zu wählen und

dazu ein passendes Dokument x zu finden, so muss er den diskreten Logarithmus
x = logα βγγδ bestimmen.

4. Wir können jedoch eine existentielle Fälschung wie folgt durchführen. Wähle beliebige
Zahlen i ∈ Zp−1, j ∈ Z∗p−1 und setze γ = αiβj mod p. Dann ist (x, (γ, δ)) genau dann
eine gültige Signatur, wenn αx ≡p βγ(αiβj)δ ist. Dies gilt wiederum genau dann, wenn
αx−iδ ≡p βγ+jδ ist. Diese Bedingung lässt sich erfüllen, indem wir δ = −γj−1 mod p−1
und x = iδ mod p− 1 setzen.

Bemerkung 54. Bei der Benutzung des El Gamal-Signaturverfahrens sind folgende
Punkte zu beachten.
1. Die Zufallszahl z muss geheim gehalten werden.
2. Zufallszahlen dürfen nicht mehrfach verwendet werden.
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Kennt nämlich Oskar zu einer Signatur (x, (γ, δ)) die Zufallszahl z, so kann er wegen
δ ≡p−1 (x− aγ)z−1 die geheime Zahl a = (−zδ + x)γ−1 mod p− 1 berechnen.
Sind andererseits (x1, (γ, δ1)) und (x2, (γ, δ2)) mit demselben z generierte Signaturen,
dann folgt wegen βγγδ1 ≡p αx1 und βγγδ2 ≡p αx2 ,

γδ1−δ2 ≡p αx1−x2 ⇒ αz(δ1−δ2) ≡p αx1−x2 ⇒ z(δ1 − δ2) ≡p−1 x1 − x2.

Aus dieser Kongruenz lassen sich d = ggT (δ1− δ2, p− 1) Kandidaten für z gewinnen und
daraus wie oben a berechnen, falls d nicht zu groß ist.

4.2 Das Schnorr-Signaturverfahren

Da die Primzahl p beim El Gamal-Signaturverfahren mindestens eine 512-Bit-Zahl (besser
1024-Bit-Zahl) sein sollte, beträgt die Signaturlänge 1024 bzw 2048 Bit. Folgende Variante
des ElGamal-Signaturverfahrens, die als eine Vorstufe zum DSA betrachtet werden kann,
wurde von Schnorr vorgeschlagen.
Die zugrunde liegende Idee ist folgende: Indem wir für α ein Element der Ordnung q mit
q ≈ 2160 wählen, reduziert sich die Signaturlänge auf 2 · 160 = 320 Bit. Die Berechnungen
werden aber nach wie vor modulo p mit p ≈ 21024 ausgeführt, so dass das Problem des
diskreten Logarithmus zur Basis α in Z∗p hart bleibt.
Sei g ein Erzeuger von Z∗p, wobei p die Bauart p−1 = mq für eine Primzahl q = p−1

m
≈ 2160

hat. Dann ist α = g(p−1)/q ein Element in Z∗p der Ordnung ordp(α) = q. Weiter sei
h : {0, 1}∗ → Zq eine Hashfunktion, die jedem Dokument x ∈ X = {0, 1}∗ einen
Hashwert in Zq zuordnet.

Signierschlüssel: k̂ = (p, q, α, β, a), a ∈ Zq,
Verifikationsschlüssel: k = (p, α, β), β = αa mod p.
Signaturerstellung: Um ein Dokument x ∈ X zu signieren, wählt der Signierer zufällig
eine geheime Zahl z ∈ Z∗q und berechnet

sig(k̂, x, z) = (γ, δ),

wobei
γ = h(x bin(αz mod p)) δ = (z + aγ) mod q ver(k, γ, δ) =1, h(x bin(αδβ−γ mod p)) = γ

0, sonst

Der Signaturraum ist also Y := Zq × Zq.
Verifikation: ver(k, γ, δ) = 1, falls h(xbin(αδβ−γ mod p)) = γ ist.

4.3 Der Digital Signature Algorithm (DSA)

(Standard in USA seit 1994)
Hierbei wird das El Gamal-Verfahren wie folgt modifiziert:
1. δ als Lösung von zδ − aγ ≡p−1 x (d.h. δ = (x+ aγ)z−1) ; Verifikationsbedingung:
αxβγ ≡p γδ (αxαaγ ≡p αz(x+aγ)z−1)

2. Ist x+ aγ ∈ Z∗p−1, dann existiert δ−1 = (x+ aγ)−1z mod p− 1 ; Verifikation durch:
αxδ

−1
βγδ

−1 ≡p γ
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3. Sei nun wie bei Schnorr p = mq+1 mit q ≈ 2160 prim und sei α ∈ Z∗p mit ordp(α) = q.
Dann kann bei der Verifikation von αxδ−1

βγδ
−1 ≡p γ auf der Exponentenebenemodulo

q gerechnet werden. Da γ jedoch rechts nicht als Exponent, sondern als Basiszahl,
vorkommt, muss auch die linke Seite modulo q reduziert werden.

Beim DSA wird eine 512-1024 Bit Primzahl p der Form rq + 1 benutzt, wobei q eine
160 Bit Primzahl und α ∈ Z∗p mit ordp(α) = q ist. Weiter ist X = Z∗p und Y = Zq × Z∗q.
Der Signierschlüssel hat die Form k̂ = (p, q, α, a), wobei a ∈ Z∗q ist. Der zugehörige
Verifikationsschlüssel ist k = (p, q, α, β) mit β = αa mod p.
Zu gegebenem x ∈ X wird zufällig eine geheime Zahl z ∈ Z∗p gewählt.

sig(k̂, z, x) = (γ, δ), wobei

γ = (αz mod p) mod q
δ = (x+ aγ)z−1 mod q ∈ Z∗q

(falls δ ≡q 0 muss ein neues z gewählt werden). Die Verifikationsbedingung ist

ver(k, x, γ, δ) =

1, (αeβd mod p) mod q = γ,

0, sonst,

wobei e = xδ−1 mod q und d = γδ−1 mod q ist.
Im Fall sig(k̂, z, x) = (γ, δ) ist

αeβd ≡p αxδ
−1
αaγδ

−1 ≡p αδ
−1(x+aγ) ≡p α(x+aγ)−1z(x+aγ) ≡p αz

woraus sich
(αeβd mod p) mod q = (αz mod p) mod q = γ

ergibt.

Beispiel 55. q = 101, p = 78q + 1 = 7879, g = 3 (ordp(3) = p− 1)

; α = 378 mod p = 170 hat Ordnung q

Wir wählen a = 75 ∈ Z∗q, d.h. β = αa mod p = 17075 mod p = 4547 Um das Dokument
x = 1234 ∈ Z∗p zu signieren, wählen wir die geheime Zufallszahl z = 50 ∈ Z∗p (; z−1 = 99)
und erhalten dann

γ = (17050 mod 7879) mod 101
= 2518 mod 101
= 94

δ = (1234 + 75 · 94) · 99 mod 101
= 97 (; δ−1 = 25)

d.h. sig(p, q, α, z, x) = (94, 97), wobei k̂ = (p, q, α, a)
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Um diese Signatur zu prüfen berechnen wir:

e = xδ−1 mod q
= 1234 · 25 mod 101
= 45

d = γδ−1 mod q
= 94 · 25 mod 101
= 27

; (αeβd mod p) mod q = (17045454727 mod 7879) mod 101 = 94

4.4 ECDSA (Elliptic Curve DSA)

Im Jahr 2000 als FIPS 186-2 als Standard deklariert.

Definition 56. Sei E eine elliptische Kurve über einem endlichen Körper. Sei A ∈ E
ein Punkt der Ordnung q (q prim), so dass das Diskrete-Logarithmus-Problem zur Basis
A in E schwierig ist.

X = {0, 1}∗, Y = Z∗q × Z∗q. öffentlicher Verifikationsschlüssel: (p, q, E,A,B),
wobei B = m · A geheimer Signierschlüssel: (p, q, E,A,m), m ∈ Z∗q.
sig(k̂, z, x) = (γ, δ), wobei

(u, v) := z · A
γ := u mod q
δ := (SHA-1(x) +mγ)z−1 mod q

ver(k, x, γ, δ) =

1, u mod q = γ

0, sonst
wobei

(u, v) := eA+ dB

e := SHA-1(x)δ−1 mod q
d := γδ−1 mod q

Korrektheit der Verifikation beim ECDSA:

(u, v) = eA+ dB

= (x′δ−1)A+ (γδ−1)mA
= (x′ +mγ)δ−1A

= zA (da (x′ +mγ)δ−1 ≡q z)

Beispiel 57. Signieren und Verifizieren: Sei E über Z11 definiert durch γ2 = x3 + x+ 6
Wir wählen A = (2, 7), m = 7 → p = 11, q = 13, B = 7A = (7, 2)
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Annahme: Wollen Dokument x mit SHA-1(x) = 4 mit dem Signierschlüssel k̂ =
(p, q, E,A,m) und der Zufallszahl r = 3 signieren.

(u, v) := zA = 3 · (2, 7) = (8, 3)
γ := n mod q = 8, δ = (4 + 7 · 8)3−1 mod 13 = 7

sig(k̂, z, x) = (8, 7)

Verifikation von (γ, δ) = (8, 7) unter k = (p, q, E,A,B):

e := x′δ−1 mod q = 4 · 7−1 mod 13 = 4 · 2 mod 13 = 8
d := yδ−1 mod q = 8 · 2 mod 13 = 3

(u, v) := eA+ dB = 8 · (2, 7) + 3 · (7, 2) = (8, 3)

; u mod q = 8 = γ

4.5 One-time Signatur (Lamport)

Sei f : U → V eine injektive Einwegfunktion. Der Dokumentenraum ist X = {0, 1}n und
der Signaturraum ist Y = Un.
Der Signierschlüssel ist eine beliebige Folge k̂ = (ui,b)i=1,...,n;b=0,1 von 2n paarweise
verschiedenen Elementen aus U .
Der zugehörige Verifikationsschlüssel ist dann k = (vi,b)i=1,...,n;b=0,1 mit vi,b = f(ui,b) für
alle (i, b) ∈ {1, . . . , n} × {0, 1}.
Signaturerstellung: Die Signatur für ein Dokument x = x1 . . . xn ∈ X ist

sig(k̂, x) = u1,x1 . . . un,xn︸ ︷︷ ︸
y

.

Verifikation:

ver(k, x, u1, . . . , un︸ ︷︷ ︸
y

) :=

1, f(ui) = vi,xi
für i = 1, . . . , n,

0, sonst.

Beispiel 58. Wir wählen als Einwegfunktion eine Funktion der Form f : Z∗p → Z∗p mit
f(u) = gu mod p, wobei g ein Erzeuger von Z∗p ist.
Z.B. sei p = 7879 und g = 3, also f(u) = 3u mod 7879. Weiter sei n = 3.
Dann erhalten wir für den Signierschlüssel k̂ = (u1,0, u1,1, u2,0, u2,1, u3,0, u3,1), wobei
u1,0 = 5831, u1,1 = 803, u2,0 = 4285, u2,1 = 735, u3,0 = 2467, u3,1 = 6449 den zugehörigen
Verifikationsschlüssel k = (v1,0, v1,1, v2,0, v2,1, v3,0, v3,1), wobei v1,0 = 2009, v1,1 = 4672,
v2,0 = 268, v2,1 = 3810, v3,0 = 4721 und v3,1 = 5731 ist. Die Signatur für das Dokument
x = 110 ist dann

sig(k̂, x) = (u1,1, u2,1, u3,0) = (u1, u2, u3) = (803, 735, 2467).

Die Verifikation ergibt den Wert ver(k, x, u1, u2, u3) = 1, da
i = 1 : f(u1) = f(803) = 3803 mod 7879 = 4672 = v1,x1 i = 2 : f(u2) = f(735) =
3735 mod 7879 = 3810 = v2,x2 i = 3 : f(u3) = f(2467) = 32467 mod 7879 = 4721 =
v3,x3
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ist.

Zum Nachweis der Sicherheit des Signaturverfahrens nehmen wir an, dass f : U → V
eine Bijektion ist und dass ein Algorithmus Lamport-Fälschung(k) existiert, der bei
Eingabe eines Verifikationsschlüssel k eine existentielle Fälschung (x, y) mit ver(k, x, y) =
1 berechnet. Betrachte folgenden probabilistischen Algorithmus:

Prozedur Lamport-Urbild(v)
1 wähle zufällig einen Verifikationsschlüssel k = (vi,b)i=1,...,n;b=0,1
2 falls v nicht in k vorkommt, ersetze für ein zufällig gewähltes

Indexpaar (j, a) den Wert vj,a durch v
3 (x1, . . . , xn, u1, . . . , un) =: Lamport-Fälschung(k)
4 if xj = a then
5 output (uj)
6 else
7 output (‘?‘)

Satz 59. Unter den genannten Voraussetzungen gibt Lamport-Urbild(v) für ein
zufällig aus V gewähltes v mit Wahrscheinlichkeit 1

2 ein Urbild u von v aus.

Beweis. Im Fall xj = a gibt der Algorithmus Lamport-Urbild ein Urbild u = uj von
v aus:

f(uj) = vj,xj
= vj,a = v.

Daher reicht es zu zeigen:

Probv∈RV [Lamport-Urbild(v) = ‘?‘] = 1
2 .

Sei S die Menge aller möglichen Verifikationsschlüssel k und für v ∈ V sei Sv die Menge
aller k ∈ S, die v enthalten. Tv bezeichne die Menge aller k ∈ Sv, bei deren Wahl
Lamport-Urbild(v) Erfolg hat. Weiter sei tv = ‖Tv‖, sv = ‖Sv‖ und s = ‖S‖.
Da jeder der s Verifikationsschlüssel k ∈ S zu der Summe∑v∈V tv einen Wert von genau n
beiträgt (für jedes i = 1, . . . , n ist k = (vi,b)i=1,...,n;b=0,1 in genau einer der beiden Mengen
Tvi,0 und Tvi,1 enthalten), ist ∑v∈V tv = ns. Dagegen trägt jedes k zu der Summe ∑v∈V sv
den Wert 2n bei (k = (vi,b)i=1,...,n;b=0,1 ist genau in den 2n Mengen Tvi,b

enthalten),
weshalb ∑v∈V sv = 2ns ist. Da aus Symmetriegründen die Zahlen sv alle gleich sind, folgt
sv = 2ns/‖V ‖.
Sei nun pv die Erfolgswahrscheinlichkeit von Lamport-Urbild(v), d.h. pv = tv/sv. Dann
ergibt sich die durchschnittliche Erfolgswahrscheinlichkeit zu

p =
∑
pv
‖V ‖

= 1
‖V ‖

∑
tv/sv = ns

2ns = 1
2 .

�

Die Lamport-Signatur hat aus praktischer Sicht einige Nachteile, die sich jedoch teilweise
beheben lassen (siehe Übungen). So lässt sich sowohl die Länge des privaten Signierschlüs-
sel (mittels Pseudozufallsgeneratoren) als auch des öffentlichen Verifikationsschlüssels
(mittels Hash-Listen) verringern. Zudem können bei Verwendung von Hash-Bäumen mit
demselben Schlüsselpaar auch mehrere Nachrichten signiert und verifiziert werden.
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4.6 Full Domain Hash (FDH) Signaturen

Sei F = {fk|k ∈ K} eine Familie von Falltür-Permutationen auf {0, 1}n, d.h. für jedes
k ∈ K gilt:
• fk ist Einweg-Permutation auf {0, 1}n.
• Es existiert ein k̂ ∈ K mit fk̂(fk(x)) = x für alle x ∈ {0, 1}n.

Weiter sei G : {0, 1}∗ → {0, 1}n eine Zufallsfunktion, d.h. die ZVn Xx = G(x) sind
stochastisch unabhängig und es gilt

Prob[G(x) = y] = 2−n ∀x ∈ {0, 1}∗ und y ∈ {0, 1}n.

G modelliert eine Hashfunktion H : {0, 1}∗ → {0, 1}n mit optimalen kryptographischen
Eigenschaften (vgl. Zufalls-Orakel-Modell, ZOM), deren Wertebereich den gesamten
Definitionsbereich der Funktionen fk ausfüllt (full domain hash). In der Praxis wird für
G eine konkrete Hashfunktion (etwa SHA-1) eingesetzt, die meist nicht den gesamten
Definitionsbereich der Funktionen fk ausschöpft.
Die auf F und G basierende FDH-Signatur funktioniert wie folgt. Um für ein Dokument
x ∈ X = {0, 1}∗ eine Signatur y ∈ Y = {0, 1}n zu berechnen, wird ein Signierschlüssel k̂
benutzt:

sig(k̂, x) := fk̂(G(x)).
Diese wird unter Verwendung des zugehörigen Verifikationsschlüssels k wie folgt überprüft:

ver(k, x, y) =

1, fk(y) = G(x),
0, sonst.

Z.B. beruht das RSA-Signaturverfahren in Verbindung mit einer Hashfunktion auf diesem
Prinzip. Ein Problem hierbei ist allerdings, dass der Wertebereich von in der Praxis
verwendeten Hashfunktionen die Menge {0, 1}160 ist und für die RSA-Falltür-Permutation
ein Definitionsbereich von {0, 1}n mit n ≈ 1024 zu wählen ist, um eine ausreichend große
Sicherheit zu erreichen. In der Praxis behilft man sich damit, dass man die 160-Bit-
Hashwerte durch eine deterministische Paddingfunktion auf 1024-Bit aufbläht, was die
Sicherheit allerdings mindern kann.

Sicherheitsanalyse der FDH-Signatur im ZOM

Sei FDH-Fälschung ein probabilistischer Algorithmus, der bei Eingabe des öffentlichen
Verifikationsschlüssels k mit Wahrscheinlichkeit ε eine existentielle Fälschung (x, y) mit
ver(x, y) = 1 ausgibt und sei q die Anzahl der verschiedenen Orakelfragen x1, . . . , xq von
FDH-Fälschung an G. Wir nehmen an, dass ε > 2−n ist, da für ein beliebiges Dokument
x ∈ {0, 1}∗ ein zufällig gewähltes y ∈ {0, 1}n mit Wahrscheinlichkeit 2−n eine gültige
Signatur liefert.
Betrachte folgenden Invertierungsalgorithmus für fk.

Prozedur FDH-Invert(k, z0)
1 wähle zufällig j ∈ {1, . . . , q}
2 simuliere FDH-Fälschung(k), wobei die i-te Orakelfrage xi, 1 ≤ i ≤ q,

im Fall i = j durch z0 und sonst durch ein zufällig gewähltes
z ∈ {0, 1}n beantwortet wird.
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3 if FDH-Fälschung(k) = (x, y) ∧ fk(y) = z0 then output (y)
4 else output (‘?‘)

Der nächste Satz zeigt, dass FDH-Invert bei Eingabe eines beliebigen Verifikations-
schlüssels k ∈ K die Funktion fk an einem zufällig gewählten Wert z0 ∈ {0, 1}n mit einer
von ε und q abhängigen Erfolgswahrscheinlichkeit ε′ invertiert.

Satz 60. Falls FDH-Fälschung bei Eingabe k nach genau q Fragen an G eine gültige
Fälschung (x, y) mit Wahrscheinlichkeit ε > 2−n ausgibt, findet FDH-Invert bei Eingabe
von k und einem zufällig gewählten String z0 ∈ {0, 1}n mit Wahrscheinlichkeit

ε′ ≥ ε− 2−n
q

ein Urbild y von z0 für die Funktion fk.

Beweis. Da die Eingabe z0 zufällig gewählt wird, erhält FDH-Fälschung als Antwort
auf seine Orakelfragen x1, . . . , xq zufällig gewählte Strings z, was dem ZOM entspricht.
Daher ist die Wahrscheinlichkeit, dass FDH-Fälschung(k) bei der Simulation Erfolg
hat, also ein Paar (x, y) mit G(x) = fk(y) ausgibt, genau ε. Falls FDH-Fälschung das
Paar (x, y) ausgibt, ohne den Wert G(x) zu erfragen, so nimmt G(x) den Wert fk(y) mit
Wahrscheinlichkeit 2−n an, d.h.

Pr[FDH-Fälschung(k) hat Erfolg | x 6∈ {x1, . . . , xn}] = 2−n,

was Pr[FDH-Fälschung(k) hat Erfolg ∧ x 6∈ {x1, . . . , xn}] ≤ 2−n impliziert. Wegen

ε = Pr[FDH-Fälschung(k) hat Erfolg ∧ x ∈ {x1, . . . , xn}]
+Pr[FDH-Fälschung(k) hat Erfolg ∧ x 6∈ {x1, . . . , xn}]

≤ Pr[FDH-Fälschung(k) hat Erfolg ∧ x 6∈ {x1, . . . , xn}] + 2−n,

erhalten wir Pr[FDH-Fälschung hat Erfolg ∧ x ∈ {x1, . . . , xn}] ≥ ε − 2−n. Da die
Frage xj ∈ {x1, . . . , xq}, die mit z0 beantwortet wird, zufällig ausgewählt wird und
FDH-Fälschung keinerlei Information über j erhält, folgt

Pr[FDH-Invert hat Erfolg] ≥ Pr[FDH-Fälschung hat Erfolg ∧ x = xj]

= Pr[FDH-Fälschung hat Erfolg ∧ x ∈ {x1, . . . , xq}]
q

≥ (ε− 2−n)/q.
�

Falls sich also fk nur mit einer sehr kleinen Wk ε′ effizient invertieren lässt, so gelingt
einem ähnlich effizienten Gegner, der nicht mehr als q Hashwertberechnungen durchführt
im ZOM höchstens mit Wk qε′ + 2−n eine existentielle Fälschung für die FDH-Signatur.
Ein ähnliches Resultat lässt sich auch für den Fall beweisen, dass der Gegner einen
Angriff mit frei wählbaren Dokumenten ausführt.

4.7 Verbindliche Signaturen (undeniable signatures)

In manchen Fällen ist es für den Unterzeichner eines Dokumentes nicht wünschenswert,
dass jeder die von ihm geleistete Unterschrift verifizieren kann.
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Beispiel 61. Eine Softwarefirma möchte sicherstellen, dass nur rechtmässige Käufer
(keine SW-Piraten) ihre Signatur, die u.a. Virusfreiheit garantiert, verifizieren können.

Lösung: Zur Verifikation wird die Kooperation des Unterzeichners Alice benötigt.
Wie kann man verhindern, dass sich Alice absichtlich unkooperativ verhält, nur damit
eine von ihr geleistete Unterschrift als falsch eingestuft wird?
Lösung: Es gibt ein Ableugnungsprotokoll (disavowal protocol) mit dem Alice gefälschte
Unterschriften als solche entlarven kann. Scheitert auch dieses Protokoll so liegt der
Verdacht nahe, dass die fragliche Unterschrift doch von Alice stammt.

Das Signaturverfahren von Chaum und van Antwerpen

Bei diesem Signaturverfahren wird eine Primzahl p = 2q + 1 benutzt, wobei auch q prim
ist, so dass das Diskrete Logarithmus Problem in Z∗p hart ist. Sei α ∈ Z∗p ein Element der
Ordnung q und sei G = {αa|a ∈ Zq}, die von α in Z∗p erzeugte Untergruppe.
Der Dokumenten- und Signaturraum ist X = Y = G. Der Signierschlüssel hat die Form
k̂ = (p, α, a), a ∈ Z∗q und der zugehörige Verifikationsschlüssel ist k = (p, α, β) mit
β = αa mod p. Der Signieralgorithmus berechnet sig(k̂, x) = xa mod p.
Will Bob eine von Alice geleistete Unterschrift y ∈ G für ein Dokument x ∈ G verifizieren,
so führt er zusammen mit Alice folgendes Protokoll aus.
Verifikationsprotokoll:
1. Bob wählt zufällig e1, e2 ∈ Zq und und sendet c = ye1βe2 mod p an Alice.
2. Alice sendet d = ca

−1 mod q mod p zurück an Bob.
3. Bob akzeptiert y als echt, falls d ≡p xe1αe2 ist.

Bemerkung 62. Die Wahl von p der Form p = 2q+1 mit q prim dient folgenden Zielen:
• ‖G‖ ist prim (erlaubt die Berechnung von a−1 mod ‖G‖).
• ‖G‖ ist für vorgegebenes p möglichst groß.

Es ist leicht zu sehen, dass Bob eine echte Signatur y akzeptiert, falls Alice kooperiert.
Wegen

β ≡p αa

folgt
βa
−1 ≡p αa·a

−1 ≡p α

und wegen
y ≡p xa

folgt
ya
−1 ≡p xa·a

−1 ≡p x.

Somit ist
d = ca

−1 = (ye1βe2)a−1 = ya
−1e1βa

−1e2 = xe1αe2 .

Beispiel 63. Sei p = 467 = 2 · 233 + 1 mit q = 233. Da g = 2 ein Erzeuger von
Z∗p ist, hat α = g2 = 4 die gewünschte Ordnung q = p−1

2 . Da α die Untergruppe
QRp der quadratischen Reste erzeugt, ist G = QRp. Wählen wir den Signierschlüssel
k̂ = (p, α, a) = (467, 4, 101), so erhalten wir k = (p, α, β) = (467, 4, 449) als zugehörigen
Verifikationsschlüssel. Die Signatur für x = 119 ∈ G berechnet sich wie folgt:
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sig(k̂, x) = xa mod p = 119101 mod 467 = 129 = y

Verifikation von y = 129 für x = 119 unter k:
1. Bob wählt e1, e2 ∈ Zq (e1 = 38, e2 = 397 = 164) und sendet c = ye1βe2 mod p =

12938449164 mod 467 = 13 an Alice.
2. Alice sendet d = ca

−1 mod q mod p = 9 an Bob zurück.
3. Bob akzeptiert, da d = xe1αe2 = 119384164 mod 467 = 9 gilt.

Behauptung 1. Im Fall y 6≡p xa akzeptiert Bob y mit Wahrscheinlichkeit 1/q.

Beweis. Da zu y, β, c ∈ G und zu e1 ∈ Zq genau ein e2 ∈ Zq mit

c ≡p ye1βe2 (4.1)

existiert, führen je q Paare (e1, e2) ∈ Zq × Zq auf dasselbe c. Aus der Sicht von Alice, die
nur c kennt, sind diese q Paare alle gleichwahrscheinlich. Wir zeigen nun, dass für jedes
d ∈ G genau eines dieser q Paare die Kongruenz

d ≡p xe1αe2 (4.2)

erfüllt, weshalb Bob mit Wahrscheinlichkeit 1/q akzeptiert.
Seien i, j, k, l ∈ Zq die zu c, d, x, y ∈ G gehörigen Exponenten, d.h. c ≡p αi, . . . , y ≡p αl.
Dann sind die Kongruenzen (4.1) und (4.2) äquivalent zu

c ≡p ye1βe2

d ≡p xe1αe2
⇔ αi ≡p αle1 · αae2

αj ≡p αke1 · αe2
⇔ i ≡q le1 + ae2

j ≡q ke1 + e2
⇔
(
l a

k 1

)
︸ ︷︷ ︸

A

(
e1
e2

)
≡q

(
i

j

)
.

Wegen αl ≡p y 6≡p xa ≡p αka folgt l 6≡q ka und daher ist detA 6≡q 0. �

Möchte nun Alice Bob gegenüber nachweisen, dass eine Signatur y gefälscht ist, so führen
beide folgendes Protokoll aus.

Ableugnungsprotokoll
1 Bob wählt zufällig e1, e2 ∈ Zq und sendet c = ye1βe2 mod p an Alice.
2 Alice sendet d = ca

−1 mod p zurück.
3 Bob testet, ob d 6≡p xe1αe2 ist.
4 Bob wählt zufällig f1, f2 ∈ Zq und sendet C = yf1βf2 mod p an Alice.
5 Alice sendet D = Ca−1 mod p zurück.
6 Bob testet, ob D 6≡p xf1αf2 ist.
7 Bob erkennt y als gefälscht an, falls mindestens einer der Tests

in Schritt 3) oder 6) erfolgreich war und (dα−e2)f1 ≡p (Dα−f2)e1

gilt.

Bei den Schritten 1.-3. und 4.-6. handelt es sich jeweils um eine fehlgeschlagene Verifikation
der Unterschrift y (sofern der Test von Bob in Zeile 3 bzw. 6 positiv ausfällt). In Schritt
7 führt Bob zusätzlich einen Konsistenztest aus, um sich davon zu überzeugen, dass Alice
die Zahlen d und D gemäß dem Protokoll gewählt hat.

Beispiel 64. Sei p = 467, q = 233, α = 4, a = 101, β = 449. Wir nehmen an, dass das
Dokument x = 286 mit der Alice zugeschriebenen Signatur y = 81 unterschrieben ist und
Alice Bob davon überzeugen möchte, dass y gefälscht ist.
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1. Bob wählt e1 = 45, e2 = 237 und sendet c = 305 an Alice.
2. Alice antwortet mit d = ca

−1 = 109
3. Bob verifiziert, dass 286454237 ≡p 149 6≡p 109 gilt.
4. Bob wählt f1 = 125, f2 = 9 und sendet C = 72 an Alice.
5. Alice antwortet mit D = Ca−1 = 68
6. Bob verifiziert, dass 28612549 ≡p 25 6≡p 109 gilt.
7. Bon erkennt y also gefälscht an, da (109 · 4−237)125 ≡p 188 ≡p (68 · 4−9)45 ist, also

die Konsistenzbedingung erfüllt ist.

Es bleibt zu zeigen, dass Alice zwar Bob mit hoher Wahrscheinlichkeit von der Falschheit
einer Signatur y 6≡p xa überzeugen kann, es ihr aber nicht gelingt, Bob von der Falschheit
einer echten Signatur y ≡p xa zu überzeugen.

Behauptung 2. Im Fall y 6≡p xa erkennt Bob y mit Wahrscheinlichkeit 1 − 1
q2 als

gefälscht an, falls sich beide an das Ableugnungsprotokoll halten.

Beweis. Nach vorigem Satz beträgt die Wahrscheinlichkeit, dass beide Tests in Schritt 3.
und 6. fehlschlagen genau 1

q2 . Wegen

d ≡p ca
−1
, c ≡p ye1βe2 , β ≡p αa

folgt

(dα−e2)f1 ≡p ((ye1βe2)a−1
α−e2)f1

≡p ye1a−1f1βe2a−1f1α−e2f1

≡p ye1a−1f1αe2f1α−e2f1

≡p ye1a−1f1

Analog ergibt sich aus
D ≡p Ca−1

, C ≡p yf1βf2 , β ≡p αa

(Dα−f2)e1 ≡p ((yf1βf2)a−1
α−f2)e1

≡p yf1a−1e1

≡p (dα−e2)f1

d.h. die Konsistenzbedingung wird mit Wahrscheinlichkeit 1 erfüllt. �

Behauptung 3. Im Fall y ≡p xa erkennt Bob y mit Wahrscheinlichkeit ≤ 1
q
als gefälscht

an, auch wenn sich Alice nicht an das Ableugnungsprotokoll hält.

Beweis. Bob erkennt y nur dann als gefälscht an, wenn

(d 6≡p xe1αe2 oder D 6≡p xf1αf2) und (dα−e2)f1 ≡p (Dα−f2)e1

gilt. Da die beiden Fälle d 6≡p xe1αe2 und D 6≡p xf1αf2) symmetrisch sind, reicht es einen
davon zu betrachten.
Wir nehmen also an, dass Alice eine Zahl d an Bob sendet mit d 6≡p xe1αe2 . Nachdem Alice
die Zahl C in Zeile 4 von Bob erhalten hat, weiß sie nur, dass das von Bob gewählte Paar
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(f1, f2) die Kongruenz C ≡p yf1βf2 erfüllt. Wie wir bereits im Beweis zu Behauptung 1
gesehen haben, trifft dies auf genau q Paare zu. Wir zeigen nun, dass für jedes D ∈ G
genau eines dieser q Paare die Konsistenzbedingung

(dα−e2)f1 ≡p (Dα−f2)e1

erfüllt. Dies beweist, dass Bob y mit Wahrscheinlichkeit höchstens 1/q als gefälscht
akzeptiert.
Sei u = dα−e2 und seien i, j, k, l ∈ Zq die zu C,D, x, u gehörigen Exponenten, d.h.
C ≡p αi, . . . , u ≡p αl. Dann gilt

C ≡p yf1βf2

(dα−e2)f1 ≡p (Dα−f2)e1
⇔ i ≡q kaf1 + af2

lf1 ≡q je1 − e1f2
⇔
(
ka a

l e1

)
︸ ︷︷ ︸

A

(
f1
f2

)
≡q

(
i

je1

)
.

Wegen d 6≡p xe1αe2 folgt l 6≡q e1k und daher ist detA = kae1 − al = a(ke1 − l) 6≡q 0. �
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