
BB-Tree: A practical and efficient main-memory index
structure for multidimensional workloads

Stefan Sprenger
Humboldt-Universität zu Berlin

Berlin, Germany
sprengsz@informatik.hu-berlin.de

Patrick Schäfer
Humboldt-Universität zu Berlin

Berlin, Germany
schaefpa@informatik.hu-berlin.de

Ulf Leser
Humboldt-Universität zu Berlin

Berlin, Germany
leser@informatik.hu-berlin.de

ABSTRACT
We present the BB-Tree, a fast and space-efficient index struc-
ture for processing multidimensional read/write workloads in
main memory. The BB-Tree uses a k-ary search tree for pruning
and searching while keeping all data in leaf nodes. It linearizes
the inner search tree and manages it in a cache-optimized ar-
ray, creating the need for occasional re-organizations when data
changes. To reduce the frequency of such re-organizations, the
BB-Tree introduces a novel architecture for leaf nodes, called
bubble buckets, which can automatically morph between differ-
ent representations depending on their fill degree and are thus
able to buffer a large number of insertions or deletions in-place.
We compare the BB-Tree to scanning, main-memory variants
of the R∗-tree, the kd-tree, and the VA-file, and the recent PH-
tree using different multidimensional workloads over real and
synthetic data sets. The BB-Tree is the fastest access method for
range queries up to a selectivity of around 20% (after which it is
only beaten by scanning), the fastest method in read/write work-
loads, and achieves an exact-match query performance similar
to that of the best point access method. In addition, it is the most
space-efficient method of all considered index structures. We also
describe a parallel range query operator and show that it scales
with the number of physical cores.

1 INTRODUCTION
Many data sets are inherently multidimensional, with typical
dimensionalities ranging from two to a few dozen. We give three
examples: (1) Precision Medicine is based on the comparison of
a patient’s mutational landscape to that of background popula-
tions and disease cohorts. Each mutation is a multidimensional
object [13], with dimensions like genomic location, type of the
mutation, prevalence in a population, functional impact, etc. On-
cologists query such data seeking for mutations with certain
properties to discover commonalities across diseases or treat-
ment results [21]. (2) In modern machine surveillance, a battery
of sensors measure multiple properties of parts of engines, such
as temperature, vibration, electric currents, humidity, accelera-
tions in all three spatial dimensions, etc. Analyzing such data
for specific events or situations often induces executing series of
multidimensional range queries (MDRQ) [20]. (3) In data ware-
housing, commercially relevant events are described by multiple,
often hierarchically organized dimensions, leading to the famous
OLAP cube [11]. Slicing such a cube, i.e., selecting (aggregated)
events based on values of certain dimensions, often boils down
to MDRQ, for instance selecting all sales in a certain date and
price range.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Searching multidimensional data can be sped up by using
multidimensional index structures (MDIS). MDIS can support
different types of queries; in this work we focus on range queries
over all (complete-match MDRQ) or a subset of the dimensions
of a data space (partial-match MDRQ). MDIS are different from
one-dimensional index structures because they cannot exploit a
natural sort order in the data. Especially partial-match queries
require MDIS to treat all dimensions equally, which typically is
achieved by building and maintaining some, often hierarchical,
structure on top of the data [26]. Navigation of such a structure
necessitates inefficient random access patterns, which quickly
leads to the situation that MDIS are outperformed by scans when
queries are less selective, irrespective of whether data are held
on disk [34] or in main memory [28]. The aim of this research is
thus to create an MDIS that can efficiently support exact-match
and range queries, that has low memory overhead, that performs
gracefully in mixed read/write workloads, that is robust against
the dimensionality of the data (up to a certain point) and that is
faster than scans even for less selective queries.

In this paper, we present the BB-Tree, a novel main-memory
MDIS which fulfills these requirements. Conceptually, a BB-Tree
is an almost-balanced k-ary search tree, where inner nodes re-
cursively split the data space into k partitions according to a
delimiter dimension and k − 1 delimiter values. Data objects are
stored in leaf nodes (buckets). When too many data points are
inserted (or deleted) and buckets overflow (or underflow), the
structure is rebuilt to achieve a balance that is beneficial regard-
ing the depths of leaves. Within this general and well-known
layout, the BB-Tree combines a number of advanced techniques
that yield its superior performance.

As the main contribution, BB-Trees introduce elastic buckets,
called bubble buckets (BB), that can efficiently handle strongly
fluctuating bucket fill degrees and that significantly reduce the
frequency of index rebuilds. BB automatically morph between
different representations, depending on their number of stored
data objects. We distinguish between regular and super BB. Reg-
ular BB can hold up to bmax data objects and are implemented
using arrays. Super BB are composites and consist of a routing
node and a set of up to k regular BB, hence, they locally add a
further level to the tree. BB can dynamically grow and shrink:
Overflowing regular BB let them morph into super BB, and un-
derflowing super BB let them morph back into regular BB. Both
operations leave the rest of the BB-Tree unchanged. Since over-
flows create k new leaf buckets, a BB can cater for a rather large
number of inserts. Eventually, the tree must be rebuilt when a
super BB overflows. In workloads with hammered inserts, i.e., se-
ries of insertions into the same small region of the space, BB help
to significantly reduce the number of rebuilds and thus greatly
improve the performance of writes with only minimal influence
on query performance though a locally slightly deeper tree.



BB help to keep the inner search tree (IST) of the BB-Tree
stable over long periods of data changes, which enables an adap-
tation of the inner nodes to cache lines, the basic unit of data
transfers between main memory and on-die CPU caches. We
always choose k depending on how many delimiter values fit
into one cache line to improve cache line utilization. For instance,
when implementing delimiter values with four-byte floats and
running on a machine with 64-byte cache lines, k is set to 17.
Furthermore, we store the inner nodes of the BB-Tree in a flat
and static array to avoid pointer chasing during search, to de-
crease random access patterns, and thus to reduce cache misses,
especially at the last cache level. Typically, such an optimiza-
tion either makes the index structure completely static [15, 27]
or creates the need to manage delta stores [19, 23]. In contrast,
BB-Trees manage all changes in-place and also can, due to the
separation between the IST and the leaves and due to the concept
of BB, manage a large number of updates without index rebuilds.
Additionally, eliminating pointers improves space efficiency.

We furthermore describe and evaluate a special technique for
the parallelization of MDIS queries, which effectively avoids com-
plicated data partitioning. In the parallel range query operator,
search queries are evaluated by first navigating the IST to deter-
mine all buckets that may hold matching data objects. This step
is performed by a single thread as the tree, due to its high fan
out, is quite low even for very large data sets. In the next step,
which strongly dominates the runtime of queries, all qualifying
BB are scanned in parallel. As a result, the performance of the
parallel range query operator scales with the number of physical
cores.

In a comprehensive evaluation, we compared the BB-Tree to
sequential and parallel scans and to four other MDIS, namely the
recent PH-tree [35], andmain-memory adapted variants of the R∗-
tree [12], the kd-tree [4], and the VA-file [34]. We used different
real and synthetic data sets of different sizeswith dimensionalities
between three and 100. We evaluated complete-match and partial-
match range and exact-match queries, and also considered mixed
read/write workloads. The BB-Tree is the fastest method for
range queries up to a selectivity of around 20% after which it
is only outperformed by a scan. For exact-match queries, the
BB-Tree is almost as fast as the best point access method, the
PH-tree; for more than ten dimensions it even shows a superior
performance. It is the fastest MDIS regarding insertions and the
overall fastest method regarding deletions. Its performance is
virtually unaffected by the dimensionality of the data. The BB-
Tree has the best space efficiency among all MDIS, an important
property for in-memory data structures.

A preliminary version of this work will appear in [29]. Here,
we extend [29] by dynamic updates, parallel execution of range
queries and provide extended experiments.

2 RELATEDWORK
We structure our discussion of relatedwork into two parts: (1)Main-
memory indexing and (2) multidimensional indexing.

Main-Memory Indexing.The recent focus onmain-memory
database systems led to the development of several main-memory
index structures. A popular example is the adaptive radix tree
(ART) [18], designed for efficient execution of exact-match queries
especially over longer keys. However, ART does not support mul-
tidimensional data and executing range queries requires a costly
traversal of its radix tree. The cache-sensitive skip list [30] is a

main-memory index focussing on range queries. It uses a CPU-
friendly data layout aligned with the sizes of cache lines, a tech-
nique that was previously suggested by other one-dimensional
index structures, such as FAST [15] or the KISS-Tree [17]. Schlegel
et al. [27] showed how to linearize k-ary search trees in a read-
only in-memory setting, a technique we also use for the BB-Tree.
We introduced bubble buckets to handle updates efficiently. None
of the aforementioned index structures is able to index multidi-
mensional data for partial-match range queries.

Multidimensional Indexing. MDIS have been researched
for decades, leading to a multitude of different methods [10].

One of the most popular MDIS is the kd-tree [4], which orga-
nizes multidimensional point objects in a binary search tree by
splitting the data space at each node using one of the dimensions
as delimiter. It is integrated into several mature database systems,
e. g., PostgreSQL1. K-D-B-trees [25] combine the concepts of B-
trees [2] and kd-trees to optimize I/O behaviour. Quadtrees [9]
are similar to kd-trees, but split the space in all dimensions at
each node, which is less efficient for high dimensionalities. The
Vector Approximation-file (VA-file) [34] is a mixture between an
MDIS and a sequential scan that divides the space into cells of
equal size using hash functions to allow for efficient pruning. All
of these approaches were originally developed for disk-based data
storage but can be adapted to main-memory settings [28]. Only
the K-D-B-tree keeps its structure balanced when data changes,
whereas the VA-file is an essentially immutable index. A recent
main-memory based MDIS is the PH-tree [35], which integrates
the concepts of PATRICIA-tries and hypercubes.

The R-tree [12] is probably the most prominent access method
for handling spatially extended objects, but is also frequently
used for storing point objects [14]. It uses minimum bounding
rectangles (MBR) to represent all objects belonging to a certain
subtree. These MBR are used for pruning. The R∗-tree [3] is an
R-tree variant that improves partitioning by aggressively reinsert-
ing data objects leading to a more efficient search performance.
It is employed by several database systems to manage spatial
data, e. g., SQLite2. PR-trees [1] optimize I/O in disk-based sys-
tems, and X-trees [5] target data of very high dimensionality. The
CR-tree [16] is an R-tree variant that compresses inner nodes to
pack more entries into MBR, which increases space and cache
efficiency. Recently, Qi et al. [24] proposed a novel R-tree pack-
ing technique that provides asymptotically optimal I/O search
complexity. However, their technique is restricted to static data
and requires a complete reconstruction of the index with every
update. Accordingly, the latter three approaches are not directly
relevant for our work.

There also exist a number of interesting works, which are
further away from our own research. Wang et al. [32, 33] ex-
ploit the characteristics of observational data, e. g., immutabil-
ity, continuous dimension values, and append-only insertions,
to achieve high query efficiency. In contrast, the BB-Tree is a
general-purposeMDIS that supports updates in any order. ELF [6]
executes multi-column selection predicates on in-memory data,
but requires delta stores to handle updates.

3 THE BB-TREE INDEX STRUCTURE
In a nutshell, a BB-Tree is a main-memory optimized MDIS for
point data. It combines the pruning power of an almost-balanced
k-ary search tree with the efficiency of scans in main memory.

1https://www.postgresql.org/docs/9.6/static/spgist.html
2https://sqlite.org/rtree.html

https://www.postgresql.org/docs/9.6/static/spgist.html
https://sqlite.org/rtree.html


Notation Description

n Size of the data set.
m Dimensionality of the data set.
h Tree height.
k Inner nodes split the space into k subparts

according to a delimiter dimension and k − 1
delimiter values.

t Number of available hardware threads.
Bmatch Number of bubble buckets that need to be

scanned to evaluate a certain range query.

Parameter Description

bmax Capacity of a regular bubble bucket.
Rsamples When reorganizing the inner search tree, we

use Rsamples% of all data as samples.

Table 1: Frequently used notations and input parameters.

The inner search tree (IST) is linearized and stored in a cache-
optimized yet immutable array. Data objects are stored in special
leaf nodes, the bubble buckets (BB), which are able to digest a
large number of insertions or deletions without affecting the IST
and without hurting the tree balance considerably. Nevertheless,
in case of long series of hammered inserts or deletions, the BB-
Tree must be rebuilt to keep its balance. In this case, the structure
of the novel tree is determined using random sampling. In the
following, we describe the different components and techniques
of the BB-Tree in detail; Table 1 summarizes our notation.

3.1 Data Organization
A BB-Tree consists of two components: A k-ary search tree and a
set of bubble buckets. Inner nodes of the search tree recursively
split the data space into k disjoint subsets according to a delimiter
dimension and k − 1 delimiter values. All data are kept in BB,
which initially hold up to bmax m-dimensional data objects, but
can dynamically expand and shrink to cope with varying number
of objects in the region they represent. When searching in a BB-
Tree, the inner nodes are navigated to reduce the data space. Once
all certainly irrelevant regions (or subtrees) have been pruned,
the remaining BB are scanned to determine the true query results.

Inner search tree. The entire IST is implemented as a single,
immutable array. This has several advantages: (1) Cache lines
are the basic unit for transferring data between main memory
and CPU caches. By choosing an appropriate value for k , the
BB-Tree tailors its inner nodes to the individual cache line size of
the CPU, which increases cache line utilization and reduces the
amount of data transferred through the cache hierarchy. (2) Us-
ing a single dense array for representing a balanced IST makes
pointers superfluous. Array indexes of child nodes are calculated
in constant time based on the current tree level and the fan out
k . The BB-Tree linearizes inner nodes in a breadth-first order,
which reduces memory pressure and increases cache efficiency
during traversals. (3) By using an array representation, searching
a specific delimiter value within an inner node (as necessary
during searching) can be efficiently implemented using a binary
search, which requires only loд2 (k − 1) instead of (k − 1) com-
parisons. Note that all these accesses occur within a single cache
line, which means that they do not produce any cache miss.

Leaf nodes. All data objects are stored in bubble buckets. The
elasticity property of BB is described in Section 3.2. For now, we
assume that every BB has a maximum capacity of bmax objects.
bmax is an important parameter of the BB-Tree as it determines,
at query time, the balance between time spent in tree searching,
resulting in pruning, and time spent in scanning, producing the
query results. A high value leads to large leaf nodes storing more
objects, which in turn requires less inner nodes and thus a less
deep tree. Such a structure is preferable for less selective query
workloads: More work is put on scans where the comparison of
the data objects with the query lead to many matches, whereas
less time is spent in pruning which, for less selective queries, is
not effective anyway. In contrast, a lower BB capacity results in
smaller leaf nodes and a deeper tree structure, which is beneficial
for highly selective queries as more time is invested in successful
pruning and less in scans producing almost no matches.

Delimiter values. For a good search performance, it is cru-
cial that delimiters allow to prune subtrees and non-relevant
BB as early as possible. When being rebuilt, BB-Trees choose
their delimiter dimensions in the order of the number of distinct
values of a dimension, moving dimensions with a high cardinal-
ity and thus a presumably higher pruning power to the top. If
a dimension has more than k different values, delimiter values
are determined such that each subtree features a roughly equal
number of objects. If the number of inner node levels,h, is smaller
than the dimensionality of the data set,m, BB-Trees thus omit
the dimensions with the smallest cardinalities in the IST. Note
that this scenario is quite frequent due to the high fan out of the
tree which makes the BB-Tree rather flat even for very large data
sets. As an example, assume a BB-Tree over one Billion objects,
a fan out of k = 17, a bmax value of 1,000, and a fill degree of
50%. Adressing the resulting two million BB requires only six
IST levels. Thus, low-cardinality dimensions, which are anyway
problematic in terms of pruning power, do not clutter the tree. On
the other hand, if h is larger thanm, we employ dimensions mul-
tiple times as delimiters in a round-robin fashion. This scenario
occurs especially for data sets with a dimensionality between two
and four (depending on the number of objects). A special case
occurs when low-cardinality dimensions are used as delimiters
(see Section 3.5).

Example. Figure 1 illustrates a BB-Tree with k = 3, h = 2
(two tree levels), and nine BB managing three-dimensional data
objects (buckets three to six are not displayed). Each (regular) BB
can hold up to bmax = 4 data objects. Individual data objects are
identified by tids. At the first level, the shown BB-Tree splits the
data space into k = 3 partitions according to the first dimension.
All data objects having a value of three or less in this dimension
are held in the left subtree. All data objects having a value of
seven or less, but larger than three, in this dimension are held
in the middle subtree; all other data objects can be found in the
right subtree. At the next level, the data space is recursively split
according to the second dimension. Note that this example uses
two dimensions as delimiter, althoughm = 3. Given a fan out of
k = 3, two tree levels are sufficient for distinguishing between
nine BB. Figure 2 illustrates the linearization of the IST. We link
the linearized IST with the corresponding BB by maintaining an
array of pointers, where entry i references the i-th BB.

SIMD. Although processing inner nodes with Single Instruc-
tion Multiple Data (SIMD) instructions sounds promising at first
glance, especially because the tree is linearized and packed into a
dense array, we were not able to obtain any performance benefits



0 321 0 21 0 321
bubble 0 bubble 1 bubble 2

del = 0

del = 1

3 7

4 6 2 5 5 8

0 321 0 21
bubble 7 bubble 8

...
1 1 3 2 1 2 3 3 2 1 3 8 8 9 9 9 8 8
2 2 1 2 5 5 6 9 7 8 7 8 6 6 7 9 9 9
2 1 3 8 3 3 2 2 5 3 1 1 3 8 2 8 3 1

48 25 8514
0 321

tids 0

42 21 12
0 21

tids 1

23 75 67 61
0 321

tids 2

66 5 7256
0 321

tids 7

63 9117
0 21

tids 8

13
3

3

2
5
1

38
3

3

9
9
8

...

Figure 1: A BB-Tree (k = 3, bmax = 4) of height h = 2 man-
aging n = 36 data objects of dimensionalitym = 3; buckets
three to six are omitted.

array index
3 7 4 6 2 5 5 8
0 1 2 3 4 5 6 7

0 0 1 1 1 1 1 1 tree level

Logical representation Physical representation

Linearization3 7

4 6 2 5 5 8

Figure 2: Linearized storage of the inner search tree.

through SIMD parallelism. Compared to a binary search, scan-
ning inner nodes with SIMD instructions does not save many
comparisons yet incurs overhead. For instance, when employing
16 delimiter values, which perfectly fit into one 64-byte cache
line, a binary search requires loд2 (16) = 4 comparisons, while
a SIMD search on 256-bit registers needs two comparisons (or
four comparisons if only 128-bit SIMD registers are available).
These small savings are outweighed by the overhead induced by
SIMD scans, especially data transfers between regular and vector
registers [7], and the necessary scalar evaluation of the results
of SIMD instructions.

3.2 Bubble Buckets
Until now, we described the BB-Tree as a static index structure
and omitted the treatment of overflowing or underflowing leaf
buckets. We lift this restriction and describe two techniques to
cope with changing data, namely bubble buckets (this section)
and index rebuilds (next section).

All leaf nodes are implemented as elastic bubble buckets. There
exist two types of BB: A regular BB is implemented as a C++
std::vector, which is a dynamically growing and shrinking array,
and takes inserts up to its maximum capacity bmax . In contrast,
a super BB locally adds a further level to the tree. It consists of an
inner node and a set of k regular nodes. The inner node holds a
delimiter dimension and a set of delimiter values. As usual, super
BB employ the dimension that has the largest number of distinct
values as delimiter, and the k −1 delimiter values are chosen such
that the data objects are as evenly distributed as possible among
the k regular child BB. Super BB morph into regular BB upon
underflow, and regular BB morph into super BB upon overflow.

Inserts. The complete procedure for inserting objects is as
follows: We first traverse over the inner nodes to determine the
bucket that is responsible for the new object. If the chosen BB is a
regular BB and has free space, we insert the object and are done. If
there is no free space, wemorph the BB into a super BB, and insert
the data object; this also happens when the chosen BB already is

super bubble node (former regular bubble node 2)

del = 0

del = 1

3 7

4 6 2 5 5 8

2 6 del = 2

0 321

3 2 1 3
9 7 8 7
2 5 5 1

7567
0 1

0 1

2 1
7 8
5 3

42
0

0

3
8
7

23 61
0 1

0 1

3 3
9 7
2 1

Figure 3: Assuming that a new data object (3 8 7) with tid
42 gets inserted into the BB-Tree from Figure 1, the second
BBmorphs into a superBB that consists ofk regular nodes;
dimension two is employed as delimiter.

a super BB. To insert into a super BB, we first check whether the
super BB currently contains less than k ∗ bmax objects. If this is
the case, we determine the appropriate child BB, which must be
a regular BB, and insert the object; otherwise we reorganize the
index.

BB can thus accommodate up to k ∗bmax inserts into the same
region before the index needs a rebuild. If objects are deleted dur-
ing insert-heavy workloads, this period gets even longer. Within
this time, the IST of the BB-Tree is stable, and the local depth
is increased by at most one. However, to keep the algorithms
simple we currently do not balance the size of the child nodes of
a super BB, which, in theory, could lead to cases where all inserts
accumulate in one child node. This would for instance happen
when objects of an one-dimensional data set are inserted in a
certain sort order; for such situations, other index structures are
more appropriate, such as [18].

Deletes.When deleting an object, we first search the IST to
determine the responsible BB and delete the object there. In the
case of a regular BB, no further processing is performed. This
implies that a BB-Tree may have empty leaf buckets; however,
due to the dynamic size of their implementation, the memory
overhead is minimal. We nevertheless rebuild the index when
more than 10% of all BB are empty to get rid of superfluous inner
nodes. If we delete from a child of a super BB, this bucket checks
the total number of objects it contains and morphs into a regular
BB in case the number is smaller than p ∗ bmax . In the default
setting, we set p = 0.5 to prevent pathological cases of constantly
morphing BB when the bmax -th object is inserted and deleted
iteratively.

Example. Consider again the BB-Tree from Figure 1. When
we insert a new data object (3 8 7), the second bucket overflows
and morphs into the super BB shown in Figure 3. Here, the super
BB uses the third dimension as delimiter.

3.3 Building and Reorganizing a BB-Tree
A BB-Tree is initialized with one regular BB. After bmax objects
have been inserted, this regular BB morphs into a super BB. With
more inserts, this super BB eventually overflows, triggering a
rebuild of the index. All operations, except for the very first,
operate on a BB-Tree that was the result of an index rebuild.

Such a rebuild consists of four steps. First, we determine how
many regular BB are needed to hold the current data, while



leaving capacity for new inserts. From this number, we also derive
the necessary number of levels of the IST. By default, we set the
number of BB to n/(10% ∗ bmax ) allowing each node to ingest
further 90%∗bmax data objects until it overflows. This parameter
may be changed if the expected workload consists of many inserts
(lower value, less rebuilds, deeper tree) or few inserts (higher
value, less deep tree). Second, we randomly sample Rsamples ∗ n
data objects as representatives of the whole data set. By scanning
the sample data, we estimate the cardinality of each dimension.
Dimensions are sorted by cardinality and assigned to the h IST
levels in descending order. Third, we recursively determine the
delimiter values for the inner nodes. Using the sample data, we
compute an equi-depth histogram with k buckets, reflecting the
distribution of the dimension values of the current level. Using
that histogram, we obtain k−1 delimiter values such that the data
are divided into k partitions of rougly equal size. In the case of a
delimiter value, which occurs with a much higher frequency than
the others, the derived partitions will be of unequal size. Clearly,
this procedure fails for low-cardinality dimensions containing
less than k distinct values. In the last step, all objects are inserted
into their respective BB.

Obviously, index reorganization is an expensive operation. A
random sample must be determined which is scanned multiple
times, a new IST is constructed, and data objects must be moved
to new locations. We chose pragmatic and fast methods for these
steps, which come at certain drawbacks. First, equally splitting a
subtree by one dimension is not always possible, which, in the
worst case, may lead to an unbalanced BB-Tree (see Section 3.4),
where subtrees at the same depth contain an unequal number
of data objects. Second, we globally assign dimensions to tree
levels, which again can lead to imbalances when dimensions are
strongly correlated. Third, we compute the IST structure only
on a sample. If the sample is small, the tree is found quickly yet
might not optimally represent the data. Contrary, if the sample
is large, building the tree needs more time yet probably leads
to a better tree structure. We make two notes regarding these
issues. First, they are shared by most other updateable MDIS. For
instance, the structure of kd-trees strongly depends on the order
of the insertions. The K-D-B-tree turns kd-trees into balanced
search trees, but at the price of complicated and slow update
operations. Second, though we cannot give formal guarantees,
for the data sets we used in our evaluation, we never observed any
notable imbalance. We are thus confident that unbalanced BB-
Trees, which are possible in theory, remain very rare in practice.

3.4 Search Algorithms
BB-Trees focus on partial- and complete-match range queries,
but also support exact-match queries.

All search queries have in common that they first exploit the
linearized inner nodes to efficiently find those BB that may hold
data objects relevant for the search querywhile pruning all others.
This step is followed by sequential scans over all candidate BB
to determine the data objects matching the query. Evaluation
of search queries may have to follow multiple paths through
the tree: Partial-match range queries must consider multiple
paths whenever a node splits on a dimension which is not part
of the query. Complete-match range queries have to consider
multiple paths when the range covers more than one subtree.
Even exact-match queries need to consider multiple paths when
a low-cardinality dimension (with less than k distinct values) is
used as delimiter.

Assuming the usual case, where the navigation of the IST
results in only one candidate BB, exact-match queries have a
complexity of O (h ∗ loд(k ) + bmax ∗m): They first perform h
times a binary search within inner nodes and eventually scan
one BB holding up to bmax objects, where a comparison between
the query and a data object requiresm value comparisons. The
tree height (h) depends on the number of stored data objects, the
BB capacity and the fan out: h = loдk (n/bmax ). Note that the
tree height is increased by one in case the search leads to a super
BB. The complexity of exact-match queries is dominated by the
scans of leaf nodes, calling for small values of bmax . On the other
hand, every change of a level during IST traversal may result in
a cache miss, making these operations more costly in practice.

Note that the worst-case complexity of the BB-Tree is linear in
n. First, this is trivially the case when queries select all indexed
objects. Second, this case occurs when less than Bmax objects are
indexed, as these are all stored in one bucket preventing pruning.
Third, the worst case also applies, when BB-Trees consist of only
one super BB and most data objects are inserted into the same
child BB due to a inaptly-chosen delimiter dimension. However,
once the super BB overflows, the data objects are distributed
to multiple regular BB and the search complexity (for queries
requiring only one BB) converges to the formulas given above.

For less selective range queries, scans are more attractive as
more of their comparisons actually lead to matches, without any
tree navigation in-between. However, determining an optimal
bmax value would only be possible if all queries had the same,
a-priori known selectivity across the entire data space, an as-
sumption that is rather impractical. In practice, every setting of
bmax implements an expectation on the average selectivities of
queries in the future workload. In our evaluation, we will show
that our default value leads to a performance that is almost on-
par with MDIS specialized in exact-match queries while clearly
outperforming all competitors for MDRQ.

3.5 Low-Cardinality Dimensions
We consider a dimension of a data set to have a low cardinal-
ity when its number of distinct values is smaller than k . Low-
cardinality dimensions are common in real-world data sets and
challenge MDIS because they make partitioning generally hard
and equal partitions impossible. The problem is less severe for
the BB-Tree, as it sorts delimiter dimensions by the number of
distinct values, which usually keeps low-cardinality dimensions
completely out of the IST. However, if a data set contains less
than h dimensions and these dimensions have low cardinalities, a
low-cardinality dimension will be chosen as delimiter dimension
of an inner node, making it impossible to find distinct delimiter
values such that the data is split into k subparts of equal size. In
the worst case, where a delimiter dimension features only one
distinct value, the IST loses all its pruning power and searching
the BB-Tree degenerates to a sequential scan over all leaf nodes.

4 PARALLEL EVALUATION OF RANGE
QUERIES

The parallel range query operator uses multiple threads to exe-
cute search queries and consists of two phases.

The first phase navigates the inner nodes with a single thread
to determine the candidate BB. Traversing over the linearized
inner nodes in parallel is complicated, as an optimal scheme
would require solving a non-trivial load balancing problem due
to different pruning effects in different subtrees. At the same



0 21
bubble 0 bubble 1

del = 0

del = 1

3 7

4 6 2 5 5 8

0 321 0 21
bubble 7 bubble 8

...
1 2 3 8 8 9 9 9 8 8
5 5 6 8 6 6 7 9 9 9

0 321

1 1 3 2
2 2 1 2
2 1 3 8 3 3 2 1 3 8 2 8 3 1

48 25 8514
0 321

tids 0

42 21 12
0 21

tids 1

66 5 7256
0 321

tids 7

63 9117
0 21

tids 8

13
3

3

2
5
1

38
3

3

9
9
8

...

thread 0 thread 1 thread 2

bubble 2
0 321

3 2 1 3
9 7 8 7
2 5 3 1

23 75 67 61
0 321

tids 2

P
h
a
se

 2
(m

u
lt

i-
th

re
a
d

e
d

)
P
h
a
se

 1
(s

in
g

le
-t

h
re

a
d

e
d

)

Figure 4: Parallel evaluation of an exemplary range query
defined by lower boundary [1,0,3] and upper boundary
[3,7,6].

time, there is only little to gain as the tree usually is rather flat
due to its high fan out.

In the second phase, all candidate BB are scanned in parallel.
Let Bmatch denote the number of candidate BB that have been
determined by the first phase (super BB are considered asmultiple
BB). If Bmatch ≥ t , we divide the candidate BB into t partitions
of size Bmatch/t . Each partition is processed by a distinct thread
using the same algorithm as in the regular, single-threaded BB-
Tree. Hence, if Bmatch = t , we obtain the perfect degree of
parallelism. If Bmatch < t , some threads would remain idle when
sticking to the one-thread-per-bucket assignment. In this case,
we assign multiple threads to single BB allowing to divide the
data objects of one BB into partitions and scan these partitions
in parallel.

Example. Figure 4 illustrates the parallel evaluation of a range
query in a BB-Tree. The shown search query retrieves all data
objects that match the lower boundary [1,0,3] and the upper
boundary [3,7,6]. The first, single-threaded phase of the query
execution determines that the first three BBmay hold data objects
matching the range boundaries (the search path is marked in
red). In the second, multi-threaded phase, these BB are searched
concurrently with one CPU thread per bucket assuming that our
imaginary machine features three threads (Bmatch = t ).

5 EVALUATION
In a comprehensive evaluation, we compare the BB-Tree with
state-of-the-art approaches to general-purpose indexing of mul-
tidimensional data by executing synthetic and real-world query
workloads over synthetic and real-world data sets. Specifically,
we aim to answer the following questions: (1) Does the perfor-
mance of the BB-Tree depend on data set- or workload-specific
characteristics, e. g., data dimensionality, data skew, or query
selectivity (see Sections 5.4 to 5.7)? (2) How does the BB-Tree
perform on mixed workloads that contain both reads and writes
(see Section 5.9)? (3) What is the effect of parallelization (see
Section 5.10)? (4) How efficient does the BB-Tree utilize memory
space (see Section 5.11)?

5.1 Experimental Setup
Hardware.We executed all experiments on a server equipped
with two Intel Xeon E5-2620 CPUs (2 GHz clock rate, 64-byte

cache lines, six cores, 12 hardware threads) and 32 GB of RAM.
In total, the machine features 12 cores and 24 hardware threads.
Most experiments are single-threaded, some experiments inves-
tigate the parallel range query operator and therefore make use
of multiple threads.

Methodology. In our evaluation, the competitors are com-
pletely kept in main memory. All data sets are inserted in random
order. All experiments measure the average execution time of
an operation, e. g., range query. We run experiments three times
and present the arithmetic mean.

Competitors. We compare the BB-Tree with multiple ap-
proaches to general-purpose multidimensional indexing: the
kd-tree [4], the PH-tree [35], the R∗-tree [3], the VA-file [34]
and the sequential scan [28]. Section 2 provides a brief descrip-
tion of the competitors; for more details we refer the interested
reader to the original papers or surveys, like [10], or bench-
marks, like [28]. For the R∗-tree, we used an open-source, main
memory implementation (https://libspatialindex.github.io/) and
relied on the default configuration, but slightly adjusted the node
capacities such that nodes are aligned to cache lines. For the
PH-tree, which is a main-memory MDIS by design, we used a
publicly available implementation shared by the authors (https:
//github.com/tzaeschke/phtree-1). For the kd-tree, the VA-file
and the sequential scan, we used our own implementations based
on the original publications, but adapted them to main-memory
storage following techniques described in [28]. Most contestants,
including the BB-Tree, use 32-bit floating-point values to manage
dimension data. The R∗-tree implementation uses 64-bit floating-
point values; the PH-tree implementation uses 64-bit integer
values. We evaluated the BB-Tree with k = 17, because k −1 = 16
four-byte floating-point values fit into one cache line of the evalu-
ation machine. Based on the observations described in Section 5.3,
we empirically set bmax = 2,500. For reorganization, we use
Rsamples = 10% of all objects as samples to estimate the current
data distribution.

Software. All software was implemented in C++ and was
compiled with GCC using optimization flag -O3. We measured
hardware performance counters with PAPI (http://icl.cs.utk.edu/
papi/) and space consumptionwith valgrind (http://valgrind.org/).
For the parallel range query operator, we used an open-source
thread pool library (https://github.com/vit-vit/CTPL) to enable
the reuse of POSIX threads. Our implementation of the BB-
Tree is freely available (https://www2.informatik.hu-berlin.de/
~sprengsz/bb-tree/).

5.2 Data Sets and Workloads
We evaluate the competitors on four data sets. Table 2 provides
the number of data objects (n), the dimensionality (m), the number
of distinct values per dimension (for UNIFORM and CLUST, we
provide averages over all dimensions), and the raw size of each
data set. We primarily use synthetic workloads. Unless noted
otherwise, we generate synthetic range queries by randomly
choosing two objects from the data set and, for each dimension,
we use the smaller (larger) value of both objects as lower (upper)
boundary. For GENOMIC, we execute a realistic workload, the Ge-
nomicMultidimensional Range Query Benchmark (GMRQB) [28],
consisting of eight partial- and complete-match MDRQ templates
of varying selectivity.

https://libspatialindex.github.io/
https://github.com/tzaeschke/phtree-1
https://github.com/tzaeschke/phtree-1
http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/
http://valgrind.org/
https://github.com/vit-vit/CTPL
https://www2.informatik.hu-berlin.de/~sprengsz/bb-tree/
https://www2.informatik.hu-berlin.de/~sprengsz/bb-tree/


Data Set n m Distinct Values Raw Size
per Dimension

UNIFORM 10k 5 10k (avg) 0.19MB
100k 5 95k (avg) 1.91MB
1M 5 632k (avg) 19.07MB
10M 5-100 1M (avg) 190.74MB-3,814.7MB
10M 5 4-64 190.74MB

CLUST 10k 5 10k (avg) 0.19MB
100k 5 95k (avg) 1.91MB
1M 5 632k (avg) 19.07MB
10M 5 1M (avg) 190.74MB

POWER 10k 3 10k; 1k; 1k 0.11MB
100k 3 100k; 2k; 2k 1.14MB
1M 3 1M; 4k; 5k 11.44MB
10M 3 10M; 6k; 8k 114.44MB

GENOMIC 10k-10M 19 1-63,883 0.72MB-724.79MB

Table 2: Data sets used in our experiments.

UniformData (UNIFORM). Synthetic data facilitates experi-
ments with arbitrary data set sizes, dimensionalities and query se-
lectivities. We generate uniformly distributed data objects within
the domain [0,1].

ClusteredData (CLUST).The five-dimensional data set CLUST
features up to 20 clusters.We used a generator provided byMüller
et al. [22] to generate CLUST within the domain [0,1]. Within
clusters, data are uniformly distributed.

Sensor Data (POWER). POWER is obtained from the DEBS
2012 challenge (http://debs.org/?p=38) and resembles real-world
sensor data of hi-tech manufacturing equipment. As in previous
studies [28, 33], we index three dimensions.

GenomicData (GENOMIC).GENOMIC consists of real-world
genomic variant data obtained from the 1000Genomes Project [31].
We transformed the raw data, originally provided as text files,
into 19-dimensional data objects, which can be indexed by the
competitors (some attributes were provided as text and had to
be converted into floating-point values). As shown in Table 2,
the dimensions of GENOMIC have a highly varying cardinality,
ranging from one to 63,883 distinct values. We previously de-
fined the Genomic Multidimensional Range Query Benchmark
(GMRQB) in [28], which consists of eight realistic partial- and
complete-matchMDRQ templates restricting between two and 19
dimensions of the data space. The templates are instantiated with
concrete values obtained from the 1000 Genomes Project data
and have an average selectivity between 10.76% and 0.00001%.

5.3 Impact of Bubble Bucket Capacities
The capacity of BB, as defined bybmax , controls the ratio between
index probing (navigation of IST) and scanning (evaluation of
leaf nodes) when searching in BB-Trees. While small BB put more
work on index probing, large BB increase the relative time spent
on scanning. As shown in previous work [28, 34], index probing
is beneficial for highly selective queries and scanning is superior
for less selective workloads.

We study the impact of bmax on the performance of range
queries with varying selectivities (1%, 10%, 20%) when applied to
ten million five-dimensional objects from UNIFORM and CLUST.
Our goal is to find a pragmatic configuration providing a robust
performance for a wide range of query selectivities and data
distributions. Figure 5 shows the results.

For uniform distributions, this experiment confirms that small
(large) capacities are beneficial for highly (less) selective queries.

UNIFORM
(sel =1%)

UNIFORM
(sel =10%)

UNIFORM
(sel =20%)

CLUST
(sel =1%)

CLUST
(sel =10%)

CLUST
(sel =20%)

102

103

Av
g.
Ex
ec
.T

im
e
(m

s)
[l
og
ar
it
hm

ic
sc
al
e]

bmax = 500 bmax = 1000 bmax = 2500
bmax = 5000 bmax = 7500 bmax = 10000

Figure 5: Performance of BB-Trees with different BB ca-
pacities (Bmax ) when executing range queries with vary-
ing selectivities (1%, 10%, and 20%) (n=10M, m=5, UNIFOR-
M/CLUST).

While small BB capacities are more efficient than large BB capac-
ities for queries with an average selectivity of 1%, they become
less efficient with increasing query selectivity (10% and 20%). For
the selectivies considered here, BB holding up to 2,500 objects
provide the best performance.

Clustered data lead to a less optimal partitioning, which lessens
the pruning power of the IST and puts more work on scanning. As
a result, small BB capacities become less efficient, even for small
selectivities, because less BB can be pruned. Also for clustered
data, BB with a maximum capacity of 2,500 objects provide either
the best performance or are on a par with other configurations.

Taking the results of this experiment into account, we set
bmax = 2,500 for all following experiments.

5.4 Exact-Match Queries
Figure 6 shows the average execution time of exact-match queries
for the four data sets depending on the number of data objects.
We execute n exact-match queries on the contestants given that
n denotes the data set size. Each exact-match query retrieves a
randomly-chosen, existing data object. To manage 104 objects,
the BB-Tree does not need an IST, but employs one super BB
consisting of k = 17 regular nodes (bmax = 2,500). In general,
for exact-match queries, the performance of the BB-Tree is very
similar to that of the kd-tree and the PH-tree. It clearly outper-
forms the R∗-tree, the VA-file and the sequential scan for all data
sets, often by multiple orders of magnitude. For the largest in-
stance of GENOMIC (107 objects), inner nodes at the lowest tree
level feature duplicate delimiter values, which require scanning
multiple candidate BB and result in minor performance drops.

Typically, MDIS achieve a better exact-match query perfor-
mance than sequential scans, because they can prune large parts
of the data while scans need to consider all data. Although the
BB-Tree needs to scan over data objects stored in BB it achieves
a very competitive performance. The BB-Tree exploits the lin-
earized inner nodes to effectively reduce the amount of data to
consider for query evaluation.

5.5 Insertions and Deletions
Figure 7 presents the average time a contestant needs to ingest a
data object. The shown results include the reorganizations of the
BB-Tree; in a real system, we would advise to handle rebuilds in
background jobs, which strongly increases insert performance.
We do not insert entire data sets at once, but load object by

http://debs.org/?p=38


104 105 106 107

101

103

105

Data Objects

Av
g.
Ex
ec
.T

im
e
(µ
s)

[l
og
ar
it
hm

ic
sc
al
e]

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(a) UNIFORM (m=5)

104 105 106 107

101

103

105

Data Objects

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(b) CLUST (m=5)

104 105 106 107
100

102

104

Data Objects

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(c) POWER (m=3)

104 105 106 107
101

104

107

Data Objects

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(d) GENOMIC (m=19)

Figure 6: Performance of exact-match queries on synthetic and real-world data depending on the number of data objects.

104 105 106 107

100

101

102

Data Objects

Av
g.
Ex
ec
.T

im
e
(µ
s)

[l
og
ar
it
hm

ic
sc
al
e]

BB-Tree kd-tree PH-tree
R∗-tree Scan

(a) UNIFORM (m=5)

104 105 106 107

100

101

102

Data Objects

BB-Tree kd-tree PH-tree
R∗-tree Scan

(b) CLUST (m=5)

104 105 106 107

100

101

102

Data Objects

BB-Tree kd-tree PH-tree
R∗-tree Scan

(c) POWER (m=3)

104 105 106 107

100

101

102

Data Objects

BB-Tree kd-tree PH-tree
R∗-tree Scan

(d) GENOMIC (m=19)

Figure 7: Performance of insert operations on synthetic and real-world data depending on the number of data objects.

104 105 106 107

101

102

103

Data Objects

Av
g.
Ex
ec
.T

im
e
(µ
s)

[l
og
ar
it
hm

ic
sc
al
e]

BB-Tree kd-tree R∗-tree
VA-file Scan

(a) UNIFORM (m=5)

104 105 106 107

101

102

103

104

Data Objects

BB-Tree kd-tree R∗-tree
VA-file Scan

(b) CLUST (m=5)

104 105 106 107

101

102

103

104

Data Objects

BB-Tree kd-tree R∗-tree
VA-file Scan

(c) POWER (m=3)

104 105 106 107

101

103

105

Data Objects

BB-Tree kd-tree R∗-tree
VA-file Scan

(d) GENOMIC (m=19)

Figure 8: Performance of delete operations on synthetic and real-world data depending on the number of data objects.

object. Thus, this experiment does not include the VA-file, which
supports only bulk inserts, because it requires to know the data
distribution beforehand. For instances of GENOMIC with more
than 105 objects, the space needs of the PH-tree exceeded the
available 32 GB of memory.

The scan achieves the highest insert performance, because it
implements inserts by appending new data objects to a dynamic
array and does not require to deal with node overflows, like the
R∗-tree. Notably, the BB-Tree shows a better insert performance
than the kd-tree and the PH-tree and clearly outperforms the
R∗-tree. The concept of elastic BB effectively reduces the fre-
quency of rebalancing operations. When dynamically inserting
ten million data objects, regardless of the data set, the BB-Tree
needed only three reorganizations, which took 6.55s on average
(standard deviation σ = 8.75s). Smaller data sets require even less
reorganizations.

Figure 8 shows the average time needed for deleting an object
from the four data sets depending on data set size. The used imple-
mentation of the PH-tree did not provide a delete operator. The
delete performance of the BB-Tree correlates with its exact-match
query performance, because it first locates the to-be-deleted data
object and then removes it from the corresponding BB. The BB-
Tree outperforms all other competitors in deleting data objects,
even scans, except for the largest instance of GENOMIC.

5.6 Range Queries
Figure 9 shows the average execution time of complete-match
MDRQ that we generated by randomly choosing two objects from
the data set. Depending on the data distribution, the obtained
MDRQ objects have a varying average selectivity; UNIFORM:
0.4% (σ = 0.9%), CLUST: 19.8% (σ = 19.7%), POWER: 12.6%
(σ = 13.1%), GENOMIC: 0.2% (σ = 0.2%). For CLUST, one range
query may span multiple clusters, therefore average selectivities



104 105 106 107
10−1

101

103

Data Objects

Av
g.
Ex
ec
.T

im
e
(m

s)
[l
og
ar
it
hm

ic
sc
al
e]

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(a) UNIFORM (m=5)

104 105 106 107
10−1

103

107

Data Objects

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(b) CLUST (m=5)

104 105 106 107
10−1

102

105

Data Objects

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(c) POWER (m=3)

104 105 106 107

100

102

Data Objects

BB-Tree kd-tree R∗-tree
VA-file Scan

(d) GENOMIC (m=19)

Figure 9: Performance of synthetic complete-match range queries on synthetic and real-world data depending on the
number of data objects. Due to the technique used to generate MDRQ (see Section 5.2), average selectivities are as follows:
UNIFORM: 0.4% (σ = 0.9%), CLUST: 19.8% (σ = 19.7%), POWER: 12.6% (σ = 13.1%), GENOMIC: 0.2% (σ = 0.2%).

Query Template 1
avg. selectivity =

10.76%

Query Template 3
avg. selectivity =

5.36%

Query Template 2
avg. selectivity =

2.19%

Mixed Workload
avg. selectivity =

1.58%

Query Template 4
avg. selectivity =

0.22%

Query Template 5
avg. selectivity =

0.20%

Query Template 6
avg. selectivity =

0.11%

Query Template 7
avg. selectivity =

0.05%

Query Template 8
avg. selectivity =

0.00001%

100

102

104

106

Av
g.
Ex
ec
.T

im
e
(m

s)
[l
og
ar
it
hm

ic
sc
al
e]

BB-Tree kd-tree R∗-tree VA-file Sequential Scan

Figure 10: Performance of eight realistic MDRQ templates, including a mixed workload, from GMRQB; query templates
are ordered by selectivity (n=10M, m=19, GENOMIC).

are higher than for UNIFORM although both data sets have an
identical size and both are generated within [0,1]. The BB-Tree
achieves the best overall performance and outperforms the other
contestants, sometimes by up to three orders of magnitude. For
UNIFORM, the R∗-tree shows a performance similar to that of
the BB-Tree. For GENOMIC, the kd-tree performs similar to the
BB-Tree. We omit the PH-tree for all range query experiments
on GENOMIC, because the implementation given by the authors
crashed with failing C++ assertions.

Figure 10 presents the average execution time of the GMRQB
on ten million data objects from GENOMIC. Note that most query
templates, except query templates 7 and 8, have their first selec-
tion predicate in the second level of the BB-tree, which means
that the GMRQB workload is rather unfavorable for our index.
Nonetheless, BB-Trees consistently achieve the best performance
for query templates 1-7, which are partial-matchMDRQ querying
5.81 dimensions on average (σ = 4.11), and a mixed workload
consisting of all query templates randomly mixed together. Only
for query template 8, which resembles an exact-match query
as it selects a single data object on average, they are beaten by
kd-trees. For data of high(er) dimensionality, such as GENOMIC,
R∗-trees lose their pruning power and show a worse performance
than scans.

Figure 11 shows the performance of range queries on ten
million objects from UNIFORM depending on query selectivity.
We omit the kd-tree because, compared to the other competitors,
its execution time was orders of magnitude higher for queries
selecting more than 1% of the data. The BB-Tree outperforms
all other MDIS regardless of the query selectivity. It also beats

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

102

103

104

105

Query Selectivity (%)

Av
g.
Ex
ec
.T

im
e
(m

s)
[l
og
ar
it
hm

ic
sc
al
e]

BB-Tree PH-tree R∗-tree VA-file Sequential Scan

Figure 11: Performance of range queries depending on
query selectivity; kd-tree is omitted as its performance de-
creases severely for less selective queries, strongly impair-
ing the readability of the figure (n=10M, m=5, UNIFORM).

the scan for queries with a selectivity of up to 20%. For less
selective queries, the performance of the BB-Tree remains close
to that of a scan. Furthermore, the BB-Tree achieves a very high
cache efficiency, almost as good as that of a sequential scan, and
follows most predicted branches leading to few pipeline flushes
(see Table 3).

5.7 Impact of Dimensionality
Wemeasure the performance of exact-match and complete-match
range queries on ten million data objects from UNIFORM depend-
ing on data set dimensionality. We generate complete-match
range queries with an average selectivity of 1% (σ = 0.7%). With a



BB-Tree kd-tree PH-tree R∗-tree VA-file Scan

CPU Cycles 164M 8,306M 1,908M 252M 2,934M 1,582M

LLC Accesses 1.0M 824M 1.2M 2.5M 1.8M 0.5M

LLC Misses 0.7M 0.9M 0.8M 0.5M 1.6M 0.3M

TLB Misses 0.3M 1.0M 0.3M 0.3M 0.2M 0.1M

Branch Mispr. 0.1M 0.7M 3M 0.2M 10M 7M

Table 3: Performance counters per range query (1% selec-
tivity;n=10M, m=5, UNIFORM).

10 20 30 40 50 60 70 80 90 100

10−2

10−1

100

101

102

Dimensions

Av
g.
Ex
ec
.T

im
e
(m

s)
[l
og
ar
it
hm

ic
sc
al
e]

BB-Tree kd-tree PH-tree R∗-tree VA-file Scan

Figure 12: Performance of exact-match range queries (av-
erage selectivity = 1%, σ = 0.7%) depending on dimension-
ality (n=10M, UNIFORM).

growing dimensionality, this results in very low single-dimension
selectivities posing serious challenges to MDIS because pruning
becomes less useful. For instance, when running complete-match
MDRQ with an overall selectivity of 1% on 100-dimensional
uniformly distributed data, where dimensions are not corre-
lated, single-dimension selectivities are approximately 95.50%, as
0.955100 ≈ 0.01.

Figure 12 shows the runtimes of exact-match queries for di-
mensionalities between ten and 1003. For such workloads, all
methods except the R∗-tree are mostly unaffected by the dimen-
sionality of the data space. Similarly, Figure 13 shows the run-
times of complete-matchMDRQdepending on the dimensionality.
All methods show a performance degradation roughly propor-
tional to the dimensionality of the data space, starting at a di-
mensionality of 20, because an increasing number of dimensions
has to be compared when evaluating queries. The slow-down is
more pronounced for lower dimensionalities.

We also executed workloads on instances of CLUST featuring
five and ten dimensions (data not shown). All competitors behave
very similar as for UNIFORM: Exact-match queries are almost
unaffected by the dimensionality of the data space, whereas range
queries degrade noteably.

5.8 Low-Cardinality Dimensions
Low-cardinality dimensions are challenging for BB-Trees because
they make it impossible to find k different delimiter values, which
limits the pruning power of the IST. We first study this effect
using range queries applied to ten million five-dimensional data
objects from UNIFORM with different moderately low cardinalti-
ties for all dimensions. Results are shown in Figure 14. At these
cardinalities, none of the competitors is affected severely as the

3Note that the space requirements of the PH-tree exceeded the available 32 GB of
main memory for dimensionalities higher than ten. Similarly, the R∗-tree ran out
of space for 100 dimensions.

10 20 30 40 50 60 70 80 90 100

103

104

105

Dimensions

Av
g.
Ex
ec
.T

im
e
(m

s)
[l
og
ar
it
hm

ic
sc
al
e]

BB-Tree kd-tree PH-tree R∗-tree VA-file Scan

Figure 13: Performance of complete-match range queries
(average selectivity = 1%, σ = 0.7%) depending on dimen-
sionality (n=10M, UNIFORM).

8 (2.4%) 12 (1.3%) 16 (0.8%) 32 (0.6%) 64 (0.8%)

102

103

104

105

Distinct Values per Dimension (Average Selectivity)

Av
g.
Ex
ec
.T

im
e
(m

s)
[l
og
ar
it
hm

ic
sc
al
e]

BB-Tree kd-tree PH-tree R∗-tree VA-file Scan

Figure 14: Performance of MDRQ with a varying selectiv-
ity depending on number of distinct values per dimension
(n=10M, m=5, UNIFORM).

differences only correspond to the different query selectivities.
Note that in the cases of eight and 16 distinct values per dimen-
sion, the data space includes duplicate data objects which is not
supported by the PH-tree; therefore, we omit this method in this
experiment.

Next, we performed an experiment with extremely low cardi-
nalities (between two and 12) yet used data of higher dimension-
ality. Figure 15 shows the performance of range queries with a
selectivity of 0.00002% (σ = 0.0%), when applied to ten million
50-dimensional objects from UNIFORM. The PH-tree had to be
omitted because it produced incorrect results. This experiment
shows that the performance of most MDIS drops considerably
with lower cardinalities, whereas scans and VA-files are much
less effected. However, for such low cardinalities other index
structures, like bitmaps [8], are probably a better choice anyway.

5.9 Mixed Workload
In most applications, MDIS are loaded in bulk before running
large batches of search queries. Once built, inserts and deletes
rarely happen. This experiment studies the contestants when run-
ning such workloads on data from GENOMIC. We use ten million
data objects, of which we first insert 9,999,9004. Next, we run 100
inserts, 100 deletes, 2,800 exact-match queries and 7,000 range
queries in random order. For inserts, we use objects, which were
not bulk loaded. For exact-match queries and deletes, we ran-
domly choose objects from the data set. This may result in queries
asking for previously deleted data objects. For range queries, we
4For the VA-file, we insert all data objects at the beginning of the workload, because
it only supports bulk inserts.



2 4 8 12

102

103

104

Distinct Values per Dimension

Av
g.
Ex
ec
.T

im
e
(m

s)
[l
og
ar
it
hm

ic
sc
al
e]

BB-Tree kd-tree R∗-tree VA-file Scan

Figure 15: Performance of MDRQ with a selectivity of
0.00002% (σ = 0.0%) depending on number of distinct val-
ues per dimension; PH-tree is omitted (n=10M,m=50, UNI-
FORM).

BB-Tree kd-tree R∗-tree VA-file Seq. Scan
101

103

105

107

109

95’th perc.
75’th perc.

median

25’th perc.
5’th perc.

Ex
ec
ut
io
n
ti
m
e
(µ
s)

[l
og
ar
it
hm

ic
sc
al
e]

Figure 16: Execution times of single queries (inserts,
deletes, exact-match and range queries) from a mixed
workload in randomorder; bulk insert is not included; PH-
tree ran out of memory (n=10M, m=19, GENOMIC).

Bulk Insert (s) Average/Minimum/Maximum exec. time (ms)

BB-Tree 54.7s 262.66ms / 0.005ms / 1,866.73ms

kd-tree 236.7s 128,735.5ms / 0.011ms / 4,842,752ms

PH-tree Ran out of memory.

R∗-tree 2,316s 2,735.16ms / 0.008ms / 7,735.76ms

VA-file 38.7s 2,704.8ms / 0.004ms / 8,148.82ms

Seq. Scan 7.8s 809.83ms / 0.002ms / 3,117.46ms

Table 4: (1) Total execution time of the bulk insert and (2)
average, minimum and maximum execution time of the
remaining queries of the mixed workload.

use themixed workload fromGMRQB (avg. sel.=1.58%,σ = 3.58%),
which consists of all query templates randomly mixed together.
Once again the PH-tree ran out of memory.

Figure 16 summarizes the runtimes. It does not include the
bulk insert, because this would focus too much on inserts (ten
million inserts vs. 9,900 search queries and deletions). For most
contestants, insertions are the fastest operation, which would
move all other operations out of the 95’th percentile. Table 4
shows the runtime of the bulk insert and summarizes the execu-
tion times of the remaining 10,000 queries. The BB-Tree achieves
the highest performance in most cases. Only for the bulk insert,
it is outperformed by the scan and the VA-file. The results show
that the BB-Tree combines high search performance with fast
inserts and deletes.

1 5 9 13 17 21 25 29 33 37 41 45

102

103

Software Threads

Av
g.
Ex
ec
.t
im

e
(m

s)
[l
og
ar
it
hm

ic
sc
al
e]

BB-Tree Parallel BB-Tree Scan Parallel Scan

0

5

10

Speedup BB-Tree

Speedup Scan

Pa
ra
lle
liz
at
io
n
Sp

ee
du

p

Figure 17: Performance of the mixed workload from GM-
RQB (avg. selectivity=1.58%) depending on the number of
used software threads (n=10M, m=19, GENOMIC).

UNIFORM (m=5) CLUST (m=5) POWER (m=3) GENOMIC (m=19)
0

2,000

4,000

Sp
ac
e
C
on

su
m
pt
io
n
(M

B
)

BB-Tree kd-tree PH-tree R∗-tree VA-file Seq. Scan

Figure 18: Space consumption of the competitors (n=10M).

5.10 Parallel Evaluation of Range Queries
Figure 17 shows the performance of the parallel range query
operator when executing the mixed workload from GMRQB over
ten million objects from GENOMIC depending on the number of
used software threads. We compare results to a single-threaded
BB-Tree, a single-threaded scan, and a parallel scan, which (1) di-
vides the data objects into t partitions, (2) concurrently scans
each partition with one thread, and (3) concatenates the results of
the individual partitions. The performance of the parallel range
query operator of the BB-Tree improves with the number of used
threads up to a barrier established by the number of available
physical cores (12 on our evaluation machine). Hyper-threading
provides only few benefits for the mostly compute-bound BB-
Tree, but is useful for memory-bound applications, like scans.
Using moderately more threads than supported by the hardware
(> 24), does neither provide benefits nor disadvantages. Scanning
(up to 10.9X speed-up) benefits more from multi-threading than
the BB-Tree (up to 5.5X speedup), because (a) the parallel scan
leverages hyper-threading and (b) scan-based MDRQ can be com-
pletely parallelized while BB-Trees navigate the IST with a single
thread. Nonetheless, BB-Trees outperform scans regardless of
the number of used threads.

5.11 Space Consumption
Figure 18 shows the space consumption of the contestants when
storing ten million data objects of the data sets used in the evalua-
tion. For GENOMIC, the PH-tree required more than the available
32 GB of main memory. The BB-Tree achieves a high space effi-
ciency, which is mainly enabled by the linearization of its inner
nodes. Compared to the other MDIS, it requires the smallest index
overhead over the scan.



6 CONCLUSIONS
We presented the BB-Tree as a fast and space-efficient means for
storing and querying multidimensional data in main memory.
It supports complete- and partial-match range queries, exact-
match queries, and dynamic updates. We compared the BB-Tree
with state-of-the-art MDIS using different synthetic and real-
world workloads over different synthetic and real-world data sets
with three to 100 dimensions. The BB-Tree beats all competitors
in executing range queries up to a selectivity of 20%; for less
selective queries it is only outperformed by a scan. It executes
exact-match queries almost as fast as the best competitor, the
PH-tree; for higher dimensionalities it even provides the best
performance. The BB-Tree achieves the best insert and delete
performance. We also presented a parallel variant that accelerates
range queries almost linearly with the number of available CPU
cores. Of course, BB-Trees are pure main-memory data structures;
if data does not fit in memory, disk-based MDIS should be used
like the original R*-Tree [12] or the original VA-File [34]. In
future work, we intend to support nearest neighbor search and
concurrent execution of search queries.

7 ACKNOWLEDGMENTS
Stefan Sprenger is funded by the Deutsche Forschungsgemein-
schaft through graduate school SOAMED (GRK 1651).

REFERENCES
[1] Lars Arge, Mark de Berg, Herman J. Haverkort, and Ke Yi. 2008. The priority

R-tree: A practically efficient and worst-case optimal R-tree. ACM Trans.
Algorithms 4, 1 (2008), 9:1–9:30.

[2] Rudolf Bayer and Edward M. McCreight. 1972. Organization and Maintenance
of Large Ordered Indices. Acta Inf. 1 (1972), 173–189.

[3] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-Tree: An Efficient and Robust Access Method for Points and
Rectangles. Proc. of the ACM SIGMOD International Conference on Management
of Data (1990).

[4] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for
Associative Searching. Commun. ACM (1975).

[5] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. 1996. The X-tree :
An Index Structure for High-Dimensional Data. Proc. of the 22th International
Conference on Very Large Data Bases (1996).

[6] David Broneske, Veit Köppen, Gunter Saake, andMartin Schäler. 2017. Acceler-
ating Multi-Column Selection Predicates in Main-Memory - The Elf Approach.
In 33rd IEEE International Conference on Data Engineering. 647–658.

[7] David Broneske and Martin Schäler. 2017. Single Instruction Multiple Data -
Not Everything is a Nail for this Hammer. In FADS@VLDB.

[8] Chee Yong Chan and Yannis E. Ioannidis. 1998. Bitmap Index Design and Eval-
uation. In Proc. of the ACM SIGMOD International Conference on Management
of Data. 355–366.

[9] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad Trees: A Data Structure
for Retrieval on Composite Keys. Acta Inf. 4 (1974), 1–9.

[10] Volker Gaede and Oliver Günther. 1998. Multidimensional Access Methods.
ACM Comput. Surv. 30, 2 (1998), 170–231.

[11] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data Cube: A
Relational Aggregation Operator Generalizing Group-by, Cross-Tab, and Sub
Totals. Data Min. Knowl. Discov. 1, 1 (1997), 29–53.

[12] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial
Searching. In SIGMOD, Proc. of Annual Meeting. 47–57.

[13] Jörg Hakenberg, Wei-Yi Cheng, Philippe E. Thomas, Ying-Chih Wang, An-
drew V. Uzilov, and Rong Chen. 2016. Integrating 400 million variants from 80,

000 human samples with extensive annotations: towards a knowledge base to
analyze disease cohorts. BMC Bioinformatics 17 (2016), 24.

[14] Kothuri Venkata Ravi Kanth, Siva Ravada, and Daniel Abugov. 2002. Quadtree
and R-tree indexes in oracle spatial: a comparison using GIS data. Proc. of the
ACM SIGMOD International Conference on Management of Data (2002).

[15] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D.
Nguyen, Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey.
2010. FAST: fast architecture sensitive tree search on modern CPUs and GPUs.
Proc. of the ACM SIGMOD International Conference on Management of Data
(2010).

[16] Kihong Kim, Sang Kyun Cha, and Keunjoo Kwon. 2001. Optimizing Multidi-
mensional Index Trees for Main Memory Access. In Proc. of the ACM SIGMOD
International Conference on Management of Data. 139–150.

[17] Thomas Kissinger, Benjamin Schlegel, Dirk Habich, and Wolfgang Lehner.
2012. KISS-Tree: smart latch-free in-memory indexing on modern architec-
tures. Proc. of the Eighth International Workshop on Data Management on New
Hardware (2012).

[18] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. 29th IEEE International
Conference on Data Engineering (2013).

[19] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-
Tree: A B-tree for new hardware platforms. 29th IEEE International Conference
on Data Engineering (2013).

[20] Xin Li, Young-Jin Kim, Ramesh Govindan, and Wei Hong. 2003. Multi-
dimensional range queries in sensor networks. In Proc. of the 1st International
Conference on Embedded Networked Sensor Systems. 63–75.

[21] Astrid Lievre, Jean-Baptiste Bachet, Delphine Le Corre, Valerie Boige, Bruno
Landi, Jean-François Emile, Jean-François Côté, Gorana Tomasic, Christophe
Penna, Michel Ducreux, et al. 2006. KRAS mutation status is predictive of
response to cetuximab therapy in colorectal cancer. Cancer research 66, 8
(2006), 3992–3995.

[22] Emmanuel Müller, Stephan Günnemann, Ira Assent, and Thomas Seidl. 2009.
Evaluating Clustering in Subspace Projections of High Dimensional Data.
PVLDB 2, 1 (2009), 1270–1281.

[23] Hasso Plattner. 2009. A common database approach for OLTP and OLAP
using an in-memory column database. Proc. of the ACM SIGMOD International
Conference on Management of Data (2009).

[24] Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang. 2018. Theoretically
Optimal and Empirically Efficient R-trees with Strong Parallelizability. PVLDB
11, 5 (2018), 621–634.

[25] John T. Robinson. 1981. The K-D-B-Tree: A Search Structure For Large Mul-
tidimensional Dynamic Indexes. Proc. of the ACM SIGMOD International
Conference on Management of Data (1981).

[26] Hanan Samet. 2006. Foundations of multidimensional and metric data structures.
Morgan Kaufmann.

[27] Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. 2009. k-ary search
on modern processors. Proc. of the Fifth International Workshop on Data
Management on New Hardware (2009).

[28] Stefan Sprenger, Patrick Schäfer, and Ulf Leser. 2018. Multidimensional range
queries on modern hardware. Proc. of the 30th International Conference on
Scientific and Statistical Database Management (2018).

[29] Stefan Sprenger, Patrick Schäfer, and Ulf Leser. 2019. BB-Tree: A practical and
efficient main-memory index structure for multidimensional workloads. 35th
IEEE International Conference on Data Engineering (2019).

[30] Stefan Sprenger, Steffen Zeuch, and Ulf Leser. 2016. Cache-Sensitive Skip
List: Efficient Range Queries on Modern CPUs. 4th International Workshop on
In-Memory Data Management and Analytics (2016).

[31] The 1000 Genomes Project Consortium. 2015. A global reference for human
genetic variation. Nature 526, 7571 (2015), 68–74.

[32] Sheng Wang, David Maier, and Beng Chin Ooi. 2014. Lightweight Indexing of
Observational Data in Log-Structured Storage. PVLDB 7, 7 (2014), 529–540.

[33] Sheng Wang, David Maier, and Beng Chin Ooi. 2016. Fast and Adaptive
Indexing of Multi-Dimensional Observational Data. PVLDB 9, 14 (2016), 1683–
1694.

[34] Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A Quantitative Analy-
sis and Performance Study for Similarity-SearchMethods inHigh-Dimensional
Spaces. Proc. of the 24rd International Conference on Very Large Data Bases
(1998).

[35] Tilmann Zäschke, Christoph Zimmerli, and Moira C. Norrie. 2014. The PH-
tree: a space-efficient storage structure and multi-dimensional index. Proc. of
the ACM SIGMOD International Conference on Management of Data (2014).


	Abstract
	1 Introduction
	2 Related Work
	3 The BB-Tree index structure
	3.1 Data Organization
	3.2 Bubble Buckets
	3.3 Building and Reorganizing a BB-Tree
	3.4 Search Algorithms
	3.5 Low-Cardinality Dimensions

	4 Parallel Evaluation of Range Queries
	5 Evaluation
	5.1 Experimental Setup
	5.2 Data Sets and Workloads
	5.3 Impact of Bubble Bucket Capacities
	5.4 Exact-Match Queries
	5.5 Insertions and Deletions
	5.6 Range Queries
	5.7 Impact of Dimensionality
	5.8 Low-Cardinality Dimensions
	5.9 Mixed Workload
	5.10 Parallel Evaluation of Range Queries
	5.11 Space Consumption

	6 Conclusions
	7 Acknowledgments
	References

