Vorlesungsskript
Kryptologie 2

Sommersemester 2010

Prof. Dr. Johannes Kobler

Humboldt-Universitat zu Berlin
Lehrstuhl Komplexitat und Kryptografie

27. Juni 2010

1

Inhaltsverzeichnis

1

Kryptografische Hashverfahren

1.1 Einfilhrung

1.2 Schlissellose Hashfunktionen (MDCs)
1.2.1 Das Zufallsorakelmodell (ZOM)
1.2.2 Vergleich von Sicherheitsanforderungen
1.2.3 Iterierte Hashfunktionen
1.2.4 Die Merkle-Damgard-Konstruktion
1.2.5 Die MD4-Hashfunktion
1.2.6 Die MD5-Hashfunktion
1.2.7 Die SHA-1-Hashfunktion
1.2.8 Die SHA-2-Familie
1.2.9 Kryptoanalyse von Hashfunktionen

1.3 Nachrichten-Authentikationscodes (MACs)
1.3.1 Angriffe gegen symmetrische Hashfunktionen
1.3.2 Informationstheoretische Sicherheit von MACs
1.3.3 MAGs auf der Basis einer schliissellosen Hashfunktion
1.3.4 CBC-MACs
1.3.5 Kombination einer Hashfunktion mit einem MAC (HMAC)

Elliptische Kurven
2.1 Elliptische Kurven tiber den reellen Zahlen
2.2 Elliptische Kurven tiber endlichen Kérpern

Algorithmen zur Berechnung des diskreten Logarithmus

3.1 Die Rho-Algorithmen von Pollard
3.2 Der Pohlig-Hellman-Algorithmus
3.3 Die Index-Calculus-Methode
3.4 Eine untere Komplexitatsschranke fiir generische DLP-Algorithmen

Digitale Signaturverfahren

4.1 Das ElGamal-Signaturverfahren 000
4.2 Das Schnorr-Signaturverfahren 00000
4.3 Der Digital Signature Algorithm (DSA)
4.4 ECDSA (Elliptic Curve DSA)
4.5 One-time Signatur (Lamport)
4.6 Full Domain Hash (FDH) Signaturen
4.7 Verbindliche Signaturen (undeniable signatures)

1 Kryptografische Hashverfahren

1.1 Einfiihrung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
o Vertraulichkeit
— Geheimhaltung
— Anonymitat (z.B. Mobiltelefon)
— Unbeobachtbarkeit (von Transaktionen)
o [ntegritat
— von Nachrichten und Daten
e Jurechenbarkeit
— Authentikation
— Unabstreitbarkeit
— Identifizierung
o Verfigbarkeit
— von Daten
— von Rechenressourcen
— von Informationsdienstleistungen
Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der In-
tegritat von Nachrichten oder generell von digitalisierten Daten. In der Tat nehmen
kryptografische Hashverfahren beim Schutz der Datenintegritat eine dhnlich herausragen-
de Stellung ein wie sie Kryptosystemen bei der Wahrung der Vertraulichkeit zukommt.
Daneben finden kryptografische Hashfunktionen aber auch vielfach als Bausteine von
komplexeren Systemen Verwendung. Wie wir noch sehen werden, sind kryptografische
Hashfunktionen etwa bei der Bildung von digitalen Signaturen sehr niutzlich. Auf weitere
Anwendungsmoglichkeiten werden wir spéter eingehen.
Den iiberaus meisten Anwendungen von kryptografischen Hashfunktionen h liegt die
Idee zugrunde, dass sie zu einem vorgegebenen Text = eine zwar kompakte aber dennoch
reprasentative Darstellung h(z) liefern, die unter praktischen Gesichtspunkten als eine
eindeutige Identifikationsnummer von z fungieren kann. Die Berechnungsvorschrift fiir
h muss daher gewissermaflen darauf abzielen, ,charakteristische Merkmale* von x in
den Hashwert h(z) einfliefen zu lassen. Da der Fingerabdruck eines Menschen ganz
ahnliche Eigenschaften besitzt (was ihn fir Kriminalisten bekanntlich so wertvoll macht),
wird der Hashwert h(z) auch oft als ein digitaler Fingerabdruck von z bezeichnet.
Gebrauchlich sind auch die Bezeichnungen kryptografische Priifsumme oder message
digest (englische Bezeichnung fiir ,Nachrichtenextrakt®).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.

e Nachrichtenauthentikation“ (message authentication)

2 1 Kryptografische Hashverfahren

Kryptografische
Hashverfahren

MACs
(Authentikation)

MDCs
(Integritatsschutz)

Sonstige
Hashverfahren

Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

— Wie lésst sich sicherstellen, dass eine Nachricht (oder eine Datei) wiahrend einer
(rdumlichen oder auch zeitlichen) Ubertragung nicht verdndert wurde?

— Wie lésst sich der Urheber (oder Absender) einer Nachricht zweifelsfrei feststellen?
e Teilnehmerauthentikation® (entity authentication, identification)

— Wie kann sich eine Person (oder ein Gerét) anderen gegeniiber zweifelsfrei auswei-
sen?

Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhéngigkeit vom Eingabetext berechnet wird oder zusétzlich von einem
symmetrischen Schliissel abhangt (siehe Abbildung 1.1).

Kryptografische Hashfunktionen, bei deren Berechnung keine Schliissel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kiirzel MDC auch als eine Abkiirzung fir Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integritat eines Datensatzes x sicherzustellen, der iiber einen ungesicherten
Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren Webserver
abgelegt) wird, kann man wie folgt verfahren. Man sendet den MDC-Hashwert
von x iiber einen authentisierten Kanal und priift, ob der Datensatz nach der
Ubertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schliisseln finden hauptséchlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schliisseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschlieBlich digitale Unterschriften gebildet werden. Wie sich Nachrichten

1.2 Schliissellose Hashfunktionen (MDCs) 3

mit einem MAC authentisieren lassen, ist in Abbildung 1.3 dargestellt. Man beachte,
dass nun auch der Hashwert tiber den unsicheren Kanal gesendet wird.

Mochte Bob eine Nachricht x an Alice ibermitteln, so berechnet er den zuge-
horigen MAC-Hashwert y = hy(x) und figt diesen der Nachricht = hinzu. Alice
tiberpriift die Echtheit der empfangenen Nachricht (2/,y’), indem sie ihrerseits
den zu 2z’ gehorigen Hashwert hi(2’) berechnet und das Ergebnis mit 3 ver-
gleicht. Der geheime Authentikationsschliissel & muss hierbei genau wie bei einem
symmetrischen Kryptosystem iiber einen gesicherten Kanal vereinbart werden.
Indem Bob seine Nachricht z um den Hashwert y = hy(z) ergdnzt, gibt er Alice nicht
nur die Moglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu

iiberpriifen. Die Benutzung des geheimen Schliissels k erlaubt zudem eine Uberpriifung
der Herkunft der Nachricht.

1.2 Schliissellose Hashfunktionen (MDCs)

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h offentlich bekannt ist, d.h. h ist eine
schliissellose Hashfunktion (MDC).

Sei h: X — Y eine Hashfunktion. Ein Paar (z,y) € X x Y heifit giiltig fir A, falls
h(z) =y ist. Ein Paar (z,2’) mit h(z) = h(z’) heifit Kollisionspaar fiir h. Die Anzahl
||Y|| der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, || X|| = n,
so heifit h eine (n, m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n > 2m
ist, und wir nennen i dann eine Kompressionsfunktion (compression function).

Da h offentlich bekannt ist, ist es sehr einfach, fiir einen vorgegebenen Text x ein giiltiges
Paar (x,y) zu erzeugen. Fir bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht moglich ist, falls der Hashwert y vorgegeben wird.

Problem P1: Bestimmung eines Urbilds
Gegeben: Eine Hashfkt. h: X — Y und ein Hashwert y € Y.
Gesucht: Ein Text z € X mit h(z) = y.

Falls es einen immensen Aufwand erfordert, fiir einen vorgegebenen Hashwert y einen Text
x mit h(x) = y zu finden, so heifit h Einweg-Hashfunktion (one-way hash function bzw.

Ungesicherter Kanal

h h

(echt)

Authentisierter Kanal Y g

= |y;h(:1c’)‘

falsch

Abbildung 1.2: Einsatz eines MDC h zur Uberpriifung der Integritit eines Datensatzes
x.

4 1 Kryptografische Hashverfahren

B
A
©
v
E

Gesicherter Kanal

k: Symmetrischer Authentikationsschliissel
y = hi(x): MAC-Hashwert fiir z unter k

Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

preimage resistant hash function). Diese Eigenschaft wird beispielsweise benotigt, wenn
die Hashwerte der Benutzerpassworter in einer 6ffentlich zuganglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.

Problem P2: Bestimmung eines zweiten Urbilds
Gegeben: FEine Hashfkt. h: X — Y und ein Text = € X.
Gesucht: Ein Text 2’ € X \ {z} mit h(2') = h(z).

Falls sich fiir einen vorgegebenen Text x nur mit grofem Aufwand ein weiterer Text x’ # x
mit dem gleichen Hashwert h(z') = h(z) finden lésst, heifit h schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benotigt. Beim Versuch, eine
digitale Signatur zu falschen (siehe unten), sieht sich der Gegner dagegen mit folgender
Problemstellung konfrontiert.

Problem P3: Bestimmung einer Kollision
Gegeben: Fine Hashfkt. h: X — Y.
Gesucht: Texte x # o’ € X mit h(z') = h(z).

Falls sich dieses Problem nur mit einem immensen Aufwand losen lasst, heifit h (stark)
kollisionsresistent (collision resistant).

Obwohl die schwache Kollisionsresistenz eine gewisse Ahnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade fiir diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.

1.2 Schliissellose Hashfunktionen (MDCs) 5

Prozedur FindPreimage(h,v,q)

1 wahle eine beliebige Menge X, = {z1,...,2,} CX
> for each z; € Xy do
3 if h(z;) =y then return(x;) else return(?)

Abbildung 1.4: Bestimmung eines Urbilds fiir einen Hashwert

1.2.1 Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, die Effizienz verschiedener Angriffe auf eine Hashfunktion h: X — Y
nach oben abzuschéitzen. Sind X und Y vorgegeben, so kénnen wir eine Hashfunktion
h: X — Y dadurch ,konstruieren, dass wir fiir jedes z € X zuféllig ein y € Y wihlen
und h(z) auf y setzen. Aquivalent hierzu ist, fiir h eine zufillige Funktion aus der
Klasse F'(X,Y) aller n™ Funktionen von X nach Y zu wéhlen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = || X|| eine bestimmte
Grofe iibersteigt. Es liefert uns aber ein theoretisches Modell fiir eine Hashfunktion
mit ,idealen* kryptografischen Eigenschaften. Offensichtlich besteht fiir den Gegner die
einzige Moglichkeit, Informationen iiber A zu erhalten, darin, sich fiir eine Reihe von
Texten die zugehorigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).

Dass eine Zufallsfunktion h gute kryptografische Eigenschaften aufweist, rithrt daher,
dass der Hashwert h(z) fir einen neuen Text x auch dann noch schwer vorhersagbar ist,
wenn der Gegner bereits die Hashwerte einer beliebigen Zahl von Texten kennt.

Proposition 1. Sei Xo = {x1,..., 2} eine beliebige Menge von k verschiedenen Texten
aus X und seien yy, ..., yx € Y. Dann gilt fir eine zufdllig aus F(X,Y') gewdhlte Funktion
h und fiir jedes Paar (z,y) € (X — Xo) XY,

Prih(z) = y|h(z;) = y; furi=1,... k] =1/m.

Um eine obere Komplexitatsschranke fiir das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.4 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter ¢ die Anzahl der Hashwertberechnungen (also
die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) wider. Der Zeitaufwand
der Berechnung ist dabei proportional zu q.

Satz 2. FINDPREIMAGE(h,y, q) gibt mit Wahrscheinlichkeit ¢ = 1 — (1 — 1/m)? ein
Urbild von y aus (unabhdngig von der Wahl der Menge X,).

Beweis. Sei y € Y fest und sei X = {z1,...,2,}. Fir i = 1,...,q bezeichne E; das
Ereignis “h(z;) = y”. Nach Proposition 1 sind diese Ereignisse stochastisch unabhéngig
und ihre Wahrscheinlichkeit ist Pr[E;] = 1/m (i =1,...,q). Also folgt

Pr[EyU...UE,]=1-Pr[E;N...NE]=1—(1-1/m)".
O

Der in Abbildung 1.5 dargestellte Algorithmus liefert uns eine obere Schranke fiir die
Komplexitat des Problems, ein zweites Urbild fir A(z) zu bestimmen. Die Erfolgswahr-
scheinlichkeit lasst sich vollkommen analog zum vorherigen Satz bestimmen.

6 1 Kryptografische Hashverfahren

Prozedur FindSecondPreimage(h,z,q)
y = h(z)
wahle eine beliebige Menge X, = {z1,...,2,1} C X —{z}
for each z; € Xy do
if h(z;) =y then return(x;)
return(?)

=W N

ot

Abbildung 1.5: Bestimmung eines 2. Urbilds fiir einen Hashwert

Satz 3. FINDSECONDPREIMAGE(h, z, q) gibt mit Wahrscheinlichkeite = 1—(1—1/m)4™!
ein zweites Urbild xo # = von y = h(z) aus.

Ist g vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen ¢ ~ ¢/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist ¢ &~ m/2 zu wéhlen.

Geht es lediglich darum, irgendein Kollisionspaar (z,2") aufzusptiren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.

Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer
Wahrscheinlichkeit grofer 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag
(dies erscheint zwar verbliiffend, wird aber durch die Praxis mehr als bestétigt).

Tatséchlich zeigt der néchste Satz, dass bei g-maligem Ziehen (mit Zuriicklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

L= (m=1)(m—2)--(m—q+1)/m""

eine Kugel zweimal gezogen wird. Fiir m = 365 und ¢ = 23 ergibt dies einen Wert von
ungefahr 0, 507.

Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.6 dargestellten Algorithmus.
Bei einer naiven Implementierung wiirde zwar der Zeitaufwand fiir die Auswertung der if-
Bedingung quadratisch von g abhéngen. Trégt man aber jeden Text z unter dem Suchwort
h(x) in eine (herkommliche) Hashtabelle der Grofe ¢ ein, so wird der Zeitaufwand fir
die Bearbeitung jedes einzelnen Textes x im wesentlichen durch die Berechnung von h(x)
bestimmt.

Satz 4. COLLISION(h, q) gibt mit Erfolgswahrscheinlichkeit

(m—1)(m—2)---(m—q+1)

e=1-—
ma—1

ein Kollisionspaar (z,z") fir h aus.

Prozedur Collision(h,q)

1 wahle eine beliebige Menge Xy = {zy,...,2,} € X — {z}
> for each z; € Xy do y; := h(x;)
3 if 3i#j:y; =y, then return(z;,z;) else return(?)

Abbildung 1.6: Bestimmung eines Kollisionspaares

1.2 Schliissellose Hashfunktionen (MDCs) 7

1 wahle zufallig z € X
2 2= Ax)
5 if 2’ #7 then return(z,2’) else return(?)

Abbildung 1.7: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

Beweis. Sei Xo = {x1,...,2,}. Fir i =1,...,q bezeichne E; das Ereignis

“h(l’,‘) QI {h(J?l, ey h(x,-_l}.”
Dann beschreibt E1N...NE, das Ereignis “COLLISION(h, ¢) gibt 7 aus” und fiiri = 1,...,¢
gilt
m—1+1

PI'[E,L‘El n... ﬂEi,l] =
m

Dies fithrt auf die Erfolgswahrscheinlichkeit

e = 1=Pr[E\N...NE,]
= 1—Pr[E\|Pr[Ey|Ey) - Pr[E,|ExN...NE,]

- ()) () ;

Mit 1 —x ~ e™* folgt

a1 7 a1 —i 1 q-1 a(g—1)
6:1—H<1—> ml-J[em =1—emiim’=1—¢ 20 ~g¢°/2m.
=1 =1

Somit erhalten wir die Abschatzung

q = coym

mit c. = v/2¢. Fiir € = 1/2 ergibt sich also ¢ ~ \/m. Besitzt also eine bindre Hashfunktion
h: {0,1}™ — {0,1}™ die Hashwertlinge m = 128 Bit, so miissen im ZOM ¢ ~ -2%* Texte
gehasht werden, um mit einer Wahrscheinlichkeit von 1/2 eine Kollision zu finden. Um
einem Geburtstagsangriff widerstehen zu koénnen, sollte eine Hashfunktion mindestens
eine Hashwertlange von 128 oder besser 160 Bit haben.

1.2.2 Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sein miissen.

Satz 5. Sei h: X — Y eine (n, m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
listonspaar fir h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,
reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

Beweis. Sei A ein Las-Vegas Algorithmus, der fiir ein zufillig aus X gewahltes x mit
Erfolgswahrscheinlichkeit e ein zweites Urbild 2’ fir h liefert. Dann ist klar, dass der in
Abbildung 1.7 dargestellte Las-Vegas Algorithmus mit Wahrscheinlichkeit € ein Kollisi-
onspaar ausgibt. O

8 1 Kryptografische Hashverfahren

wahle zufallig x € X

]

>y = h(z)

3 a = Aly)

1 if x # 2’ then return(z,z’) else return(?)

Abbildung 1.8: Reduktion des Kollisionsproblems auf das Urbildproblem

Als néchstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lasst.

Satz 6. Sei h: X — Y eine (n, m)-Hashfunktion mit n > 2m. Dann ist das Problem P3,
ein Kollisionspaar fiir h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus fir h, d.h. A berechnet fiir jeden Hashwert y
in W(h) = {h(z) | x € X} ein Urbild z mit h(x) = y. Betrachte den in Abbildung 1.8
dargestellten Las-Vegas Algorithmus B.

Sei C = {h~!(y) | y € Y}. Dann hat B eine Erfolgswahrscheinlichkeit von
el iel-1_ 1
' =—2 UCl=1)=n-m)/n=
2XIICT T nis

cecC cecC

N

1.2.3 Iterierte Hashfunktionen

In diesem Abschnitt beschéftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h:{0,1}" — {0,1}™
eine kollisionsresistente Hashfunktion
h:{0,1}* — {0, 1}
konstruieren lasst. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.
Preprocessing: Transformiere x € {0, 1}* mittels einer Funktion

y: {0,1}" = J{o, 13"

r>1

zu einem String y(x) mit der Eigenschaft |y(z)| =, 0.

Processing: Sei IV € {0,1}™ ein offentlich bekannter Initialisierungsvektor und sei
y(x) =yy -+ -y, mit |y;| =t firi = 1,...,r. Berechne eine Folge z, ..., 2z, von Strings

z; € {0, 1} wie folgt:
{IV, i =0,
Z; =

h(zi—lyi>; 1=]_,...,7’.

Optionale Ausgabetransformation: Berechne den Hashwert h(z) = g(z,), wobei
g: {0,1}™ — {0,1} eine o6ffentlich bekannte Funktion ist. (Meist wird fiir g die
Identitat verwendet.)

1.2 Schliissellose Hashfunktionen (MDCs) 9

Um h(z) zu berechnen, muss also die Kompressionsfunktion i genau r-mal aufgeru-
fen werden. Wir formulieren nun eine fiir Preprocessing-Funktionen wiinschenswerte
Eigenschatft.

Definition 7. Fine Funktion y: {0,1}* — {0, 1}* heifsit suffizfrei, falls es keine Strings
x # & und z in {0,1}* mit y(T) = zy(x) gibt (d.h. kein Funktionswert y(x) ist Suffix
eines Funktionswertes y(Z) an einer Stelle & # x).

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist.

Satz 8. Falls die Preprocessing-Funktion y suffizfrei und die Ausgabetransformation g
injektiv ist, so ist mit h auch h kollisionsresistent.

Beweis. Angenommen, es gelingt, ein Kollisionspaar z, # fiir h mit fz(:v) = ﬁ(:%) zu finden.
Sei
y(x) =y . Y—1yr und y(Z) = $1Ys - . . Gr_1y; mit k < [

Da y suffixfrei ist, muss ein Index i € {1,...,k} mit y; # §;_x4; existieren. Weiter seien
2 (i=0,....k)und Z; (j =0,...,1) die in der Processing-Phase berechneten Hashwerte.
Da g injektiv ist, muss mit g(zj) = iL(x) = iL(:i‘) = ¢g(Z) auch z, = Z; gelten. Sei i,0,
der grofite Index i € {1,...,k} mit z;_1y; # Zi_k+i—1U1—k+i- Dann bilden z;,_ 4y, . und
2l ktiman—1Ul—ktima, WEZEN

ein Kollisionspaar fir h. O

1.2.4 Die Merkle-Damgard-Konstruktion

Merkle und Damgard schlugen 1989 folgende konkrete Realisierung ihrer Konstruktion
vor. Als Initialisierungsvektors wird der Nullvektor IV = 0™ benutzt, die optionale
Ausgabetransformation entfillt, und fiir y(z) wird im Fall ¢ > 2 die folgende Funktion
verwendet. (Den Fall ¢ = 1 betrachten wir spéter.)

Fir z = ¢ sei y(z) = 0" und fir z € {0,1}" mit n > 0 sei & = [;%] und = =
T1Ty ... Tp_1Zg Mit |x1| = |zo| = ... = |xp_q| = t — 1 sowie |z = t — 1 — d, wobei
0 <d<t—1 Im Fall £ = 1 ist dann y(z) = 020%1bin,_1(d) und fir k > 1 ist
Y(r) = y1 -+ Yry1, Wobei

01’1, 1= 17
12, 2<i<k,
12,09, 1=k,

Lbing_1(d), i=Fk+1,

und bing_1(d) die durch fithrende Nullen auf die Lange ¢ — 1 aufgefiillte Bindrdarstellung
von d ist.

Satz 9. Die durch (1.1) definierte Preprocessing-Funktion y ist suffizfrei.

Beweis. Seien x # & zwei Texte mit |z| < |Z|. Wir miissen zeigen, dass y(z) = 11y . . . Y41
kein Suffix von y(Z) = 7192 . . . Yi41 ist. Im Fall z = ¢ ist dies klar. Fiir x # ¢ machen wir
folgende Fallunterscheidung.

10 1 Kryptografische Hashverfahren

1. Fall: |z| #,_; |Z|. Dann folgt d # d und somit Y41 # Fis1-

2. Fall: |z| = |Z|. In diesem Fall ist £ = [. Wegen x # T existiert ein Index i €
{1,...,k} mit z; # Z;. Dies impliziert y; # ¥;, also ist y(z) kein Suffix von y(Z).

3. Fall: |z # |#| und |z| =, |2'|. In diesem Fall ist & < I. Da y(x) mit einer Null
beginnt, aber das (I — k + 1)-te Bit von y(Z) eine Eins ist, kann y(z) kein Suffix von
y(Z) sein. 0

Nun kommen wir zum Fall ¢ = 1. Sei y die durch y(x) := 11f(x) definierte Funktion,
wobei f wie folgt definiert ist:

flzr, .. xn) = f(x1) ... f(x2) mit f(0) =0 und f(1) =01.

Dann ist leicht zu sehen, dass y suffixfrei ist. Da die Kompressionsfunktion A bei der
Berechnung von A(z) im Fall ¢ = 1 fiir jedes Bit von y(z) einmal aufgerufen wird, wird h
genau |y(z)| < 2(n+1)-mal aufgerufen. Im Fall ¢ > 1 werden dagegen nur k+1 = [5] +1
Aufrufe benotigt.

1.2.5 Die MD4-Hashfunktion

Die MD4-Hashfunktion (Message Digest) wurde 1990 von Rivest vorgeschlagen. Die
Bitlange von MD4 betriagt | = 128 Bit. Bei einer Wortlange von 32 Bit entspricht
dies 4 Wortern. Die im Folgenden vorgestellten Hashfunktionen benutzen u.a. folgende
Operationen auf Wortern.

Operatoren auf {0,1}3
X AY | bitweises ,,Und*“ von X und Y
X VY | bitweises ,,Oder” von X und Y
X @Y | bitweises ,,exklusives Oder* von X und Y
=X | bitweises Komplement von X
X +Y | Ganzzahl-Addition modulo 232
X — s | Rechtsshift um s Stellen
X « s | zirkuldrer Linksshift um s Stellen

Wihrend die Ganzzahl-Addition bei MD4 und MD5 in little endian Architektur (d.h.
ein aus 4 Bytes azasaiag, 0 < a; < 255 zusammengesetztes Wort repréasentiert die Zahl
a92%* + a12'% + a»2® + a3) ausgefithrt wird, verwendet SHA-1 eine big endian Architektur
(d.h. azasaiag, 0 < a; < 255 reprisentiert die Zahl a32? + a92' + ;2% + ag). Der
MD4-Algorithmus benutzt die folgenden Konstanten y;, 2,55, 7 =0,...,47

y; (in Hexadezimaldarstellung)
i =0,...,15 0

i —=16,...,31 50827999

g =32,...,47 6ed9ebal

1.2 Schliissellose Hashfunktionen (MDCs) 11

“j

j=0,...,15 | 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15
j=16,...,31| 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15
j=32,...,47| 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15
Sj

j=0,...,15 | 3,7,11,19,3,7,11,19,3,7,11,19,3,7,11,19
j=16,...,31]3,5,9,13, 3,5,9,13, 3,5, 9,13, 3,5, 9, 13
j=32,...,473,9,11,15,3,9,11,15,3,9,11,15,3,9,11, 15

und folgende Funktionen f;, 7 =0,...,47

(X AY)V (~X A Z), j= 0,...,15,
(XY, Z) = ((XAY)V(XAZ)V(YANZ), j=16,...,31,
XpY ez J=32,...,47.

Fiir MD4 konnten nach ca. 22 Hashwertberechnungen Kollisionen aufgespiirt werden.
Deshalb gilt MD4 nicht mehr als kollisionsresistent.

MD4(x)

1 input z € {0,1}*, |z| =n

oy :=x10%bing(n), k€ {0,1,...,511} mit n+1+k+64=0 (mod 512)
s (Hy, Hy, Hs, Hy) := (67452301, e fcdab89, 98badc fe, 10325476)

i sel y=»M,---M,, r=(n+1+k+64)/512

5 for 1:=1 to r do

6 seli M,; = X|[0]--- X[15]

7 (A,B,C, D) = (Hl,HQ,H3,H4)

8 for j:=0 to 47 do

9 (A,B,C,D) := (D,(A+ f;(B,C,D) + X[z] +v;) < s;,B,C)
10 (Hy,Hy, H3, Hy) == (H1 + A,Hy + B,Hs + C,Hy + D)
11 output H H,H3;H,

1.2.6 Die MD5-Hashfunktion

Der MD?5 ist eine 1991 von Rivest prasentierte verbesserte Version von MD4. Die Bitlange
von MD5 betragt wie bei MD4 [= 128 Bit. Bei einer Wortlange von 32 Bit entspricht
dies 4 Wortern. In MD5 werden teilweise andere Konstanten als in MD4 verwendet.
Zudem besitzt MD5 eine zusitzliche 4. Runde (j = 48,...,63), in der die Funktion
[i(X,Y,Z) =Y & (X V~Z) verwendet wird. Auflerdem wurde die in Runde 2 von MD4
verwendete Funktion durch f;(X,Y,Z) := (X ANZ)V (Y AN=Z), j = 16...31, ersetzt.
Die y-Konstanten sind definiert als y; := die ersten 32 Bit der Binardarstellung von
abs(sin(j + 1)), 0 < j < 63, und fiir z; und s; werden folgende Konstanten benutzt.

12 1 Kryptografische Hashverfahren

Zj

j=0,...,15 |z =j: 0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15
j=16,...,31 | z;=(5j+ 1) mod 16 : 1,6,11,0,5,10,15,4,9,14,3,8,13,2,7,12
j=232,...,47] 2= (3j+5) mod 16 : 5,8,11,14,1,4,7,10,13,0,3,6,9,12, 15,2

j=48,...,63 | z; = 7j mod 16 : 0,7,14,5,12,3,10, 1,8, 15,6, 13,4,11,2,9
5

j=0,...,15 7,12,17,22,7,12,17,22,7,12,17,22, 7,12, 17, 22

j=16,...,31 5,9,14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14,20

j=32,...,47 4,11,16,23,4,11,16,23,4, 11, 16,23, 4, 11, 16,23

j=48,...,63 6,10, 15,21,6, 10, 15, 21,6, 10, 15,21, 6, 10, 15, 21

Fiir MD5 konnten in 2004 ebenfalls Kollisionspaare gefunden werden (fiir die Kompressi-
onsfunktion von MD5 gelang dies bereits 1996).

MDb5(z)

1 input z € {0,1}*,|z| =n

oy = x10%bings(n), k€ {0,1,...,511} mit n+1+k+64 =0 (mod 512)
s (Hy, Hy, Hs, Hy) := (67452301, e fcdab89, 98badc fe, 10325476)

1 sei y=M,---M,, r=(n+1+k+64)/512

5 for i:=1 to r do

6 seli M; = X][0]--- X[15]

7 (A,B,C,D) := (Hy, Hy, H3, Hy)

8 for j:=0 to 63 do

9 (A,B,C,D):=(D,B+ (A+ fj(B,C,D)+ X[zj] + y;) < s;,B,C)
10 (Hl,Hg,H3,H4) = (H1+A,H2+B,H3+C,H4+D)

11 output H1H2H3H4

1.2.7 Die SHA-1-Hashfunktion

Der Secure Hash Algorithm (SHA-1) ist eine Weiterentwicklung des MD4 bzw. MD5
Algorithmus. Er gilt in den USA als Standard und ist Bestandteil des DSS (Digital
Signature Standard). Die Bitlinge von SHA-1 betragt | = 160 Bit. Bei einer Wortlénge
von 32 Bit entspricht dies 5 Woértern. SHA-1 unterscheidet sich nur geringfiigig von
der SHA-0 Hashfunktion, in der eine Schwachstelle dazu fiihrt, dass nach Berechnung
von ca. 280 Hashwerten ein Kollisionspaar gefunden werden kann (obwohl bei einem
Geburtstagsangriff auf Grund der Hashwertlinge von 160 Bit ca. 2%° Berechnungen
erforderlich sein miissten). Diese potentielle Schwéiche von SHA-0 wurde im SHA-1
dadurch entfernt, dass SHA-1 in Zeile 8 einen zirkuldren Shift um eine Bitstelle ausfiihrt.
Der SHA-1-Algorithmus benutzt die folgenden Konstanten K, j =0,...,79

K; (in Hexadezimaldarstellung)

j=0,...,19 50827999
J=20,...,39 6ed9ebal
J=40,...,59 8 f1bbedc

Jj=260,...,79 ca62c1d6

1.2 Schliissellose Hashfunktionen (MDCs) 13

und folgende Funktionen f;, 7 =0,...,79

(XAY)V (=X AZ), j= 0,...,19,
XY a7, Jj=20,...,39,
L(XY, 2) = .
(XAY)V(XANZ)V(YANZ), j=40,...,59,
XpYadZ, Jj=060,...,79.
SHA-1(x)

input = € {0,1}*, |z| =n

y:=x10%bings(n), k€ {0,1,...,511} mit n+1+k+64 =0 (mod 512)
(Hy, Hy, Hy, H3, Hy) := (67452301, e fcdab89, 98badc fe, 10325476, c3d2el f0)
sei y=M,---M,, r=(n+1+k+64)/512

5 for i:=1 to r do

6 seli M; = X|[0]--- X[15]

7 for t:=16 to 79 do

8 X[t =X[t-3]eX[t—-8 e X[t—14]eX[t—-16]) 1

9 (A,B,C,D,E) = (Hy,Hy,Hs, H3, Hy)

10 for j:=0 to 79 do

11 temp := (A< 5)+ f;(B,C,D) + E+ X[j] + K;

12 (A,B,C,D, E) := (temp, A, B <> 30,C, D)

13 (Hy,Hy,Hy, H3, Hy) := (Hy+ A ,Hi+ B,Hy + C,Hs + D,Hy + F)

11 output H\HyH3;H,

BW N =

1.2.8 Die SHA-2-Familie

Im Jahr 2001 veroffentlichte NIST 4 weitere Hashfunktionen der SHA-Familie: SHA-224,
SHA-256, SHA-384, and SHA-512. Diese Funktionen werden auch als SHA-2 Hashfunk-
tionen bezeichnet. In 2004 kam noch SHA-224 als fiinfte Variante hinzu.

SHA-256 und SHA-512 haben denselben Aufbau, unterscheiden sich aber in erster Linie
in der benutzten Wortldnge: 32 Bit bei SHA-256 und 64 Bit bei SHA-512. Zudem werden
unterschiedliche Shift- und Summationskonstanten verwendet und auch die Rundenzahlen
differieren. SHA-224 und SHA-384 sind reduzierte Varianten von SHA-256 und SHA-
512. Der SHA-256-Algorithmus benutzt die folgenden Konstanten K, j =0,...,63 (in
Hexadezimaldarstellung).

428a2 98, 71374491, b5c0 focf, e9bbdbab, 3956¢25b, 59111 1,923 f82a4, ablchedb,
d807aa98, 12835001, 243185be, 550c7dc3, T2bebd74, 80debl fe, 9bdc06a7, c19bf174,
e49b69cl, efbed786, 0fc19dc6, 240calce, 2de92¢6 f, 4aT7484aa, 5cb0a9de, 76 fI88da,
983e5152, a831c¢66d, b00327¢8, bf597 fc7, c6e00bf3, d5a79147, 06ca6351, 14292967,
27b70a85, 2e1b2138, 4d2c6df ¢, 53380d13, 650a7354, 766a0abb, 81c2c92e, 92722¢85,
a2bfe8al, a81a664b, c24b8b70, c76¢H1a3, d192e819, d6990624, f40e3585, 106aa070,
19a4¢116, 1e376¢08, 2748774c, 34b0bcbb, 391c0cb3, 4ed8aada, 509ccad f, 682¢6 f f3,
748 f82ee, T8a5636 f, 84c87814, 8cc70208, 90be f f fa, a4506ceb, be f9ad f7, c6T178f2

Dies sind jeweils die ersten 32 Bit der bindren Nachkommastellen der dritten Wurzeln
der ersten 64 Primzahlen 2,...,311. SHA-256 arbeitet wie folgt.

14 1 Kryptografische Hashverfahren

SHA-256(x)

1 input z € {0,1}, |z| =n

> y:=x10%bings(n), k€ {0,1,...,511} mit n+1+k+64=0 (mod 512)
5 (Ho, Hy, Ho, Hy, Hy, Hs, He, Hr) := (6a09¢667, bb6Tae85, 3c6e f372, a5af f53a,
A 510e527 f,9b05688¢, 1 f83d9ab, 5be0cd19)

5 sei y=M;---M., r=(n+1+k+64)/512

¢ for ::=1 to r do

7 sei M; = X][0]--- X[15]

8 for t:=16 to 63 do

9 s0:= (X[t —15] = 7) @ (X[t — 15] — 18) & (X[t — 15] — 3)

" sl = (X[t —2] = 17) & (X[t — 2] = 19) @ (X[t — 2] — 10)
11 Xt] == X[t —16] 4+ s0+ X[t — 7] + s1
12 (A,B,C,D,E, F7 G7 H) = (HO7H17H27H37H47H57H67H7>

13 for j:=0 to 63 do
14 s0:= (a = 2) ® (a — 13) & (a — 22)

15 maj = (aAb) @ (aNc)® (bAc)

16 t2 := s0+ may

17 sl:=(e—=6)@(e—11) ® (e — 25)
18 ch:= (e f) @ ((note) A g)

tl := h+ sl + ch + k[i] + X[i]
(A,B,C,D,E,F,G,H) = (t1+t2,A,B,C,D +t1,E, F,G)

21 (H()aHlaHQaH3aH47H5aH67H7)
22 = (Hy+A,Hi+B,Hy,+C,Hy+ D,H,+ E,Hs + F,Hs + G,H; + H)
23 output H0H1H2H3H4H5H6H7

Die Initialwerte von Hy, ..., H; in den Zeilen 3 und 4 sind jeweils die ersten 32 Bit der
bindren Nachkommastellen der Wurzeln der Primzahlen 2,3,5,7,11,13,17, 19.

1.2.9 Kryptoanalyse von Hashfunktionen

Bereits 1991 wurden von Den Boer und Bosselaers Schwéchen im MD4 aufgedeckt. Im
August 2004 erschien ein Bericht [1] mit einer Anleitung, wie sich Kollisionen fiir MD4
mittels “hand calculation” finden lassen.

In 1993, fanden den Boer und Bosselaers einen Weg, so genannte “Pseudo-Kollisionen” fiir
die MD5 Kompressionsfunktion zu generieren. In 1996, fand Dobbertin ein Kollisionspaar
fiir die MD5 Kompressionsfunktion.

Im August 2004 wurden schlielich Kollisionen fiir MD5 von Xiaoyun Wang, Dengguo
Feng, Xuejia Lai and Hongbo Yu berechnet. Der bendtigte Aufwand wurde mit ca. 1
Stunde auf einem IBM p690 Cluster abgeschatzt.

Im Marz 2005 veroffentlichten Arjen Lenstra, Xiaoyun Wang, and Benne de Weger zwei
X.509 Zertifikate mit unterschiedlichen Public-keys, die auf denselben MD5-Hashwert
fithrten. Nur wenige Tage spéter beschrieb Vlastimil Klima eine Moglichkeit, Kollisionen
fiir MD5 innerhalb weniger Stunden auf einem Notebook zu berechnen. Mittels der so
genannten Tunneling-Methode wurde die Rechenzeit vom gleichen Autor im Mérz 2006
auf eine Minute verkiirzt.

Auf der CRYPTO 98 stellten Chabaud und Joux einen Angriff auf SHA-0 vor, der ein
Kollisionspaar mit nur 2°' Hashwertberechnungen (anstelle von 2% bei einem Geburts-
tagsangriff) aufsptrt.

1.3 Nachrichten-Authentikationscodes (MACs) 15

In 2004 fanden Biham und Chen Beinahe-Kollisionen fiir den SHA-0, bei denen sich die
Hashwerte nur an 18 von den 160 Bitpositionen unterschieden. Zudem legten sie volle
Kollisionen fiir den auf 62 Runden reduzierten SHA-0 Algorithmus vor.

Schliefflich wurde im August 2004 die Berechnung einer Kollision fiir den vollen 80-Runden
SHA-0 Algorithmus von Joux, Carribault, Lemuet and Jalby bekannt gegeben. Hierzu
wurden lediglich 2°! Hashwerte berechnet, die ca. 80000 Stunden CPU-Rechenzeit auf
einem 2-Prozessor 256-Itanium Supercomputer benotigten.

Im August 2004 wurde von Wang, Feng, Lai und Yu auf der CRYPTO 2004 eine
Angriffsmethode fiir MD5, SHA-0 und andere Hashfunktionen vorgestellt, mit der sich
die Anzahl der Hashwertberechnungen auf 2° senken lisst. Dies wurde im Februar 2005
von Xiaoyun Wang, Yiqun Lisa Yin und Hongbo Yu leicht auf 239 Hashwertberechnungen
verbessert.

Aufgrund der erfolgreichen Angriffe auf SHA-0 rieten mehrere Experten von einer weiteren
Anwendung des SHA-1 ab. Daraufhin kiindigte die amerikanische Behérde NIST an,
SHA-1 in 2010 zugunsten der SHA-2 Varianten abzulosen.

In 2005 veroffentlichten Rijmen und Oswald einen Angriff, der mit weniger als 2%
Hashwertberechnungen ein Kollisionspaar fiir den auf 53 Runden reduzierten SHA-1
Algorithmus findet. Nur wenig spéater kiindigten Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu einen Angriff auf den vollen 80-Runden SHA-1 mit 2% Hashwertberechnungen
an. Im August 2005 erfuhr der benétigte Aufwand von Xiaoyun Wang, Andrew Yao and
Frances Yao auf der CRYPTO 2005 eine weitere Reduktion auf 2% Berechnungen.

Die besten bekannten Angriffe gegen SHA-2 brechen die von 64 auf 41 Runden reduzierte
Variante von SHA-256 und die von 80 auf 46 Runden reduzierte Variante von SHA-512.

1.3 Nachrichten-Authentikationscodes (MACs)

Definition 10. Fine Hashfamilie H = (X,), KC, H) wird durch folgende Komponenten
beschrieben:

e X, eine endliche oder unendliche Menge von Texten,
e Y, endliche Menge aller maéglichen Hashwerte, ||Y|| < || X/,

e K, endlicher Schliisselraum (key space), wobei jeder Schlissel k € K eine Hash-
funktion h: X — Y spezifiziert.

Im folgenden werden wir die Grofle || X || des Textraumes mit n, die des Hashwertbereiches
Y mit m und die des Schliisselraumes K mit | bezeichnen. Wir nennen dann ‘H auch eine
(n, m, 1)-Hashfamilie.

Damit ein geheimer Schliissel £ fiir die Authentifizierung mehrerer Nachrichten benutzt
werden kann, ohne dass dies einem potentiellen Gegner zur nichtautorisierten Berechnung
von giiltigen MAC-Werten verhilft, sollte folgende Bedingung erfiillt sein.

Berechnungsresistenz: Auch wenn eine Reihe von unter einem Schliissel £ generierten
Text-Hashwert-Paaren (z1, h(x1)),. .., (zn, hx(z,)) bekannt ist, erfordert es einen
immensen Aufwand, ohne Kenntnis von k ein weiteres Paar (x,y) mit y = hg(z) zu
finden.

Bei Verwendung einer berechnungsresistenten Hashfunktion ist es einem Gegner nicht
moglich, an Alice eine Nachricht = zu schicken, die Alice als von Bob stammend anerkennt.

16 1 Kryptografische Hashverfahren

Verwendung eines MAC zur Versiegelung von Software

Mithilfe einer berechnungsresistenten Hashfunktion kann der Integritétsschutz fiir mehrere
Datensétze auf die Geheimhaltung eines Schliissels k£ zurtickgefithrt werden.

Um die Datenséitze x4, ..., z, gegen unbefugt vorgenommene Verdnderungen zu
schiitzen, legt man sie zusammen mit ihren Hashwerten y; = hy(z1),...,y, =
hi(z,) auf einem unsicheren Speichermedium ab und bewahrt den geheimen
Schliissel £ an einem sicheren Ort auf. Bei einem spéteren Zugriff auf einen
Datensatz x; lasst sich dessen Unversehrtheit durch einen Vergleich von y; mit
dem Ergebnis hy(x;) einer erneuten MAC-Berechnung iiberpriifen.

Da auf diese Weise ein wirksamer Schutz der Datensétze gegen Viren und andere
Manipulationen erreicht wird, spricht man von einer Versiegelung der gespeicherten
Datensétze.

1.3.1 Angriffe gegen symmetrische Hashfunktionen

Ein Angriff gegen einen MAC hat die unbefugte Berechnung von Hashwerten zum Ziel.
Das heifit, der Gegner versucht, Hashwerte hy(x) ohne Kenntnis des geheimen Schliissels
k zu berechnen. Entsprechend der Art des zur Verfiigung stehenden Textmaterials lassen
sich die Angriffe gegen einen MAC wie folgt klassifizieren.
Impersonation
Der Gegner kennt nur den benutzten MAC und versucht ein Paar (z,y) mit hy(z) =y
zu generieren, wobei k der (dem Gegner unbekannte) Schliissel ist.
Substitution
Der Gegner versucht in Kenntnis eines Paares (z, hi(x)) ein Paar (2/,y) mit 2’ # x
und hg(z') = y' zu generieren.
Angriff bei bekanntem Text (known-text attack)

Der Gegner kennt fiir eine Reihe von Texten zy, ..., z, (die er nicht selbst wéhlen
konnte) die zugehorigen MAC-Werte hy(z1), ..., hi(x,) und versucht, ein Paar (2',y')
mit hg(2") =y und 2’ & {x1,..., 2.} zu generieren.

Angriff bei frei wahlbarem Text (chosen-text attack)
Der Gegner kann die Texte z; selbst wéhlen.

Angriff bei adaptiv wahlbarem Text (adaptive chosen-text attack)
Der Gegner kann die Wahl des Textes x; von den zuvor erhaltenen MAC-Werten
hi(x;), j < i, abhingig machen.
Wechseln die Anwender nach jeder Hashwertberechnung den Schliissel, so geniigt es, dass
‘H einem Impersonationsangriff widersteht.

1.3.2 Informationstheoretische Sicherheit von M ACs

Modell: Schliissel £ und Nachrichten = werden unabhingig geméfl einer Wahrscheinlich-
keitsverteilung p(k,) = p(k)p(x) generiert, welche dem Gegner (im Folgenden auch
Oskar genannt) bekannt ist. Wir nehmen 0.B.d.A. an, dass p(z) > 0 und p(k) > 0
fir alle x € X und alle k € K gilt.

1.3 Nachrichten-Authentikationscodes (MACs) 17

Erfolgswahrscheinlichkeit fiir Impersonation

a: Wahrscheinlichkeit mit der sich ein Gegner bei optimaler Strategie als Bob ausgeben
kann, ohne dass Alice dies bemerkt.

Fir ein Paar (z,y) sei p(x — y) die Wahrscheinlichkeit, dass ein zufillig gewéhlter
Schliissel den Text z auf den Hashwert y abbildet:

plr—=y)= > pk).

keK (z,y)

wobei K(z,y) = {k € K | hi(z) = y} alle Schliissel enthilt, die = auf y abbilden. D.h.
p(x — y) ist die Wahrscheinlichkeit, dass Alice das (vom Gegner gewdhlte) Paar (z,y)
als echt akzeptiert. Dann gilt « = max{a(x) | z € X}, wobei

e

(z) = max{p(r —y) |y €Y}

die Wahrscheinlichkeit ist, mit der ein Gegner bei optimaler Strategie Alice den Text x
als von Bob stammend zukommen lassen kann.

Beispiel 11. Sei K = {1,2,3}, X = {a,b,c,d} und Y = {0,1}.

0,1 10.2] [0,3] |04

hi(z) | a b c d

(0,25 1 0 1
(030 2 1 1 0 1
0.45] 3 0 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k) an. Dann hat der
Gegner folgende Erfolgsaussichten a(z,y), falls er das Paar (x,y) an Alice sendet.

0 1
a| 0,7 0,3
bl 025 0,75
c| 0,55 045
d| 0,45 0,55
Folglich ist o« = 0, 75. <

Beispiel 12. Sei X =Y ={0,1,2} = Z3 und sei K = Z3 x Zs3. Fir k = (a,b) € K und
x € X sei

hi(x) = ax + b mod 3.

Die zugehdrige Authentikationsmatrix erhalten wir, indem wir die Zeilen mit den
Schliisseln k € K und die Spalten mit den Texten x € X indizieren und in Zeile k und

18 1 Kryptografische Hashverfahren

Spalte © den Hashwert hy(x) eintragen.

N —m O N R O N R OO
— O N ON RN R O
O R = O NN~ OIN

AN -TIN - N AN IIN AN NN TN
MM R o oo
N = O N = O N O

S N N e e e N N

Angenommen, jeder Schlissel (a,b) hat die gleiche Wk p(a,b) = 1/9. Versucht der Gegner
dann eine Impersonation mit dem Paar (x,y), so akzeptieren genau 8 der 9 moglichen
Schlissel dieses Paar. Dies liegt daran, dass in jeder Spalte jeder Hashwert genau dreimal
vorkommt. Also gilt p(x — y) = 3/9 = 1/3 fiir alle Paare (z,y) € X XY, was fir «
ebenfalls den Wert oo = 1/3 ergibt.

Satz 13. Fir alle x € X ist a(x) > - und daher gilt o >

1 1
m m’

Beweis. Sei x € X beliebig. Dann gilt

Sopleey) =3 Y pk)=> pk)=1

yey yeY ke K (z,y) keK

Somit existiert fiir jedes z € X ein y € Y mit p(z — y) > % und dies impliziert

1
= > —.
az) = maxp(z = y) = —

O

Bemerkung 14. Wie der Beweis zeigt, gilt o = % genau dann, wenn fir alle Paare
(x,y) € X XY gilt,
1
k)= —.
>, (k) = —

keK (x,y)

D.h. bei Gleichverteilung der Schliissel muss in jeder Spalte der Authentikationsmatriz
jeder Hashwert gleich oft vorkommen.

Erfolgswahrscheinlichkeit fiir Substitution

B: Wahrscheinlichkeit mit der ein Gegner bei optimaler Strategie eine von Bob gesendete
Nachricht (x,y) durch eine andere Nachricht (2/,y’) ersetzen kann, ohne dass Alice
dies bemerkt.

Angenommen, Bob sendet die Nachricht (x,y) und der Gegner ersetzt diese durch (2, /).
Dann ist die Erfolgswahrscheinlichkeit des Gegners gleich der bedingten Wk

p(&} ==Y, z y') _ ZkeK(x,y,x’,y/) p(k)
p(z—y) YkeK(wy) P(F)

pa =y |z —y) =

1.3 Nachrichten-Authentikationscodes (MACs) 19

dass ein zuféllig gewéahlter Schliissel & den Text 2’ auf ¢ abbildet, wenn bereits bekannt
ist, dass er x auf y abbildet. Falls Bob also das Paar (z,y) sendet, so kann der Gegner
bestenfalls die Erfolgswahrscheinlichkeit

Blz,y) = max{p(a’ = y'[z—y) | ' € X —{z},y' €V}
erzielen. Da Bob auf die Wahl von (z,y) keinen Einfluss hat, berechnet sich § als der
erwartete Wert von [(x,y), wobei das Paar (z,y) von Bob mit Wk
p(z,y) = p(@)p(yle) = p(x)p(z — y)
gesendet wird. Somit ergibt sich 3 zu

B= > play)blzy) =>)Y By,

zeX,yey zeX yey

wobei
f'(x,y) = max{p(x = y,2" = y) |2’ € X —{a},y €V}

ist.

Beispiel 15.

(z,y) Py) B'(zy) | Blz.y)
(a,0) (a,1) | (30) (b]1) (c,0) (c,1) (d,0) (d)1)

(a,0) 0,25 0,45 0,25 0,45 | 0,45 0,25 | 0,45 | 0,643
(a,1) 0 0,3 | 0,3 0 0 0,3 0,3 1
o) | 0,25 0 0,25 0 0 0,25 | 0,25 1
1) | 0,45 0,8 0,3 0,451 0,45 0,3 | 0,45 0,6
o) | 0,25 0,81 0,25 0,8 0 0,55 | 0,55 1
(1) | 0,45 0 0 0,45 0,45 0 0,45 1
0 | 0,45 0 0 0,45 0 0,45 0,45 1
@n | 0,25 0,31 025 038 | 0,55 0 0,55 1

Fiir 8 erhalten wir also den Wert

B = 0,1-(0,45+0,3)+0,2-(0,25+0,45) + 0,3 - (0,55 + 0,45) + 0,4 - (0,45 + 0, 55)
= 0,915.

Satz 16. Fir jeden MAC (X,Y, K, H) gilt § > .

Beweis. Sei (x,y) € X xY ein Paar mit p(z,y) > 0. Dann gilt fiir beliebige 2" € X —{z},

4 oyl k
Yo' =y |z —y) = Lyey LkeK (e y'wy) PK)

=1.
y'EY ZkEK(ac,y) p(k)

Somit existiert ein ¢’ € Y mit p(z’ — ¢ |z — y) > - und dies impliziert fir alle (z,y)
mit p(x,y) > 0,
1

Blz,y) = max{p(x' =y |z—y) |2’ e X —{z},y/ €Y} > — (1.2)

was wiederum

1

1
— > plry) =—
meX,er m

B= 3 plz,y)Blz,y) >

zeX,yeY

impliziert. O

20 1 Kryptografische Hashverfahren

Lemma 17. Sei (X,Y, K, H) ein MAC mit § = i Dann gilt
p(@’ =y e y)=1/m
fiir alle Doppelpaare (x,y,x',y") mit x # z'.

Beweis. Wir zeigen zuerst, dass im Fall

1
B=—
m
fir alle Paare (z,y) € X x Y
plz—y) >0
ist. Ist ndmlich
plw = z) =0,

so ist auch
p(w — z|u— v) =0,

wobei (u,v) € X x Y ein beliebiges Paar mit
p(u—v) >0

ist. Wegen

1=> plwr | u—v)= > pw—2|u o)
Z'eYy Z'eY —{z}

impliziert dies die Existenz eines Hashwertes 2z’ mit
plw 2 urv)>1/(m—1)>1/m.
Dann ist aber auch
B(u,v) = max{p(u' — v'|urv)|u € X —{u},v" €Y} >1/m.

Da
Blz,y) = 1/m
fir alle Paare (z,y) gilt (siehe (1.2)) und da

p(u,v) = p(u)p(u — v) >0

ist, folgt
B= > ply)bxy) >1/m.

zeX,yeyY
Ist nun
pla’ =yl —y) #1/m

fiir ein Doppelpaar (z,y,2’,y") mit = # 2/, so muss wegen

Zp(:c’r—>z’|xl—>y) =1
z'eY

auch ein Doppelpaar (z, 2/, 2/, ') mit
pla' =2z —y)>1/m

existieren, was genau wie im ersten Teil des Beweises zu einem Widerspruch fiihrt. 0O

1.3 Nachrichten-Authentikationscodes (MACs) 21

Satz 18. Ein MAC (X,Y, K, H) erfillt p = % genau dann, wenn
plr =y, 2’ = y)=1/m?
fir alle Doppelpaare (z,y,x',y'") mit x # x' gilt.
Beweis. Sei (X,Y, K, H) ein MAC mit § = % Nach obigem Lemma impliziert dies, dass
p(@’ =y |z —y) =1/m
fir alle Doppelpaare (x,y,z’,y’) mit z # x’ gilt. Dies impliziert nun
pla’ =) = Zy:p(w = y)p(a’ =y |z = y) =1/m
und daher

plz =y, 2" = y) =p — Y)plz =yl —) =1/m?

Umgekehrt rechnet man leicht nach, dass ‘H tatsachlich die Bedingung

1
=
m
erfiillt, wenn
ple = y,a' = y) = 1/m’

fir alle Doppelpaare (x,y,z’,y’) mit z # x’ gilt. O

Bemerkung 19. Nach obigem Satz gilt § = % genau dann, wenn fir alle Doppelpaare
(z,y,2',y") mit x # 2" gilt,

plr =y, —y) = Z pk) = —.
keK (zy,x'y")

D.h. bei Gleichverteilung der Schliissel gilt = % genau dann, wenn in je zwei Spalten
der Authentikationsmatrixz jedes Hashwertpaar gleich oft vorkommit.

Ab jetzt setzen wir voraus, dass der Schliissel unter Gleichverteilung gewéhlt wird, d.h.

es gilt p(k) = m fir alle k € K.

Definition 20. Fin MAC (X,Y, K, H) heifit 2-universal, falls fir alle x,2’ € M mit
x #£ 2 und alle y,y' €Y gilt:

I

| K (z,y,2",9)| = -

Bemerkung 21. Bei der Konstruktion von 2-universalen Hashfamilien spielt der Pa-
rameter A\ = ”7%” eine wichtige Rolle. Da A notwendigerweise positiv und ganzzahlig ist,
muss insbesondere || K| > m? gelten.

Im folgenden nennen wir eine 2-universale (n, m,)-Hashfamilie mit A = [/m? kurz einen

(n,m,l, \)-MAC.

22 1 Kryptografische Hashverfahren

Beispiel 22. Betrachten wir den MAC (X,Y, K, H) mit X = {0,1,2,3}, Y ={0,1, 2},
K =1{0,1,...,8}, wobei H durch folgende Authentikationsmatriz beschrieben wird.

0123
0/0 0 0 O
11111 0
212 2 20
3101 21
411 2 0 1
512 0 1 1
6/0 2 1 2
7110 2 2
812 1 0 2

Da in je zwei Spalten jedes Hashwertpaar genau einmal vorkommdt, ist (X,Y, K, H) ein
(4,3,9,1)-MAC.

Auf Grund von Bemerkung 19 ist klar, dass ein MAC bei gleichverteilten Schliisseln genau
dann die Bedingung g = % erfiillt, wenn er 2-universal ist. Auf Grund von Bemerkung 14
nimmt in diesem Fall auch o den optimalen Wert % an.

Der nachste Satz zeigt fiir primes p eine Konstruktionsmoglichkeit von 2-universalen
MACs mit dem Parameterwert \ = 1.

Satz 23. Sei p prim und fir a,b,x € Z, sei
hap(z) = az + b mod p.
Dann ist (X,Y,K,H) mit X =Y =Z, und K = 7, X Z, ein (p,p,p*, 1)-MAC.

Beweis. Wir miissen zeigen, dass die GroBle von K(z,y,2’,y’) fir alle Doppelpaare
(z,y,2',y") mit x # 2’ konstant ist. Ein Schliissel (a,b) gehort genau dann zu dieser
Menge, wenn er die beiden Kongruenzen

ar+b =, v,
ar’ +b =, o

erfilllt. Da dies jedoch nur auf den Schliissel (a, b) mit

= (V=)@ —)" mod p,
b = y—a(y —y)(=' —z)" mod p
zutrifft, folgt || K (2, v, z,y)| = 1. 0

Die Hashfunktionen des vorigen Satzes erfiillen wegen n = m = p nicht die Kompressi-
onseigenschaft. Zwar lasst sich n noch geringfiigig von p auf p + 1 vergroflern, ohne K
und Y (und damit \) zu veréindern (siche Ubungen), aber eine stéirkere Kompression ist
mit dem Parameterwert A = 1 nicht realisierbar.

Satz 24. Fir einen (n,m,l,1)-MAC gilt
n<m+1

und somit | = m? > (n — 1)

1.3 Nachrichten-Authentikationscodes (MACs) 23

Beweis. O.B.d.A. sei ||K|| ={1,...,l} und Y ={1,...,m}. Es ist leicht zu sehen, dass
eine (bijektive) Umbenennung 7: Y — Y der Hashwerte in einer einzelnen Spalte der
Authentikationsmatrix A wieder auf einen 2-universalen MAC fithrt. Also kénnen wir
weiterhin annehmen, dass die erste Zeile der Authentikationsmatrix A nur Einsen enthélt.
Da A 2-universal ist, gilt:

e In jeder Zeile i = 2,...,m? kommt hochstens eine Eins vor.

e Jede Spalte j enthélt eine Eins in Zeile 1 und m — 1 Einsen in den iibrigen Zeilen.

2

Da in den Zeilen i = 2,...,m* insgesamt genau n(m — 1) Einsen vorkommen, folgt

Anzahl der Zeilen > Anzahl der Zeilen mit einer Eins,

m2 1+n(m-1)
was m? — 1> n(m — 1) bzw. n < m + 1 impliziert. O

Der néchste Satz liefert 2-universale MACs mit beliebig groem Kompressionsfaktor. Fiir
den Beweis benotigen wir das folgende Lemma.

Lemma 25. Sei A eine k x {-Matrixz iber einem endlichen Kérper F, deren k Zeilen
linear unabhdngig sind. Dann besitzt das lineare Gleichungssystem

Ax =y
fiir jedes y € F* genau ||F||*"* Lisungen x € F*.

Beweis. Siehe Ubungen. O

Satz 26. Sei p prim und fir x = (x1,...,2,) € {0,1} und k = (k1,..., ki) € Zf; sei

¢
hi(x) = kx = Z k;z; mod p.
i=1
Dann ist (X, Y, K, H) mit X = {0,1}*={0°}, Y = Z, und K = Z ein (2°=1,p, p*, p*?)-
MAC.

Beweis. Wir miissen zeigen, dass die GroBle von K(x,y,z’,y’) fur alle Doppelpaare
(z,y,2',y") mit # 2’ konstant ist. Es gilt

ke K(zr,yay) & h(x)=yAh)=y
&S k-x=yANk-2' =y

Fassen wir x = x;---2, und 2’ = 2 --- 2, zu einer Matrix A zusammen, so ist dies
1 y4)
aquivalent zu
k1

<x1 - l.e) . : N <y>

oL, / . / :

Ly Ly k Y

Da die beiden Zeilen von A verschieden und damit linear unabhéngig sind, folgt mit

obigem Lemma, dass genau | K (z,y,2,y')|| = p*~2 Schliissel k = (ki, ..., k¢) mit dieser
Eigenschaft existieren. O

24 1 Kryptografische Hashverfahren

Bemerkung 27. Obige Konstruktion liefert einen \-Wert von ”mLQ” = p*~2. Durch Er-
weiterung von X auf eine geeignete Teilmenge X' C Zf; lasst sich der Textraum wvon
26 — 1 auf ’;:%11 vergrifiern (siehe Ubungen). Dies fiihrt auf einen beliebig grof§ wihlbaren

Kompressionsfaktor von p’(’;j) bei einem \-Wert von A = p*~2. Wie der ndichste Satz

zeigt, ldsst sich dies nicht mit einem kleineren \-Wert erreichen.

Im Beweis des nachsten Satzes benotigen wir folgendes Lemma.

Lemma 28. Fiur beliebige reelle Zahlen by, ..., b, € R gilt (Z?;l bi)2 <mym. b2

=17 "

Beweis. Siehe Ubungen. O
Satz 29. Fir einen (n,m,l, \)-MAC gilt
)\ > n(m-—1)+1
Z 7
und somit | > n(m —1) 4 1.

Beweis. O.B.d.A. kénnen wir wieder ||K|| = {1,...,{} und Y = {1,...,m} annchmen,
und dass die 1. Zeile der Authentikationsmatrix A nur aus Einsen besteht. Fiir jede Zeile
i =1,...,1 bezeichne x; die Anzahl der Einsen in dieser Zeile (also z; = n). Da in jeder
Spalte jeder Hashwert genau Am-mal vorkommt, gilt

! !
inzknm und in:)\nm—n:n()\m—l).

i=1 i=2
Nun ist die Anzahl z der Vorkommen von Indexpaaren (j, ') mit Afs, j] = Afi,j'] =1 in
den Zeilen i = 2,...,[gleich

z:zxi(zi—l) =>"a? = >z => a7 —n(hm—1).

=2 =2 =2
Mit obigem Lemma ergibt sich

(Clem) (mOm -1y

!
2
P =
= I—1 [—1
Da andererseits in jedem Spaltenpaar das Hashwert-Paar (1,1) in genau A Zeilen vor-
kommt (genauer: einmal in Zeile 1 und (A — 1)-mal in den Zeilen i = 2,...,[), und da

n(n— 1) solche Spaltenpaare existieren, ist die Anzahl z der Vorkommen von Indexpaaren
(7,7") mit Az, j] = Ali,j'] =1 in den Zeilen ¢ = 2,...,[gleich

z=(A=1n(n—1).
Somit ergibt sich

(A=1n(n—1) :ix?—n(/\m— 1) > (n()\lm—ll))z
(A =Dnm —1)+n(0m—1)Mm* —1) > (n(Am — 1))?
(An —n — X+ 2dm)(Am? — 1) > n(Am — 1)?

—N°m® 4+ X°m?® > dnm® + An — X+ Am — 2 nm

N (m? —m?) > An(m —1)*+m —1)
axm?>n(m—1)+1

[>n(m—1)+1

—n(Am —1)

L

1.3 Nachrichten-Authentikationscodes (MACs) 25

Fir den Beweis des néchsten Satzes benétigen wir folgendes Lemma (Beweis siehe
Ubungen).

Lemma 30. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X) 2 R*. Dann
gilt log E(X) > E(log X).

Satz 31. Fir jeden MAC (X,Y, K, H) gilt:

1
o> o H(K)—H(K|X,Y) "

Hierbei sind X, Y, K Zufallsvariablen, die die Verteilungen der Nachrichten, der Has-
hwerte und der Schliissel beschreiben.

Beweis. Wir zeigen: loga > H(K | X,)) — H(K). Es gilt: o = max, , p(z — y), wobei

p(z —y) = Prob[hy(z) =y
= Prob)Y =y | X =z
= Dylz
=a > Y ProbX =zY =yl plx—y)
= E(a(X,)))
=loga > logE(a(X,)))
> E(loga(X,Y))(x)

= pr,y : logpykc

I?y

Zp:v *Dylz - logpy\x
T,y

~HY | X)
H(K | X,) — H(K)(++)

v

Hierbei gilt (*) wegen obigem Lemma und (**) ergibt sich aus

H(K,Y,X) = HX)+HQY|X)+H(K| X,
= H(K,X) +HQY|K,X).

—H(K)+H(X) =0

1.3.3 MACSs auf der Basis einer schliissellosen Hashfunktion

Sei h: {0,1}™" — {0,1}™ die Kompressionsfunktion einer schliissellosen Hashfunktion
h (etwa MD5). Dann kénnen wir mithilfe von h einen MAC konstruieren, indem wir als
Initialisierungsvektor IV den symmetrischen Schliissel k£ € K benutzen. Wir betrachten
zunachst den Fall, dass auf das Preprocessing verzichtet wird.

Sei H = (X,Y,K) die Hashfamilie mit X = U,>1{0,1}"*, Y = {0,1}"" = K und
H = {hy | k € K}, wobei hy(z) wie folgt berechnet wird:

1Sel x=mq,... 2, x| =t fir i=1,...,n
2 zg:=k

26 1 Kryptografische Hashverfahren

3 for i:=1 to n do
1 Zi = h(zi,lxi)
5 output z,

Bei diesem MAC fiihrt beispielsweise folgender Substitutionsangriff zum Erfolg.

Sei (z,z) ein Paar mit hy(z) = z, wobei k der dem Gegner unbekannte Schliissel ist.
Dann lasst sich fiir einen beliebigen String u € {0, 1} leicht der MAC-Wert des Textes
x’ = zu mittels hg(z") = h(zu) berechnen.

Ein dhnlicher Angriff ist auch bei Verwendung einer Preprocessing-Funktion moglich.
Hat diese beispielsweise die Form y(z) = xpad(x), so lasst sich obiger Angriff wie folgt
modifizieren.

Sei (x, z) gegeben mit hg(y(z)) = z und sei y(x) = xpad(z) = y; ... y,. Dann kénnen
wir fir einen beliebigen String v € {0,1}* den MAC-Wert hy(y(z')) fir den Text
x' = xpad(z)u wie folgt berechnen. Wegen

y(2") = 2'pad(2’) = wpad(z)upad(z’) = y; . .. yyupad(x’)

lasst sich das Suffix upad(z’) in eine Folge u; ... u,, von Blécken u; der Lange |u;| =t
zerlegen. Setzen wir nun z, = z und

Zn4i = h(*zn—i-i—lun—i-i)

fir i =1,...,m, so erhalten wir den gewiinschten MAC-Wert hi(y(2')) = znim.

1.3.4 CBC-MACs

Als Basis fiir die Konstruktion eines MAC kann auch ein symmetrisches Kryptosystem
dienen.
Sei (M,C, K, E, D) ein endomorphes Kryptosystem (d.h. M = C) mit M = {0, 1}*. Sei
IV := 0" und sei k € K ein geheimer Schliissel. Sei y eine Funktion fiir den Preprocessing-
Schritt.

Berechnung von hy(z):

y=y@)=y1...n, n>1, |yl =t

1
2

3 for 1=1 to n do
4 zi = FE(k,zi_1 @ y;)
5 output hi(x) = z,

Die Hashwertlange betragt also ¢t Bit. Wird auf den Preprocessing-Schritt verzichtet,
so léasst sich leicht ein Angriff mit 2 adaptiven Fragen ausfiihren. Kennt der Gegner
die MAC-Werte z = hg(z) und 2/ = hi(2') fir die Texte 2 = z;-- 2, und 2’ =
(X1 ® IV @ 2)xpi9 -+ Tym, Wobel |x;| =t firi =1,...,n 4+ m ist, so muss auch der
Text " = x1 -+ Ty den MAC-Wert hy(2”) = 2’ haben.

Diesen Angriff kann man zwar ausschliefen, indem man eine feste Lange fiir die Texte
x vorschreibt. Dies schrankt jedoch die Anwendbarkeit des CBC-MACS erheblich ein.
Zudem ist dann immer noch folgender Geburtstagsangriff auf den CBC-MAC moglich.

1.3 Nachrichten-Authentikationscodes (MACs) 27

Geburtstagsangriff auf einen CBC-MAC

Dieser Angriff erméglicht es, mit ¢ + 1 ~ 22 Hashwertfragen den MAC-Wert, hy, () fiir
einen zuvor nicht erfragten Text x zu finden, wobei = = x4, ..., 2, € {0, 1}’ abgesehen
vom ersten ¢-Bitblock z; beliebig wahlbar ist. Hierzu wahlt der Gegner zunichst n — 2
beliebige Blocke 3, ..., z, € {0,1} und ¢ ~ 1,17 - 23 paarweise verschiedene Blécke
xi,..., 2% € {0,1}'. AnschlieBend wihlt er zufillig ¢ weitere Blocke 3, ..., x4 € {0, 1}
und erfragt die MAC-Werte z; = hy,(z") fiir die Texte 2° = xizbws -z, i=1,...,q.
Wegen z¢ # z] fiir i # j sind auch die Texte z', ..., 29 paarweise verschieden. Seien
z1,..., 2} die nach der ersten Iteration des CBC-MACSs berechneten Kryptotexte 2z =
E,(IV @& 2t). Da die Blocke z% zufillig gewihlt werden, sind auch die Eingangsblécke
2t @ xb fir die 2. Iteration zufillig, d.h. es gilt

. , , . , |
Pr3i#£j:21@a, =2 @ =Pr[Fi#£j 2, =) ~ 3
Da die Gleichheit der Eingangsblocke fiir die 2. Iteration mit der Gleichheit der Ausgangs-
blocke fiir die n-te Iteration und damit mit der Gleichheit der zugehérigen MAC-Werte
2" und 27 dquivalent ist, kann der Gegner das Indexpaar (i, j) mit 2} @ z%, = 2{ & x} auch
leicht finden, sofern es existiert.
Befindet sich unter den erfragten Texten ein Kollisionspaar (z’,z7) mit 2* = 27, so
erfragt der Gegner fiir einen beliebigen Bitblock u € {0,1}' — {0’} den MAC-Wert
Zi = hy(2") fir den Text &' = 2 (2} ® u)ay - - - x,, welcher zugleich MAC-Wert des Textes
) =2} (x} ®u)xz- -1, ist, den er zuvor nicht erfragt hat.

Definition 32. Sei 0 < e <1 und sei q € N. Ein (g,q)-Falscher fir eine Hashfamilie
H ist ein probabilistischer Algorithmus A, der q Fragen xi,...,x, stellt und aus den
Antworten z; = hy(x;) mit Wahrscheinlichkeit mindestens € (bei zufdllig gewdhltem
Schliissel k) ein Paar (x, z) berechnet mit x & {x1, ..., 2.} und hy(x) = 2.

Wir unterscheiden zwischen adaptiven Fragen (d.h. der Text x; darf von den Hashwerten
der Texte x1,...,x;_; abhdngen) und nicht-adaptiven Fragen. Zudem unterscheiden wir
zwischen selektiven Falschungen (d.h. der Gegner kann den Hashwert fiir einen Text seiner
Wahl generieren) und existientiellen Falschungen (d.h. der Gegner kann den Hashwert fiir
irgendeinen Text = & {x1,...,z,} generieren, auf dessen Wahl er keinen Einfluss hat).

Beispiel 33. Der betrachtete Geburtstagsangriff auf einen CBC-MAC fiihrt auf einen
(%, q + 1)-Fdlscher fir q ~ 1,17 - 25. Dabei ist nur die letzte Hashwertfrage adaptiv und
der Text x kann abgesehen vom ersten t-Bitblock beliebig vorgegeben werden.

1.3.5 Kombination einer Hashfunktion mit einem MAC (HMAC)

Falls der Textraum einer Hashfamilie den Hashwertraum einer anderen Hashfamilie
enthalt, lassen sich diese leicht komponieren (Nested-MAC).

Definition 34. Seien H, = (X, Y, K1, F) mit F = {fx | k € K1} und Hy = (X, Y, K3, G)
mit G = {gx | k € Ky} Hashfamilien. Dann ist Hy o He = (X, Z, K, H) die Komposition
von Hy und Ha, wobei K = Ky X Ky und H = {gy, o fr, | (k1,ko) € K} ist.

Beispiel 35. Wahit man fir Ho eine 2-universale Hashfamilie und fir H, eine schlissel-
lose Hashfunktion (etwa SHA-1), so erhdlt man einen so genannten HMAC (Hash-MAC).

28 1 Kryptografische Hashverfahren

Eine Variante hiervon ist der auf SHA-1 basierende H-MAC, bei dem zwei Varianten
von SHA-1 mit symmetrischen Schliisseln komponiert werden, wobei jedoch beidesmal
derselbe Schliissel benutzt wird. Seien

ipad = 36 ...36 und opad = 5C'...5C
— —_——

64mal 64mal

512 Bit Konstanten. Dann berechnet sich H-MAC wie folgt:
H-MACy(x) = SHA-1((k @ opad)SHA-1((k @ ipad)x)).

Hierbei fungiert die Funktion fi(z) = SHA-1((k @ ipad)z) als Hashfunktion mit Schliissel,
die beliebig lange Texte hasht, und der MAC g¢x(z) = SHA-1((k & ipad)z) wird nur
auf Bitstrings der Lange 512 angewendet. Wie der folgende Satz zeigt, gentigt es, wenn

fx kollisionsresistent und g, berechnungsresistent ist, um einen berechnungsresistenten
HMAC zu erhalten.

Definition 36. Ein (¢, q)-Kollisionsangreifer fir eine Hashfamilie H ist ein probabi-
listischer Algorithmus A, der q Fragen x1,...,x, stellt und aus den Antworten mit
Wahrscheinlichkeit mindestens € ein Paar (z,x") berechnet mit hy(x) = hi(z'), wobei k
der dem Gegner unbekannte (und zufillig gewdhlte) Schlissel ist.

Da der Gegner den Schliissel £ nicht kennt, ist ein Kollisionsangriff gegen eine Hashfamilie
‘H schwieriger zu realisieren als ein Kollisionsangriff gegen eine schliissellose Hashfunktion.

Satz 37. SeienH, = (X, Y, K1, F), Ho = (X, Y, Ky, G) und H = (X, Z, K, H) = Hi0H,
Hashfamilien. Falls fir Hq kein adaptiver (e1,q + 1)-Kollisionsangriff und fir He kein
adaptiver (eq,q)-Fdlscher existieren, dann gilt fir jeden adaptiven (e, q)-Falscher fir H,
dass € < &1 + &9 ist.

Beweis. Sei A ein adaptiver (g, ¢)-Féalscher fiir H. Wir miissen zeigen, dass ¢ < &1 + &9
ist. Wir betrachten zunéachst folgenden adaptiven Kollisionsangreifer A" gegen H;: A’
wéhlt zufillig einen Schliissel ks € K5 und simuliert A, wobei A’ fiir jede Anfrage x; von
A das Orakel fy, (mit unbekanntem, aber zufillig gewdahltem Schliissel k) nach dem
Wert y; = fi, (z;) fragt und an A die Antwort z; = gg, (y;) zuriickgibt. Sobald A ein Paar
(z, z) ausgibt, fragt A" das Orakel fi, nach dem Hashwert y = fi, () und gibt im Fall
y €{v1,...,y,} das Paar (z,z;) fir einen beliebigen Index ¢ mit y = y; aus.

Da A’ genau im Fall y € {y1,...,y,} Erfolg hat, tritt dieser Fall mit Wahrscheinlichkeit
< g1 ein. Da A aber ein (g, ¢)-Falscher fiir ‘H ist, muss mit Wahrscheinlichkeit > ¢
z = gk, (y) gelten. Folglich sind mit Wahrscheinlichkeit > ¢ — &7 die beiden Bedingungen
y & A{yi,...,y,} und z = gy, (y) erfillt. In diesem Fall hat jedoch der adaptive Falscher
A" gegen Hy Erfolg, der zuféllig einen Schliissel k; € Ky wahlt und A wie folgt simuliert.
A" gibt bei jeder Anfrage z; von A die Antwort des Orakels g, auf die Frage y; = fi, (z;)
zurlick und sobald A ein Paar (z, z) ausgibt, gibt A” das Paar (fy,(z), z) aus. Da es nach
Voraussetzung keinen adaptiven (g9, ¢)-Félscher gegen Hy gibt, muss ¢ — g1 < &5 sein. O

29

2 Elliptische Kurven

2.1 Elliptische Kurven iiber den reellen Zahlen

Definition 38. Seien a,b € R. Eine elliptische Kurve E enthilt alle Losungen (z,y) € R?
der Gleichung y? = x3 + ax + b und zusdtzlich den Punkt O. Im Fall 4a® + 27b* = 0 heifst
E singuldr, sonst nicht-singuldr.

Auf den nicht-singuldren Punkten von F lasst sich eine additive Gruppenoperation +
definieren. Die Idee dabei ist, dass die Summe aller Punkte von F, die auf einer Geraden
liegen gleich dem neutralen Element O sein soll (hierbei werden Tangentialpunkte doppelt
gezahlt). Da maximal drei Punkte von E auf einer Geraden liegen kénnen wir auf der
Basis dieser Regel die Summe P + () zweier Punkte P und @) leicht bestimmen.
Am einfachsten ist der Fall, dass die Gerade g parallel zur y-Achse verlauft. Besteht
die Schnittmenge S von g und E aus 2 Punkten P = {x1,3;} und Q = {x2, 42}, so gilt
offensichtlich 1 = x5 und y; = —y, und wir erhalten P + QQ = O bzw. —P = (z1, —y1).
Diese Gleichung gilt auch fir den Fall, dass S nur aus einem Punkt P = {z1,y;} besteht,
da P dann wegen y; = 0 ein Tangentialpunkt ist.
Es bleibt der Fall, dass g nicht parallel zur y-Achse verlauft. Hier gibt es 2 Unterfalle:
P #Q, d.h. 21 # x5t Dann ist ¢ = {(2,9) € R*ly = Az + p} mit A = 222 und
=11 — A\x; = Yo — Axo. Wir zeigen zuerst, dass

Eng={PQ,R}
ist, wobei R = (z3,y3) folgende Koordinaten hat:

373:)\2—:131 — x9 und y3:)\($3—x1)+y1, mit A = u
To — X1
Fir alle (z,y) € ENg gilt

Az +p)? =2° +ax+b

~ 2t = N2? 4 (a— 2uN)z + b — p? = 0.

p(z)

p laBt sich in C vollstiandig in Linearfaktoren zerlegen,

p(z) = (x — x1)(x — x2)(z — x3).

Da z;, 75 € R sind, muss auch z3 € R sein. Der Koeffizient —\? von z? berechnet
sich aus der linearen Zerlegung von p(x) zu

N = —p — 29— a3~ 13 = N2 — 1) — 9.

Wegen A = 2= erhalten wir dann y3 = M(z3 — 21) + y1.
Folglich ist P+ Q = —R = (x3, —y3) = (A — 21 — 22, A\(x1 — 23) — y1)-

30

2 FElliptische Kurven

P=Q, d.h. x1 =29,y =y # 0: Sei t die Tangente durch P an E. Wir zeigen, dass es

einen Punkt R = (x3,y3) € R? gibt mit
tNE ={P, R},

wobei 3 = \? — 27, und y3 = A(x3 — x1) + ¥ ist. Die Steigung A von ¢ erhalten wir
durch implizites Differenzieren:

N dy —2E (21, 31) 3zt +a

Cdr %(J;byl) N 2

3 — ax — b ist. Zur Begriindung sei

wobei F(x,y) =y* —x
T(z,y) = clz —x1) +d(y — 1)

die Tangentialebene an F'(z,y) im Punkt (zq,y1, F(z1,v1)) = (21,%1,0). Dann gilt

oF
c= E(:L*l,yl) =327 —a
und Sp
d= @(%;yl) =2y.

t ist dann der Schnitt von T mit der z, y-Ebene, d.h.

(z,y) et & T(z,y)=0
C

< Yy—un= —g@—%)y

woraus sich A = —% erbibt. Genau wie im 1. Fall erhalten wir nun P+ Q = P+ P =

.’EQ a
2P = —R = (3, —y3)) = (N> — 21 — @9, A(w1 — 3) — y1) mit \ = 321;; .

Satz 39. E bildet mit O als neutralem Element und + als Addition eine abelsche Gruppe,
d.h.

+ ist abgeschlossen auf E.
+ ist kommutativ

Jeder Punkt hat ein Inverses —P. P ist selbstinvers, falls P = —P ist. Dies gilt fiir
P = O und alle Kurvenpunkte der Form P = (z,0).

+ ist assoziativ. (ohne Beweis!)

2.2 Elliptische Kurven iiber endlichen Korpern

Definition 40. Sei F, ein endlicher Kérper mit ¢ = p™ fir eine Primzahl p > 3. Fir
a,b € F, mit 4a® + 27b* # 0 heift

E={(x,y) € Zy| v’ =, 2° + az + b} U{O}

elliptische Kurve tiber F,. Die Gruppenoperation + ist auf 2 wie folgt definiert.

O ist neutrales Element, dh. VP e E: P+ 0O =0+ P =P.

2.2 Elliptische Kurven tiber endlichen Kérpern

o Fir P,Q € E—{O} ist
0, P=Q

R, sonst

ria-

wobei sich R = (x3,y3) wie folgt aus P = (x1,y1) und Q = (x2,y2) berechnet:

'IS -)\2 — :L‘l —_ 3'52
Yys =)\([El — xs) — 1
— _ -1
wobei \ = (Yo —n)(xe —21)™", P#Q
B v PG
Satz 41. (E,O,+) bildet eine abelsche Gruppe

Beweis. ohne Beweis

31

O

Beispiel 42. p = 11, E definiert durch y* = x® + x + 6. Zur Erinnerung: Im Fall p =, 3

lassen sich fir z € QR, die Wurzeln y durch 1255 bestimmen.

x 01} 2 3 145 |6| 7 8 |91 10
z=234+2+6| 6|8 5 3 |8 4 |8] 4 9 | 7] 4

z € QRyy —|—| =z z |-z |—| = Tz | —
Y — | = 14756 =129 —12,9|38|—12;9

Da die Gruppe (E,0,+) tE = ||E|| = 13 Elemente enthdlt, und 13 eine Primzahl ist,
haben alle Elemente entweder die Ordnung 1 oder 13. Da nur das neutrale Element
O die Ordnung 1 hat, haben alle anderen Elemente P € E — {O} die Ordnung 13,
sind also Erzeuger der Gruppe. Folglich ist (E,O,~+) zyklisch und somit isomorph zu
Zis: (E,0,+) = (Z413,0,+). Da die Gruppenordnung prim ist, ist sogar jedes Element

p € E—{O} ein Erzeuger. Folglich
Berechnung von 2g = (2,7) + (2,7):

A= (3-2241)(2-7) " mod 11
= 2.37"
= 2.4=38
r3 = 8 —-2—-2mod1l1=5
ys = 8(2—5)—T7mod 11 =2
= 29 = (5,2)
Berechnung von 3g =29+ g = (5,2) + (2,7):
= (7-2)(2-5)" mod 11
= 5-(=3)"
2
r3 = 22—5—2mod 11 =8
y3 = 2-(5b—8)—2mod 11 =3

12

13

kg 20,2]8,3)]10,2)(3,6) (7.9 (7.2)] (3,5)] (10,9)

2,4

32 2 FElliptische Kurven

Satz 43. (Hasse) Fir die Anzahl $E von Punkten einer elliptischen Kurve tber einem
endlichen Korper ¥, gilt

¢g+1—-2/¢<tE<qg+1+2/74.
Beweis. (ohne Beweis) 0
PointCompress: £ — {O} — Z,, X Zy: PointCompress(z,y) = (x,y mod 2)

Prozedur PointDeCompress(z,i)

I z:=a34+ax+bmodp
> if z € QR, then

3 y :=+/zmod p

4 if y #, i then

5 Yy=prp—Uy

6 output (z,vy)

7 output (‘‘error’’)

Bemerkung 44. Es gibt einen effizienten Algorithmus (von Schoof) mit Zeitkomplexitdt
O(log®q), der 4E bei Eingabe von a,b und q berechnet.

Satz 45. Sei E eine elliptische Kurve diber F,. Dann ist (E, O, +) isomorph zu Zy, X Ly, ,
wobei i,y € NT sind und ny Teiler von ny und von q — 1 ist.

Bemerkung 46. Zyklische (Unter)-Gruppe. Wegen $E = ny -ny und da ny Teiler von ny
ist, muss E im Fall, dass §E prim oder das Produkt von zwei verschiedenen Primzahlen ist,
zyklisch sein (d.h. ng = 1). Im Fall ny > 1 hat E eine nicht-triviale zyklische Untergruppe,
die zu Zy, isomorph ist und fir kryptografische Anwendungen benutzt werden kann.

Effiziente Berechnung von Vielfachen von Punkten auf E

In Z7, berechnen wir Potenzen a® mod m durch ‘wiederholtes Quadieren und Multiplizie-
ren’. Ahnlich kénnen wir in einer elliptischen Kurve E die Vielfachen mP eines Punktes
P durch ‘wiederholtes Verdoppeln und Addieren’ berechnen. Da in E additiv Inverse
sehr leicht zu berechnen sind, kann mP durch ‘wiederholtes Verdoppeln, Addieren und
Subtrahieren’ noch effizienter berechnen werden. Hierzu stellen wir m in NAF (non
adjacent form) dar.

Definition 47. (¢,_1,...,¢co) € {—1,0,1} heifit SBR-Darstellung (signial binary repre-
sentation) einer Zahl ¢ € Z, falls

ist. Ist von je zwei benachbarten c;’s mindestens eines 0, so heifst (¢;—1,...,co) NAF-
Darstellung von c.

Beispiel 48. Sowohl (0,1,0,1,1) als auch (1,0,—1,0,—1) sind SBR-Darstellungen von
c=142+8=11=-1—-4+16.

Satz 49. Jede Zahl c € Z hat eine eindeutige NAF-Darstellung.

Beweis. (siehe Ubungen) 0

2.2 Elliptische Kurven tiber endlichen Kérpern 33

Berechnung einer NAF-Darstellung aus der Bindrdarstellung: Ersetze jeden Teilstring
der Form (0,1,...,1) von rechts beginnend durch den Teilstring (1,0,...,0,—1).

Algorithmen zur Berechnung von Vielfachen von Punkten auf E:

Prozedur DoubleAdd(P, ¢, 1,...,co)
Q=0
for 1:=1—1 to 0 do
Q=2-Q
if ¢; =1 then
5 Q=Q+P
5 output (Q)

=~ w no =

Prozedur DoubleAddSub(P, ¢ 1,...,¢)
Q=0

2> for i:=1—1 to 0 do

3 Q:=2-Q

4 if ;=1 then Q:=Q+ P

5 if ¢;=1 then Q:=Q+ (—P)

; output (Q)

Da eine [-Bitzahl im Durchschnitt é—Nullen in Binédrdarstellung und 2gl—Nullen in NAF-
Darstellung enthélt, ist DoubleAddSub um 11 Prozent effizienter als DoubleAdd.

34

3 Algorithmen zur Berechnung des diskreten
Logarithmus

Sei (G, *,1) eine Gruppe und sei @ € G. Weiter bezeichne (o) = {a'[i = 0---n — 1}
die von «a in G erzeugte Untergruppe, wobei n = ordg(a) = min{e > 1 | a® = 1} die
Ordnung von « ist. Dann heifit die eindeutig bestimmte Zahl e € {0,...,n — 1} mit
f = a° der diskrete Logarithmus von 3 zur Basis o in G (kurz: e = logg ,(5)).

Das diskrete Logarithmusproblem (DLP):

Gegeben: Gruppe G, ein Element o € G und die Ordnung n = ordg(a) von a sowie
ein Element § € («).

Gesucht: Der diskrete Logarithmus e = logg ,(3) von 3 zur Basis o in G.

Fir viele Gruppen G ist die Funktion e — af effizient mittels wiederholtem Quadieren
und Multiplizieren berechenbar. In einigen Fallen ist jedoch kein effizienter Algorithmus
zur Bestimmung der Umkehrfunktion, also von log,, (3) bekannt, d.h. e — a° ist Kandidat
fiir eine Einwegfunktion.

Beispiel 50. Sei G = (Z;, *), p prim, und sei o ein Erzeuger von Zy,. Dann ist () = Z;
und a hat die Ordnungn = p—1. Ist p hinreichend groff und enthdlt p—1 mindestens einen
grofien Primfaktor, so sind keine effiziente Algorithmen zur Berechnung von log, ()
bekannt.

Die Ordnung der Potenzen eines Elements @ € G der Ordnung n lésst sich wie folgt
berechnen:

ordg(a’) = n/ggT(n,i).
Ist insbesondere ¢ ein Teiler von n, so hat a”/¢ die Ordnung q.

Wir betrachten zunéchst eine Reihe von naiven Algorithmen fiir das DLP.

Berechnung von log ,(53)

vi=1

for ::=0 to n—1 do
if v =/ then output(i)
v i=ay

> w Do —

Dieser Algorithmus lduft in Zeit O(n) (wobei wir annehmen, dass elementare Grup-
penoperationen in konstanter Zeit ausfithrbar sind) und benétigt nur logarithmischen
Speicherplatz. Falls wir im Vorfeld eine Tabelle mit den Logarithmen aller moglichen
Werte fiir 3 erstellen, kénnen wir danach fiir jedes 8 den diskreten Logarithmus durch
eine Bindrsuche in Zeit O(logn) bestimmen. Fiir die Precomputation fallen jedoch Zeit
O(n) und Platz O(nlogn) an.

DLP-Berechnung mittels Precomputation

. Precomputation: Sortiere die Paare (a%,i), i=0,...,n—1, nach der
ersten Komponente in eine Tabelle T

3.1 Die Rho-Algorithmen von Pollard 35

> Computation: Ermittle in 7 mittels Binarsuche den Eintrag (f,1)
und gib ¢ aus

Der folgende Algorithmus von Shanks berechnet ebenfalls im Vorfeld eine Tabelle von
DLP-Werten, allerdings nur fiir Potenzen der Form o™, j = 0,...,m—1, wobeim = [/n]
ist. Dadurch erhoht sich zwar die Laufzeit zur Bestimmung des diskreten Logarithmus
fiur 5 von O(logn) auf O(y/n), im Gegenzug geht jedoch der Speicherplatzverbrauch von
O(nlogn) auf O(y/nlogn) zuriick.

Algorithmus Shanks(G,n,«, 3)
I Precomputation:

2 me= [V |

3 sortiere die Paare (o’™,j), j=0,...,m—1, nach der ersten
Komponente in eine Tabelle T'1

i Computation:

5 sortiere die Paare (Ba~% i) nach der ersten Komponente in eine
Tabelle 712

6 ermittle durch parallele sequentielle Suche Paare (v,7) in T1

und (vy,4) in 72 mit derselben ersten Komponente
output(mj + i)

~

3.1 Die Rho-Algorithmen von Pollard

Von Pollard wurde eine heuristische Strategie entwickelt, die sich sowohl zur Losung
des DLP als auch des Faktorisierungsproblems eignet. Die Idee dabei ist, mit wenig
Speicherplatz eine Kollision a; = a; mit ¢ # j fir eine Folge (a,) der Form a, 41 = f(ay)
zu finden. Zahlenfolgen dieser Bauart haben die Eigenschaft, dass a; = a; die Gleichheit
aiyk, = ajq fir alle k& > ¢ impliziert.

Der Rho-Faktorisierungsalgorithmus

Sei n eine Zahl mit mindestens 2 verschiedenen Primteilern p < ¢ (falls n nur einen
Primteiler hat, also eine Primzahlpotenz ist, lésst sich n leicht durch Berechnung der
k-ten Wurzeln fur k = 2,...,log,(n) faktorisieren).

Angenommen, wir wahlen zuféllig eine Menge X C Z, der Grofie /p, so enthélt X mit
grofler Wahrscheinlichkeit 2 Elemente x # 2’ mit z =, 2/, die auf den nichttrivialen
Faktor d = ggT(x — 2',n) von n fithren.

Wiéhlen wir nun anstelle von X eine pseudozuféllige Menge der Form X = {z, 2, =
f(z1),...,x; = f(z;—1)}, wobei z; ein zufillig gewadhlter Startwert ist, so tritt bei
geeigneter Wahl von f : Z, — Z, fir j ~ /p mit grofler Wahrscheinlichkeit eine
Kollision auf. Eine gute Wahl fiir f ist beispielsweise f(z) = 2 4= 1 mod n.

Werden zur Berechnung von f nur die Ringoperationen von Z,, verwendet, so impliziert
r; =, z; die Kongruenz f(z;) =, f(x;), was wiederum fiir | = j — i die Kongruenz
Ty =p Tpta fr alle £ > ¢ und d > 1 impliziert. Insbesondere folgt also zj =, x9, fiir alle
k > i mit k =; 0. Daher konnen wir in X ein Kollisionspaar (z;,z;) mit x; =, x; wie
folgt bestimmen (ohne p zu kennen).

36 3 Algorithmen zur Berechnung des diskreten Logarithmus

Algorithmus Pollard-Rho-Factorize(n)

1 wahle zufallig z € Z,

> y:=a?+1modn

3 while ggT(z —y,n) =1 do

! x = f(z)

= W)

¢ if d=ggT(x —y,n) <n then output(d)
7 else output(?)

Der Rho-DLP-Algorithmus

Dieser Algorithmus berechnet eine pseudozufillige Folge von Paaren (¢;, d;) € Z,, X Z,,.
Ziel ist es, zwei Paare verschiedene (¢;, d;) und (cj, d;) mit %% = % 3% zu finden. Im
Fall ggT(d; — d;,n) = 1 lasst sich hieraus wegen

aci—l—adi — aciﬁdi — Q{Cjﬂdj — a0j+adj

der diskrete Logarithmus logg ,(3) = (¢; — ¢;)(d; — d;)~" mod n leicht bestimmen. An-
dernfalls erhalten wir g = ggT(f — d,n) Kandidaten ay, ..., a,, unter denen der richtige
leicht zu ermitteln ist. Zur Bildung der Pseudozufallsfolge kann bspw. die Funktion f in
folgendem Algorithmus benutzt werden. Aus Effizienzgriinden berechnet sie auch gleich
die Werte z; = a%B%. Die Mengen S, S5, Ss bilden eine Partition von G in drei etwa
gleich grofle Mengen, wobei das neutrale Element 1 von G nicht in Sy enthalten sein
sollte.

Algorithmus Pollard-Rho-DLP(G,n,«a, ()
function f(z,c,d)

1
2 case
3 x € S1: return(fx,c,d + 1 mod n)
! r € Sy: return(z?, 2c mod n, 2d mod n)

x € S3: return(az,c+ 1 mod n,d)
6
7 wahle zufallig c,d € Z,
s x:=a’p?
9 (y,e, f) = f(m7cad)
10 while z #y do
11 (z,c,d) := f(z,¢,d)
2 (e f) = f(fy.e f))
15 g:=ggT(f —d,n)
1+ bestimme alle Lésungen ay,...,a, von (f —d)a=, (c—e)
15 output a; mit a% =0

Ahnlich wie beim Rho-Faktorisierungsalgorithmus lasst sich argumentieren, dass die
while-Schleife nach ca. \/n Iterationen abbricht.

3.2 Der Pohlig-Hellman-Algorithmus

Sei n = [[i, p;" die Primfaktorzerlegung von n und sei a = logg ,(8) der diskrete

Logarithmus von f zur Basis « in G. Falls wir fir i = 1,..., k die Werte z; = @ mod p;’

3.3 Die Index-Calculus-Methode 37

kennen, so lasst sich daraus a leicht mit dem Chinesischen Restsatz berechnen. Schreiben
wir z; als Zahl zur Basis p;, so erhalten wir Ziffern ay,...,a._1 mit z; = Z;Z;Ol ajp{ .
Weiter ex. eine Zahl s; mit a = x; + s;p;’.

Um nun die Ziffern ay, ..., a.,—1 zu berechnen, betrachten wir fiir j =0,...,e; — 1 und
B = BOF“O*“1“*“27”12"'*“1*11’571 die Gleichung

J+1
B]”/p2 _ aajn/pi’

die sich leicht verifizieren lasst:

1 1

)n/pi

1 -
TZ/Pi (aa—ao—a1pi—a2pf'“—aj71p§
j
: - s .
— (a“jp%ajﬂpf +etac, 1! +S“D;l)n/pﬁ
G il il L
= (auPittp:)”/ Pi " fiir eine Zahl ¢

aajn/pi atn

a,aj n/pi

Der folgende Algorithmus berechnet sukzessive die Zahlen §; und dazu die Ziffern
a; = 10gg on/r; (B"/pgﬂ), die sich wegen ordg(a"/?") = p; in Zeit O(,/p;) (etwa mit dem
Algorithmus von Shanks) ermitteln lassen. Insgesamt erhalten wir somit eine Laufzeit
von O(c;/p;) zur Bestimmung von ;.
Algorithmus Pohlig-Hellman-DLP(G, n,«, (3, pi, €;)
1 for j:=0 to e, —1 do

j+1
aj ‘= logG,a",/m (5n/p{+)

3 B = Ba~%Pi

output(ag---ae,_1)

no

=

3.3 Die Index-Calculus-Methode

Hierbei handelt es sich nicht um einen generischen DLP-Algorithmus, da er nur im Fall
G = Zj, p prim, und ord(a) = p — 1 anwendbar ist. Der Algorithmus benutzt eine
Faktorbasis B = {p1,...,pp}, wobei wir annehmen, dass B die ersten b Primzahlen
enthélt.

Algorithmus Index-Calculus(p,a,f)

I Precomputation:
2 bestimme [; =log,p;, fur i=1,...,b

3 Computation:

A wahle zufallig eine Zahl s€{0,...,p—2}

5 v := Ba’® mod p

6 if (v ist uUber B faktorisierbar) then

7 berechne Exponenten c¢i,...,c, mit v=p---p’
8 output (cily + -+ ¢ly mod p — 1)

Zur Bestimmung der Zahlen /; kann man wie folgt vorgehen. Wéhle ¢ etwas groflier als b
(z.B. ¢ = b+ 10) und generiere ¢ Kongruenzen der Form

€T alj -
o =pp7epy =1, c

38 3 Algorithmen zur Berechnung des diskreten Logarithmus

Hierzu kann man x; zuféllig wahlen und testen, ob y; = o™ mod p iiber B faktorisierbar
ist. Die Wahrscheinlichkeit hierfiir hdngt natiirlich von der Groéfie von B ab. Aus den
Kongruenzen lasst sich ein lineares Kongruenzgleichungssystem der Form

Qi1 -0 Gp1 Iy I
=p_1
a1e - ape) \Iy Te
A
fiir die Unbekannten [y, ..., [, gewinnen, das die gewiinschten Werte liefert, falls A durch

Streichen von ¢ — b Zeilen in eine b x b-Matrix A’ mit det A" #,_; 0 transformiert werden
kann.

Durch eine heuristische Komplexitiatsanalyse lasst sich zeigen, dass die
Precomputation-Phase in Zeit O(e(tte)vinphlnp) ynd die Computation-Phase
in Zeit O(el1/2re)Vinpnlnp) aysfiihrbar ist.

3.4 Eine untere Komplexititsschranke fiir generische
DLP-Algorithmen

In diesem Abschnitt gehen wir der Frage nach, wie effizient der diskrete Logarithmus
log,, ¢ B berechenbar ist, wenn tiber die Gruppe G nichts bekannt ist, aufler dass o € G die
Ordnung n hat und € (o) ist. Ein Algorithmus, der das DLP unter dieser Voraussetzung
16st, heifit generisch.

Dabei nehmen wir an, dass sich die Gruppenoperation und auch die Potenzierung von
Elementen in () effizient ausfithren lassen. Um zu verhindern, dass der DLP-Algorithmus
spezielle Eigenschaften von G ausniitzen kann (bspw. lasst sich das DLP in der additiven
Gruppe (Z,,+) sehr effizient 16sen), gehen wir davon aus, dass die Elemente von («)
durch beliebige Binarstrings kodiert sind. Formal verwenden wir hierzu eine injektive
Kodierungsfunktion o : Z, — {0,1}!, die jedem Exponenten i € Z, eine (zufillig
gewihlte) Kodierung o (i) € {0,1}' des Elements o' zuweist.

Da ein generischer DLP-Algorithmus A zu Beginn der Rechnung nur die (Kodierungen
der) beiden Elemente o und § kennt, kann er durch wiederholte Ausfithrung von Gruppen-
und Potenzoperationen nur Elemente der Form a¢3¢ berechnen. Der Einfachheit halber
nehmen wir an, dass A die Moglichkeit hat, fiir beliebige Paare (¢, d) € Z,, x Z,, die Kodie-
rung von a°f? in einem Rechenschritt zu erfragen. Seien also C = {(c1,dy), ..., (¢, dm)
die wihrend seiner Rechnung erfragten Paare.

Offensichtlich kann A den gesuchten Wert a = log, ¢ 8 genau dann berechnen, wenn
er fiir zwei verschiedene Paare (¢;,d;) und (c;,d;) die gleiche Antwort erhalt. Wegen
a%pB% = a% % gilt dann namlich %% = B%~% und daher

a=(¢; —¢j)(dj — d;)~* mod n.
Genauer folgt aus der Gleichheit a“~% = $%~4 dass a = (¢; — ¢;)(dj — d;)~" mod n,
und aus a4 #£ $4%-% dass a %, (¢; — ¢;)(d; — d;) 7" ist. Falls also A auf n — 1 Fragen
lauter verschiedene Antworten erhalten hat, lisst sich daraus auch auf den Wert von a
schlieflen.

Wir betrachten zuerst den einfacheren Fall, dass A nur nichtadaptive Fragen stellt (bspw.
ist der Shanks-Algorithmus ein nichtadaptiver generischer DLP-Algorithmus). Weiterhin
nehmen wir an, dass # (und damit der Wert a = log,,) zuféllig gewéhlt wird.

3.4 FEine untere Komplexitédtsschranke fiir generische DLP-Algorithmen 39

Sei Good(C) = {(¢;—¢;)(d;—d;) ' mod n | 1 <i < j < m}. Dann kann A den Wert a im
Fall a € Good(C) mit Sicherheit bestimmen. Dagegen gelingt dies A im Fall a ¢ Good(C)
nur mit Wk (n —m)~!, und zwar unabhiéngig davon, nach welcher Strategie A den
Ausgabewert aus der Menge Z,, — Good(C) auswahlt. Somit gilt fir die Erfolgswk v von

A,

v < Pr[A gibt a aus | a € Good(C)] - § + Pr[A gibt a aus | a € Good(C)] - (1 — §)

< S+ (n—m) ' (1=8) =m/n+1/n < @)n+ 8

wobei 6 = Prla € Good(C)] = m/n ist. Um also eine Erfolgswk v = €)(1) zu erreichen,
muss A mindestens m = Q(y/n) Fragen stellen.

Abschlieflend betrachten wir den Fall, dass A adaptive Fragen stellt. Da die Antworten
zufillig gewahlte Binérstrings sind, konnen sie offensichtlich nicht bei der Suche nach
nachfolgenden Fragen von Nutzen sein. Der einzige Vorteil, den ein adaptiver generischer
DLP-Algorithmus A hat, besteht darin, dass er sofort die Rechnung beenden kann, sobald
er auf zwei verschiedene Fragen die gleiche Antwort erhélt. Legen wir aber von vornherein
eine Obergrenze fiir die Anzahl der Fragen fest, so ergibt sich genau die gleiche Erfolgswk
wie im nichtadaptiven Fall.

40

4 Digitale Signaturverfahren

Handschriftliche Signaturen

e Die durch die Unterschrift gekennzeichnete Person hat tiberpriifbar die Unterschrift
geleistet.

e Die Unterschrift ist nicht auf ein anderes Dokument tibertragbar.

e Das signierte Dokument kann nachtraglich nicht unbemerkt verandert werden.
Eine direkte Ubertragung dieser Eigenschaften in die digitale Welt ist nicht méglich.

Losung: Die digitale Unterschrift wird nicht physikalisch, sondern logisch (inhaltlich) an
das elektronische (digitale) Dokument gebunden.

Definition 51. Fin digitales Signaturverfahren besteht aus:

e endlicher Menge X von Dokumenten,

e endlicher Menge Y von Unterschriften,

e endlicher Menge K von Schlisseln,

e ciner Menge S C K x K wvon Schliisselpaaren (l;:, k),

o cinem Signaturalgorithmus sig : K x X —Y und

o cinem Verifikationsalgorithmus ver : K x X xY — {0,1}
mit

1, st l%,x =y,
ver(k,z,y) = { 0 .)soni/t

fir alle (k, k) € S.

Klassifikation von Angriffen gegen Signaturverfahren

Angriff bei bekanntem Verifikationsschliissel (key-only attack)

Angriff bei bekannter Signatur (known signature attack): fiir eine Reihe von Doku-
menten z ist die zugehorige Signatur y = sig(l%, x) bekannt, auf deren Auswahl der
Gegner keinen Einflu} hat.

Angriff bei frei wahlbaren Dokumenten (chosen document attack): d.h. der Geg-
ner war fiir eine gewisse Zeit in der Lage, fir von ihm gewéhlte Dokumente die
zugehorige Signatur in Erfahrung zu bringen und versucht nun fiir ein “neues” Doku-
ment die Unterschrift zu bestimmen.

adaptiver Angriff bei frei wahlbaren Dokumenten: d.h. der Gegner wihlt jeweils das
nichste Dokument in Abhédngigkeit von der Signatur des vorigen.

Erfolgskriterien fiir die Falschung digitaler Signaturen

uneingeschranktes Falschungsvermdgen (total break): d.h. der Gegner hat einen
Weg gefunden, die Funktion = — sig(k, z), effizient zu berechnen ohne k als Eingabe

41

zu benutzen. (k ist ohnehin bekannt).

selektives Falschungsvermogen (selective forgery): d.h. der Gegner kann fiir Doku-
mente seiner Wahl die zugehorigen Signaturen bestimmen (eventuell mit Hilfe des
legalen Unterzeichners).

nichtselektives (existentielles) Falschungsvermogen: d.h. der Gegner kann fiir irgend-
ein Dokument x die zugehorige digitale Signatur bestimmen.

Beim RSA-Signaturverfahren ist X = {(a,n)|n = pq fur Primzahlen p,q und a €
Lyt und S die Relation S = {(d,n,e,n) € K x K|de =,(,) 1}. Signiert wird mittels
sig(d,n,z) := ¢ mod n, x € X = Z, und die Verifikationsbedingung ist

1, y¥*=,2 Ve,yeY =X
ver(e,n,x,y) = { 0 const

Satz 52. Fir alle (d,n,e,n) € S und z,y € Zy, gilt:

1, sig(d,n,z) =y,

ver(e,n,x,y) = { 0 onst

Beweis. Folgt direkt aus der Korrektheit des RSA-Kryptosystems. O

Es ist nicht schwer, eine nichtselektive Falschung beibekanntem Verifikationsschliissel
durchzufithren. Hierzu wahlt der Gegner zu einer beliebigen Signatur y € Y das Dokument
x = y° mod n. Diesen Angriff kann man vereiteln, indem man das Dokument z mit
Redundanz versieht (z.B. anstelle von x den Text zz signiert). Effizienter ist es jedoch,
nicht das gesamte Dokument x, sondern nur den Hashwert h(zx) zu signieren.

Von h benoétigte Eigenschaften

e h sollte eine Einweg-Hashfunktion sein, da sonst der Gegner zu h(x) ein passen-
des = bestimmen kann (zumindest wenn das Signaturverfahren anfillig gegen eine
existentielle Falschung ist, wie etwa RSA).

e Angenommen der Gegner kennt bereits ein Paar (z,y) mit ver(k,h(x),y) = 1. Dann
sollte h zumindest schwach kollisionsresistent sein, da sonst der Gegner ein x’ mit
h(z") = h(z) berechnen und das Paar (2’,y) bestimmen konnte.

e Falls sich der Gegner fiir bestimmte von ihm selbst gewahlte Dokumente x die
zugehorige Signatur y beschaffen kann, so sollte h sogar kollisionsresistent sein, da
sonst der Gegner ein Kollisonspaar (x,z’) fiir h berechnen kann (und sich zu z die
zugehorige Signatur beschaffen). Dann gilt ver(k, 2’,y) = 1.

Wird keine Hashfunktion benutzt, sind noch weitere Angriffe moglich.

e Falls der Gegner zwei signierte Dokumente (z1,v1), (22, y2) mit ver(k,x;,y;) = 1
kennt, so ist eine existentielle Falschung bei bekannten Signaturen moglich: Wegen
ys =, x; fur i = 1,2 folgt namlich (y142)¢ =, y§y5 =, T122 und somit ver(k, z122 mod
n,y1y2 mod n) = 1.

e Weiterhin ist eine selektive Falschung bei frei wahlbaren Dokumenten denkbar. Kennt
der Gegner bereits die Signatur fiir ein beliebiges Dokument 2’ € Z! und kann er sich
die Signatur fiir das Dokument z” = z - 2~ mod n beschaffen, so kann er daraus wie
oben die Signatur fiir das Dokument x berechnen.

42 4 Digitale Signaturverfahren

4.1 Das ElGamal-Signaturverfahren

Das Signaturverfahren von ElGamal (1985) ist wie das gleichnamige asymmetrische
Kryptosystem probabilistisch und beruht wie dieses auf dem diskreten Logarithmus.
Wir beschreiben nun das Signaturverfahren von El Gamal. Sei p eine grofle Primzahl und
a ein Erzeuger von Z; (p und « sind dffentlich). Jeder Teilnehmer B erhilt als geheimen
Signierschliissel eine Zahl a € Z; = {1,...,p— 1} und gibt 3 = a® mod p als 6ffentlichen
Verifikationsschliissel bekannt:

Signierschliissel: k= (p, o, a),

Verifikationsschliissel: k = (p, «, 3).

Signaturerstellung: Um ein Dokument x € Z, ; zu signieren, wahlt der Signierer
zufillig eine Zahl z € Z; | und berechnet sig(k,x,2) = (7,6) mit v = & mod p und
§ = (z —ay)z~! mod p — 1. Falls § = 0 ist, muss eine neue Zufallszahl z gewihlt werden.
Verifikation: ver(k, z, (v,9)) = 1, falls 379° =, o® ist.

Lemma 53. Die Bedingung 7~° =, a” ist genau dann erfillt, wenn es ein z € Z,_,
mit sig(k,x,z) = (v,9) gibt.

Beweis. Wegen v = o mod p ist z durch 4 (und 7 durch z) eindeutig bestimmt. Weiter
ist 370 =, a0 =, a0 EI()*) a’. Da « ein Erzeuger von Z; ist, gilt die Kongruenz
(%) genau dann, wenn a7y + 26 =, x ist. O

Zur Sicherheit des El Gamal-Systems

1. Falls Oskar den diskreten Logarithmus bestimmen kann, so kann er den geheimen
Schliissel a = log,, 3 berechnen.

2. Als néchstes betrachten wir verschiedene Szenarien fiir einen selektiven Angriff bei
gegebenem Klartext x.

a) Oskar wihlt zuerst v und versucht ein passendes § zu finden. Mit a® = $79° mod
p folgt & = log, a”B77. D.h. die Bestimmung von 4 ist Instanz des dikreten
Logarithmus.

b) Oscar wihlt zuerst § und versucht dann ~ aus a® = 379° mod p zu bestimmen.
Dazu ist kein effizientes Verfahren bekannt.

¢) Oscar wéhlt v und ¢ gleichzeitig. Auch hierfir ist kein effizientes Verfahren bekannt.

3. Versucht Oskar bei einem nichtselektiven Angriff, zuerst v und ¢ zu wahlen und
dazu ein passendes Dokument z zu finden, so muss er den diskreten Logarithmus
r = log, 377° bestimmen.

4. Wir kénnen jedoch eine existentielle Féalschung wie folgt durchfithren. Wéhle beliebige
Zahlen i € Z,_1, j € Z%_, und setze v = /37 mod p. Dann ist (z, (7,9)) genau dann
eine giiltige Signatur, wenn o =, $7(a?37)° ist. Dies gilt wiederum genau dann, wenn
a®~" =, 37439 ist. Diese Bedingung lasst sich erfiillen, indem wir § = —y; ! mod p—1
und z = id mod p — 1 setzen.

Bemerkung 54. Bei der Benutzung des El Gamal-Signaturverfahrens sind folgende
Punkte zu beachten.

1. Die Zufallszahl z muss geheim gehalten werden.

2. Zufallszahlen dirfen nicht mehrfach verwendet werden.

4.2 Das Schnorr-Signaturverfahren 43

Kennt ndmlich Oskar zu einer Signatur (z, (v, 9)) die Zufallszahl z, so kann er wegen
§ =p_1 (x — ay)z! die geheime Zahl a = (—zd + 2)y~* mod p — 1 berechnen.

Sind andererseits (1, (7,01)) und (22, (7, d2)) mit demselben z generierte Signaturen,
dann folgt wegen 379° =, o™ und 792 =, a®2,

51—0; — 2(81-82) —

y p 0T = p Q1T = (01 — 69) =p1 11 — Ta.

Aus dieser Kongruenz lassen sich d = gg7'(d; — d2,p — 1) Kandidaten fiir z gewinnen und
daraus wie oben a berechnen, falls d nicht zu grof} ist.

4.2 Das Schnorr-Signaturverfahren

Da die Primzahl p beim El Gamal-Signaturverfahren mindestens eine 512-Bit-Zahl (besser
1024-Bit-Zahl) sein sollte, betragt die Signaturldnge 1024 bzw 2048 Bit. Folgende Variante
des ElGamal-Signaturverfahrens, die als eine Vorstufe zum DSA betrachtet werden kann,
wurde von Schnorr vorgeschlagen.

Die zugrunde liegende Idee ist folgende: Indem wir fiir o ein Element der Ordnung ¢ mit
q ~ 299 wihlen, reduziert sich die Signaturlinge auf 2- 160 = 320 Bit. Die Berechnungen
werden aber nach wie vor modulo p mit p ~ 2192 ausgefiihrt, so dass das Problem des
diskreten Logarithmus zur Basis « in Z; hart bleibt.

Sei g ein Erzeuger von Z7, wobei p die Bauart p—1 = mg fiir eine Primzahl ¢ = 21 ~ 2160
hat. Dann ist @ = ¢g»~1/7 cin Element in Zy der Ordnung ord,(a) = q. Weiter sei
h :{0,1}* — Z, eine Hashfunktion, die jedem Dokument x € X = {0,1}* einen

Hashwert in Z, zuordnet.

Signierschliissel: k= (p,q,a, B,a), a € Zy,,

Verifikationsschliissel: &k = (p, «, 8), f = a® mod p.

Signaturerstellung: Um ein Dokument = € X zu signieren, wahlt der Signierer zufallig
eine geheime Zahl z € Z; und berechnet

~

Sig(k> Z, Z) = (77 5)7

wobei
v = h(xbin(emodp)) & = (2 + ay)modq wver(k,y,0) =
1, h(x bin(a’B~7 mod p)) = v
0, sonst

Der Signaturraum ist also Y := Z, x Zj,.
Verifikation: ver(k,~,d) = 1, falls h(zbin(a’3~7 mod p)) = ~ ist.

4.3 Der Digital Signature Algorithm (DSA)

(Standard in USA seit 1994)
Hierbei wird das El Gamal-Verfahren wie folgt modifiziert:
1. 6 als Losung von 20 — ay =,_; z (d.h. § = (z + ay)z~') ~ Verifikationsbedingung:
BT =, ,yé (a*a™ =, az(:c+aw)z*1)
2. Ist z +ay € Z;_,, dann existiert ! = (2 + ay)~'2 mod p — 1 ~» Verifikation durch:

p—1
x5 1 51
« B =,y

44 4 Digitale Signaturverfahren

3. Sei nun wie bei Schnorr p = mg+1 mit ¢ ~ 2'% prim und sei o € Z mit ord,(a) = q.
Dann kann bei der Verifikation von o' B! =, 7 auf der Exponentenebene modulo
erechnet werden. Da v jedoch rechts nicht als Exponent, sondern als Basiszahl,
q8 7 p
vorkommt, muss auch die linke Seite modulo g reduziert werden.

Beim DSA wird eine 512-1024 Bit Primzahl p der Form rq + 1 benutzt, wobei ¢ eine
160 Bit Primzahl und o € Z} mit ord,(a) = q ist. Weiter ist X = Z; und Y = Z, x Z;.

Der Signierschliissel hat die Form k = (p,q,@,a), wobei a € Z; ist. Der zugehorige
Verifikationsschliissel ist k£ = (p, ¢, v, B) mit f = a® mod p.

Zu gegebenem x € X wird zuféllig eine geheime Zahl » € Z; gewéhlt.

. (0% mod 1
Sig(kv Zaﬁ) = (776), wobei v (Oé mo p) mod ¢q
0= (z+ay)z"" mod q € Z

(falls § =, 0 muss ein neues z gewéhlt werden). Die Verifikationsbedingung ist

1, (a8 mod dg=
ver(k’,x,'y,é):{ , (a?p%mod p) mod ¢ = 7,

0, sonst,

wobei e = 26~ mod ¢ und d = v6~! mod ¢ ist.
Im Fall sig(k, z,x) = (v, 0) ist

epd — 671 aysTt

—1 -1
a =, o o =, 066 (z+av) = (z+ay) "t z(x+ay) = z

p & p &

woraus sich

(2B mod p) mod g = (o mod p) mod ¢ =~
ergibt.
Beispiel 55. ¢ =101, p=78¢+1="7879, g=3 (ord,(3)=p—1)
~ o= 3" mod p = 170 hat Ordnung q

Wir wihlen a =75 € Z}, d.h. 3 = a® mod p = 170" mod p = 4547 Um das Dokument
r = 1234 € Z;, zu signieren, waihlen wir die geheime Zufallszahl z = 50 € Z, (~ 271 =199)
und erhalten dann

v = (170°° mod 7879) mod 101
= 2518 mod 101

= 94
§ = (1234+75-94)-99 mod 101
= 97 (~ 671 =25)

d.h. sig(p,q,a, z,z) = (94,97), wobei k= (p,q,,a)

4.4 ECDSA (Elliptic Curve DSA) 45

Um diese Signatur zu prifen berechnen wir:

e = 0 'modyg

1234 - 25 mod 101
45

d = ~v0 ' modgq

94 - 25 mod 101
27

~ (a¢B? mod p) mod g = (170*34547%7 mod 7879) mod 101 = 94

4.4 ECDSA (Elliptic Curve DSA)

Im Jahr 2000 als FIPS 186-2 als Standard deklariert.

Definition 56. Sei E cine elliptische Kurve tiber einem endlichen Kérper. Sei A € E
ein Punkt der Ordnung q (q prim), so dass das Diskrete-Logarithmus-Problem zur Basis
A in E schwierig ist.

X = {0,1}*, Y = Z; x Z3. offentlicher Verifikationsschlissel: (p,q, E, A, B),
wobei B =m - A geheimer Signierschlissel: (p,q, £, A,m), m € Z.

sig(l%,z,x) = (v,9), wobei

(u,v) = z-A
v = wumodgq
§ = (SHA-1(x) +my)z~' mod ¢
1 dg=
ver(k,x,v,0) =< UIOCL=T obei
0, sonst
(u,v) = eA+dB
e = SHA-1(z)0"' mod ¢
= 6 ' mod q

Korrektheit der Verifikation beim ECDSA:

(u,v) = eA+dB
= (@5 HA+ (v HmA
= (@' +my)i A
= 2A (da (2’ +mv)6~ ' =, 2)

Beispiel 57. Signieren und Verifizieren: Sei E iiber Zy, definiert durch v* = 23 + x + 6
Wir wihlen A = (2,7), m=7 - p=11,¢q=13,B=7TA=(7,2)

46 4 Digitale Signaturverfahren

Annahme: Wollen Dokument x mit SHA-1(z) = 4 mit dem Signierschlissel ko=
(p,q, E, A,m) und der Zufallszahl r = 3 signieren.

(u,v) = zA=3-(2,7)=(8,3)
v = nmodq=80=(4+7-8)3"mod13 =7
siglk,z,x) = (8,7)

Verifikation von (v,6) = (8,7) unter k = (p,q, E, A, B):

e = 26 "modg=4-7"mod13=4-2mod 13 =8
= yd 'modqg=28-2mod 13 =3
(u,v) == eA+dB=8-(2,7)+3-(7,2) =(8,3)

~umodqg=8=v

4.5 One-time Signatur (Lamport)

Sei f: U — V eine injektive Einwegfunktion. Der Dokumentenraum ist X = {0,1}" und
der Signaturraum ist Y = U™.

.....

verschiedenen Elementen aus U.

Der zugehoérige Verifikationsschliissel ist dann k = (v;p)i=1,. np=01 mit v;p = f(u;p) fur
alle (4,0) € {1,...,n} x {0,1}.

Signaturerstellung: Die Signatur fiir ein Dokument z = x; ... x, € X ist

A~

sig(k,z) = ui gy - Ung, -
—_——
Yy

Verifikation:

L, flw) =v,, firi=1,...,n,

ver(k,z,uy, ..., uy,) = ’

T 0, sonst.
Beispiel 58. Wir wdhlen als Einwegfunktion eine Funktion der Form f : Z, — Z; mit
f(u) = g* mod p, wobei g ein Erzeuger von Z ist.
Z.B. sei p="T879 und g = 3, also f(u) = 3* mod 7879. Weiter sei n = 3.
Dann erhalten wir fir den Signierschlissel k= (u1,0, 1.1, U2,0, U271, U3 0, Us31), WObel
Uy = 9831, uy 1 = 803, ugp = 4285, usy = 735, uz o = 2467, uz; = 6449 den zugehorigen
Verifikationsschliissel k = (v10, V11,020,021, V30, V31), wobet v19 = 2009, vy, = 4672,
Vg0 = 268, v91 = 3810, v3 o = 4721 und vs1 = 5731 ist. Die Signatur fir das Dokument
x = 110 ist dann

SZg(lAﬂ, .27) = (U1,17 UQ71, ’LL370> = (Ul, Uz, US) = (803, 735, 2467)
Die Verifikation ergibt den Wert ver(k,x,uy,us,uz) =1, da
i=1:f(u) = f(803) = 3% mod 7879 = 4672 = vy ,, i = 2: f(uz) = f(735) =
375 mod 7879 = 3810 = vy, 1 = 3 : f(uz) = f(2467) = 316" mod 7879 = 4721 =
U3,z5

4.5 One-time Signatur (Lamport) 47

15t.

Zum Nachweis der Sicherheit des Signaturverfahrens nehmen wir an, dass f : U — V
eine Bijektion ist und dass ein Algorithmus LAMPORT-FALSCHUNG (k) existiert, der bei
Eingabe eines Verifikationsschliissel £ eine existentielle Falschung (x, y) mit ver(k, z,y) =
1 berechnet. Betrachte folgenden probabilistischen Algorithmus:

Prozedur Lamport-Urbild(v)

1 wahle zufallig einen Verifikationsschlissel k= (v;p)i=1,. nb=01
> falls v nicht in k£ vorkommt, ersetze fir ein zufdllig gewahltes
Indexpaar (j,a) den Wert v;, durch v
(X1, ..., Tp, U1, ..., u,) =: Lamport-Falschung(k)
if ; =a then
output (u;)
6 else
7 output (‘7°)

ot IS w

Satz 59. Unter den genannten Voraussetzungen gibt LAMPORT-URBILD(v) fir ein
zufillig aus V- gewdhltes v mit Wahrscheinlichkeit % ein Urbild v von v aus.

Beweis. Im Fall x; = a gibt der Algorithmus LAMPORT-URBILD ein Urbild u = u; von
v aus:

fug) = Vja; = vja = v.
Daher reicht es zu zeigen:

1

Prob,c v [LAMPORT-URBILD(v) = ‘7] = 3

Sei S die Menge aller moglichen Verifikationsschliissel £ und fiir v € V' sei S, die Menge

aller £ € S, die v enthalten. 7, bezeichne die Menge aller £ € S,, bei deren Wahl
LAMPORT-URBILD(v) Erfolg hat. Weiter sei t, = || Ty, o = ||Sy]| und s = ||S]|.

Da jeder der s Verifikationsschliissel k£ € S zu der Summe),y ¢, einen Wert von genau n

beitragt (fiir jedes i = 1,...,nist k = (vip)iz1....np=01 i genau einer der beiden Mengen
T,,, und T, , enthalten), ist 3¢y t, = ns. Dagegen trigt jedes k zu der Summe -,y 5,

den Wert 2n bei (k = (vip)i=1,...np—0,1 ist genau in den 2n Mengen T, , enthalten),
weshalb >, oy S, = 2ns ist. Da aus Symmetriegriinden die Zahlen s, alle gleich sind, folgt
sy = 2ns/||V||.

Sei nun p, die Erfolgswahrscheinlichkeit von LAMPORT-URBILD(v), d.h. p, = t,/s,. Dann
ergibt sich die durchschnittliche Erfolgswahrscheinlichkeit zu

> Do 1 ns 1
R
TR s 2

d

Die Lamport-Signatur hat aus praktischer Sicht einige Nachteile, die sich jedoch teilweise
beheben lassen (siehe Ubungen). So ldsst sich sowohl die Lénge des privaten Signierschliis-
sel (mittels Pseudozufallsgeneratoren) als auch des 6ffentlichen Verifikationsschliissels
(mittels Hash-Listen) verringern. Zudem konnen bei Verwendung von Hash-Bédumen mit
demselben Schliisselpaar auch mehrere Nachrichten signiert und verifiziert werden.

48 4 Digitale Signaturverfahren

4.6 Full Domain Hash (FDH) Signaturen

Sei F = {fx|k € K} eine Familie von Falltiir-Permutationen auf {0,1}", d.h. fiir jedes
ke K gilt:

o f;. ist Einweg-Permutation auf {0, 1}".

o Es existiert ein k € K mit fi(fu(z)) = o fir alle z € {0, 1}".

Weiter sei G : {0,1}* — {0,1}" eine Zufallsfunktion, d.h. die ZVn X, = G(z) sind
stochastisch unabhéngig und es gilt

Prob|G(z) =y] =27"Vz € {0,1}" und y € {0,1}".

G modelliert eine Hashfunktion H : {0,1}* — {0, 1}" mit optimalen kryptographischen
Eigenschaften (vgl. Zufalls-Orakel-Modell, ZOM), deren Wertebereich den gesamten
Definitionsbereich der Funktionen f; ausfillt (full domain hash). In der Praxis wird fiir
G eine konkrete Hashfunktion (etwa SHA-1) eingesetzt, die meist nicht den gesamten
Definitionsbereich der Funktionen f; ausschopft.

Die auf F und G basierende FDH-Signatur funktioniert wie folgt. Um fir ein Dokument
x € X ={0,1}* eine Signatur y € Y = {0, 1}" zu berechnen, wird ein Signierschliissel k
benutzt:

sz’g(l%,x) = fi.(G(x)).

Diese wird unter Verwendung des zugehorigen Verifikationsschliissels k wie folgt tiberpriift:

ver(k,z,y) = {1’ Jely) = Gl2),
0, sonst.

Z.B. beruht das RSA-Signaturverfahren in Verbindung mit einer Hashfunktion auf diesem
Prinzip. Ein Problem hierbei ist allerdings, dass der Wertebereich von in der Praxis
verwendeten Hashfunktionen die Menge {0, 1}1% ist und fiir die RSA-Falltiir-Permutation
ein Definitionsbereich von {0, 1}" mit n &~ 1024 zu wéhlen ist, um eine ausreichend grofle
Sicherheit zu erreichen. In der Praxis behilft man sich damit, dass man die 160-Bit-
Hashwerte durch eine deterministische Paddingfunktion auf 1024-Bit aufblaht, was die
Sicherheit allerdings mindern kann.

Sicherheitsanalyse der FDH-Signatur im ZOM

Sei FDH-Falschung ein probabilistischer Algorithmus, der bei Eingabe des 6ffentlichen
Verifikationsschliissels & mit Wahrscheinlichkeit ¢ eine existentielle Falschung (z,y) mit
ver(xz,y) = 1 ausgibt und sei ¢ die Anzahl der verschiedenen Orakelfragen 1, ..., z, von
FDH-Falschung an GG. Wir nehmen an, dass € > 27" ist, da fiir ein beliebiges Dokument
x € {0,1}* ein zufallig gewdhltes y € {0,1}"™ mit Wahrscheinlichkeit 27" eine giiltige
Signatur liefert.

Betrachte folgenden Invertierungsalgorithmus fiir fj.

Prozedur FDH-Invert(k,z)

I wahle zufallig j € {l,...,q}

> simuliere FDH-F&alschung(k), wobei die i-te Orakelfrage z; 1 <i<gq,
im Fall ¢=j durch z; und sonst durch ein zufallig gewahltes
z €40,1}" beantwortet wird.

4.7 Verbindliche Signaturen (undeniable signatures) 49

3 if FDH-Falschung(k) = (z,y) A fi(y) = 20 then output (y)
i else output (‘7°)

Der néchste Satz zeigt, dass FDH-Invert bei Eingabe eines beliebigen Verifikations-
schliissels k € K die Funktion f; an einem zufillig gewdhlten Wert zo € {0, 1}™ mit einer
von ¢ und ¢ abhingigen Erfolgswahrscheinlichkeit ¢’ invertiert.

Satz 60. Fulls FDH-Falschung bei Fingabe k nach genau q Fragen an G eine giiltige
Filschung (x,y) mit Wahrscheinlichkeit € > 27" ausqgibt, findet FDH-Invert bei Eingabe
von k und einem zufillig gewdhlten String zo € {0,1}" mit Wahrscheinlichkeit

, _E—2T"
>

o q

€

ein Urbild y von zy fur die Funktion f.

Beweis. Da die Eingabe zq zufillig gewédhlt wird, erhélt FDH-Falschung als Antwort
auf seine Orakelfragen x4, ..., z, zufallig gewéhlte Strings 2z, was dem ZOM entspricht.
Daher ist die Wahrscheinlichkeit, dass FDH-Falschung(k) bei der Simulation Erfolg
hat, also ein Paar (x,y) mit G(x) = fr(y) ausgibt, genau e. Falls FDH-Falschung das
Paar (x,y) ausgibt, ohne den Wert G(x) zu erfragen, so nimmt G(z) den Wert fi(y) mit
Wahrscheinlichkeit 27" an, d.h.

Pr[FDH-Falschung(k) hat Erfolg | z & {z1,...,2z,}| =27",
was Pr[FDH-Falschung(k) hat Erfolg Ax & {x1,...,2,}] < 27" impliziert. Wegen

e = Pr[FDH-Falschung(k) hat Erfolg A x € {x1,...,2,}]
+Pr[FDH-Falschung(k) hat Erfolg Az & {x1,...,2,}]
< Pr[FDH-Falschung(k) hat Erfolg Az & {xy,...,x,}] +27",

erhalten wir Pr[FDH-Falschung hat Erfolg A z € {zy,...,2,}] > ¢ — 27" Da die
Frage z; € {z1,...,2,}, die mit 2, beantwortet wird, zuféllig ausgewahlt wird und
FDH-Falschung keinerlei Information iiber j erhélt, folgt

Pr[FDH-Invert hat Erfolg] > Pr[FDH-Falschung hat Erfolg A z = ;]
Pr[FDH-Falschung hat Erfolg A z € {z1,...,2,}]

q
> (e-2"")/q. 0

Falls sich also f;, nur mit einer sehr kleinen Wk &’ effizient invertieren lasst, so gelingt
einem #dhnlich effizienten Gegner, der nicht mehr als ¢ Hashwertberechnungen durchfiihrt
im ZOM hoéchstens mit Wk ge’ + 27" eine existentielle Félschung fir die FDH-Signatur.
Ein dhnliches Resultat ldsst sich auch fiir den Fall beweisen, dass der Gegner einen
Angriff mit frei wahlbaren Dokumenten ausfiihrt.

4.7 Verbindliche Signaturen (undeniable signatures)

In manchen Féllen ist es fiir den Unterzeichner eines Dokumentes nicht wiinschenswert,
dass jeder die von ihm geleistete Unterschrift verifizieren kann.

20 4 Digitale Signaturverfahren

Beispiel 61. Fine Softwarefirma mdchte sicherstellen, dass nur rechtmdssige Kdaufer
(keine SW-Piraten) ihre Signatur, die u.a. Virusfreiheit garantiert, verifizieren kénnen.

Loésung: Zur Verifikation wird die Kooperation des Unterzeichners Alice benotigt.

Wie kann man verhindern, dass sich Alice absichtlich unkooperativ verhélt, nur damit
eine von ihr geleistete Unterschrift als falsch eingestuft wird?

Losung: Es gibt ein Ableugnungsprotokoll (disavowal protocol) mit dem Alice gefélschte
Unterschriften als solche entlarven kann. Scheitert auch dieses Protokoll so liegt der
Verdacht nahe, dass die fragliche Unterschrift doch von Alice stammt.

Das Signaturverfahren von Chaum und van Antwerpen

Bei diesem Signaturverfahren wird eine Primzahl p = 2¢ + 1 benutzt, wobei auch ¢ prim
ist, so dass das Diskrete Logarithmus Problem in Z; hart ist. Sei a € Z; ein Element der
Ordnung ¢ und sei G' = {a%|a € Z,}, die von « in Zj erzeugte Untergruppe.

Der Dokumenten- und Signaturraum ist X =Y = G. Der Signierschlissel hat die Form
k = (p,a,a), a € Z; und der zugehorige Verifikationsschliissel ist k& = (p, a, 3) mit

B = a® mod p. Der Signieralgorithmus berechnet sz’g(l?:, x) = 2% mod p.

Will Bob eine von Alice geleistete Unterschrift y € G fiir ein Dokument x € G verifizieren,
so fiihrt er zusammen mit Alice folgendes Protokoll aus.

Verifikationsprotokoll:
1. Bob wahlt zufillig e;, es € Z, und und sendet ¢ = ¥y 5> mod p an Alice.
2. Alice sendet d = ¢ ' mod4 p0d p zuriick an Bob.

3. Bob akzeptiert y als echt, falls d =, 2 ist.

Bemerkung 62. Die Wahl von p der Form p = 2q+1 mit g prim dient folgenden Zielen:
o |G| ist prim (erlaubt die Berechnung von a~! mod ||G||).

o ||G|| ist fiir vorgegebenes p méglichst grofs.

Es ist leicht zu sehen, dass Bob eine echte Signatur y akzeptiert, falls Alice kooperiert.
Wegen

B =,a’
folgt
-1 -1
/B(I Ep aa-a Ep o
und wegen
Y=, a”
folgt
-1 -1
Yt =2t =,
Somit ist

d — Ca_l — (y€16€2)a_1 — ya_lelﬁa_leg — [EelOé82.
Beispiel 63. Sei p = 467 = 2233 + 1 mit ¢ = 233. Da g = 2 ein Erzeuger von
Z,, ist, hat o = g? = 4 die gewiinschte Ordnung q = %. Da « die Untergruppe
QR, der quadratischen Reste erzeugt, ist G = QR,. Wihlen wir den Signierschliissel
k= (p,a,a) = (467,4,101), so erhalten wir k = (p,«, 5) = (467, 4,449) als zugehorigen
Verifikationsschliissel. Die Signatur fiir x = 119 € G berechnet sich wie folgt:

4.7 Verbindliche Signaturen (undeniable signatures) 51

sig(k,z) = 2% mod p = 119! mod 467 = 129 = y
Verifikation von y = 129 fiir x = 119 unter k:

1. Bob wdihlt ey, es € Z, (e1 = 38, e5 = 397 = 164) und sendet ¢ = y** 3°> mod p =
12938449164 mod 467 = 13 an Alice.

2. Alice sendet d = ¢* ™44 mod p =9 an Bob zuriick.
3. Bob akzeptiert, da d = x°*a°? = 119384154 mod 467 = 9 gilt.

Behauptung 1. Im Fall y #, x* akzeptiert Bob y mit Wahrscheinlichkeit 1/q.

Beweis. Da zu y, ,c € G und zu e; € Z, genau ein ey € Z, mit

c =, yrpe (4.1)

existiert, fithren je ¢ Paare (ey, e2) € Z, x Z, auf dasselbe c. Aus der Sicht von Alice, die
nur ¢ kennt, sind diese ¢ Paare alle gleichwahrscheinlich. Wir zeigen nun, dass fiir jedes
d € G genau eines dieser g Paare die Kongruenz

d =, z%a® (4.2)

erfillt, weshalb Bob mit Wahrscheinlichkeit 1/ akzeptiert.
Seien i, j, k,l € Z, die zu ¢,d,x,y € G gehorigen Exponenten, d.h. ¢ =, o/, ...,y =, o'.
Dann sind die Kongruenzen (4.1) und (4.2) dquivalent zu

c=, yelﬁm o ol =, aler . qoe2 - iEq leg + aeq - [a €1\ _)
d=, 2 a® ol =, k. % J =4 kel + €2 k1) \ea) " \j)"
—_————
A

Wegen o! =, y #, 1% =, o™ folgt | #, ka und daher ist det A #, 0. O

Mochte nun Alice Bob gegeniiber nachweisen, dass eine Signatur y gefélscht ist, so fithren
beide folgendes Protokoll aus.

Ableugnungsprotokoll

1 Bob wahlt zufallig e;,e; € Z, und sendet c¢ =y 3> modp an Alice.

> Alice sendet d = c¢* " modp zuriick.

3 Bob testet, ob d#, z'a® ist.

1 Bob wahlt zufallig fi, f> € Z, und sendet C = y/132 modp an Alice.

5 Alice sendet D =C" " modp zuriick.

¢ Bob testet, ob D #,z/1a’ ist.

7 Bob erkennt y als gefalscht an, falls mindestens einer der Tests
in Schritt 3) oder 6) erfolgreich war und (da=®) =, (Da~/2)%
gilt.

Bei den Schritten 1.-3. und 4.-6. handelt es sich jeweils um eine fehlgeschlagene Verifikation
der Unterschrift y (sofern der Test von Bob in Zeile 3 bzw. 6 positiv ausfillt). In Schritt
7 fiihrt Bob zusétzlich einen Konsistenztest aus, um sich davon zu tiberzeugen, dass Alice
die Zahlen d und D geméafl dem Protokoll gewahlt hat.

Beispiel 64. Seip = 467,q = 233, = 4,a = 101, 8 = 449. Wir nehmen an, dass das
Dokument x = 286 mit der Alice zugeschriebenen Signatur y = 81 unterschrieben ist und
Alice Bob davon tiberzeugen mochte, dass y gefilscht ist.

52 4 Digitale Signaturverfahren

Bob wdhlt ey = 45, e5 = 237 und sendet ¢ = 305 an Alice.

Alice antwortet mit d = ¢* ' = 109

Bob verifiziert, dass 286%°4%7 =, 149 #£, 109 gilt.

Bob wdhlt fi =125, fo =9 und sendet C =172 an Alice.

Alice antwortet mit D = C* ' = 68

Bob verifiziert, dass 286'%°4° =, 25 #, 109 gilt.

Bon erkennt y also gefilscht an, da (109 - 4=237)125 = 188 =, (68 - 479)% ist, also
die Konsistenzbedingung erfillt ist.

NS T oo~

Es bleibt zu zeigen, dass Alice zwar Bob mit hoher Wahrscheinlichkeit von der Falschheit
einer Signatur y #, z® iberzeugen kann, es ihr aber nicht gelingt, Bob von der Falschheit
einer echten Signatur y =, 2 zu tiberzeugen.

Behauptung 2. Im Fall y #, 2 erkennt Bob y mit Wahrscheinlichkeit 1 — q% als
gefdlscht an, falls sich beide an das Ableugnungsprotokoll halten.

Beweis. Nach vorigem Satz betréigt die Wahrscheinlichkeit, dass beide Tests in Schritt 3.
und 6. fehlschlagen genau .z 5. Wegen

d=, " c=, Y 5%, 3=, a"
folgt

(dafez)fl =, ((61662) -1 62)f1
_ 1f1ﬁeza 1f *€2f1

= Y~

=, Y= “thgefig e
a1

=, y* f1

Analog ergibt sich aus)
D=,C""C=,yfi3" 8=, a0

(Da—fz)m ((f15f2) —f2)61
Ep y el
(do™ €2)fl
d.h. die Konsistenzbedingung wird mit Wahrscheinlichkeit 1 erfillt. O

Behauptung 3. Im Fally =, 2% erkennt Bob y mit Wahrscheinlichkeit < % als gefilscht
an, auch wenn sich Alice nicht an das Ableugnungsprotokoll hdlt.

Beweis. Bob erkennt y nur dann als gefalscht an, wenn
(d ?—ép 2102 oder D 7_ép xflan) und (da—eg)ﬁ =, (Da—fz)el

gilt. Da die beiden Fille d #, 2°*a® und D #, 2/ a/?) symmetrisch sind, reicht es einen
davon zu betrachten.

Wir nehmen also an, dass Alice eine Zahl d an Bob sendet mit d #, 2°*a®?. Nachdem Alice
die Zahl C in Zeile 4 von Bob erhalten hat, weif$ sie nur, dass das von Bob gewéhlte Paar

4.7 Verbindliche Signaturen (undeniable signatures) 33

(f1, f2) die Kongruenz C =, y/1 3/2 erfiillt. Wie wir bereits im Beweis zu Behauptung 1
gesehen haben, trifft dies auf genau ¢ Paare zu. Wir zeigen nun, dass fiir jedes D € GG
genau eines dieser ¢ Paare die Konsistenzbedingung

(dofe“’)f1 =, (Dofo)e1

erfillt. Dies beweist, dass Bob y mit Wahrscheinlichkeit hochstens 1/q als gefélscht

akzeptiert.

Sei v = da~* und seien i,j,k,l € Z, die zu C, D, z,u gehérigen Exponenten, d.h.

C=,a,...,u=,a. Dann gilt

CEpyflﬁfz - i =, kafi +afs o (k:a a) <f1> _ (1 >
(da=2)h =, (Da~F)e lfi=qje1 —erfz Uoe) \fe) " \Jer)”
—_

A

Wegen d #, v a®* folgt | #, e1k und daher ist det A = kae; — al = a(ke; —1) #,0. O

	1 Kryptografische Hashverfahren
	1.1 Einführung
	1.2 Schlüssellose Hashfunktionen (MDCs)
	1.2.1 Das Zufallsorakelmodell (ZOM)
	1.2.2 Vergleich von Sicherheitsanforderungen
	1.2.3 Iterierte Hashfunktionen
	1.2.4 Die Merkle-Damgard-Konstruktion
	1.2.5 Die MD4-Hashfunktion
	1.2.6 Die MD5-Hashfunktion
	1.2.7 Die SHA-1-Hashfunktion
	1.2.8 Die SHA-2-Familie
	1.2.9 Kryptoanalyse von Hashfunktionen

	1.3 Nachrichten-Authentikationscodes (MACs)
	1.3.1 Angriffe gegen symmetrische Hashfunktionen
	1.3.2 Informationstheoretische Sicherheit von MACs
	1.3.3 MACs auf der Basis einer schlüssellosen Hashfunktion
	1.3.4 CBC-MACs
	1.3.5 Kombination einer Hashfunktion mit einem MAC (HMAC)

	2 Elliptische Kurven
	2.1 Elliptische Kurven über den reellen Zahlen
	2.2 Elliptische Kurven über endlichen Körpern

	3 Algorithmen zur Berechnung des diskreten Logarithmus
	3.1 Die Rho-Algorithmen von Pollard
	3.2 Der Pohlig-Hellman-Algorithmus
	3.3 Die Index-Calculus-Methode
	3.4 Eine untere Komplexitätsschranke für generische DLP-Algorithmen

	4 Digitale Signaturverfahren
	4.1 Das ElGamal-Signaturverfahren
	4.2 Das Schnorr-Signaturverfahren
	4.3 Der Digital Signature Algorithm (DSA)
	4.4 ECDSA (Elliptic Curve DSA)
	4.5 One-time Signatur (Lamport)
	4.6 Full Domain Hash (FDH) Signaturen
	4.7 Verbindliche Signaturen (undeniable signatures)

