Einführung in die Theoretische Informatik

Johannes Köbler

Institut für Informatik Humboldt-Universität zu Berlin

WS 2017/18

Entscheidbare und semi-entscheidbare Sprachen

Definition

- Eine NTM M hält bei Eingabe x (kurz: $M(x) = \downarrow$ oder $M(x) \downarrow$), falls alle Rechnungen von M(x) nach endlich vielen Schritten halten.
- Falls M(x) nicht hält, schreiben wir auch kurz $M(x) = \uparrow$ oder $M(x) \uparrow$.
- Eine DTM M entscheidet eine Eingabe x, falls M(x) hält oder eine Konfiguration mit einem Endzustand erreicht.
- Eine Sprache heißt entscheidbar, falls sie von einer DTM M erkannt wird, die alle Eingaben entscheidet. Die zugehörige Sprachklasse ist

REC = $\{L(M) \mid M \text{ ist eine DTM, die alle Eingaben entscheidet}\}$ • Jede von einer DTM akzeptierte Sprache heißt semi-entscheidbar.

Bemerkung

- Eine DTM M entscheidet zwar immer alle Eingaben $x \in L(M)$, aber eventuell nicht alle $x \in \overline{L(M)}$. Daher heißt L(M) semi-entscheidbar.
- Später werden wir sehen, dass RE = $\{L(M) \mid M \text{ ist eine DTM}\}$ ist.

Definition

• Eine k-DTM $M = (Z, \Sigma, \Gamma, \delta, q_0, E)$ berechnet eine Funktion $f : \Sigma^* \to \Gamma^*$, falls M bei jeder Eingabe $x \in \Sigma^*$ in einer Konfiguration

$$K = (q, u_1, a_1, v_1, \dots, u_k, a_k, v_k) \text{ mit } u_k = f(x)$$

hält (d.h. $K_x \vdash^* K$ und K hat keine Folgekonfiguration).

- Hierfür sagen wir auch, M gibt bei Eingabe x das Wort f(x) aus und schreiben M(x) = f(x).
- f heißt Turing-berechenbar (oder einfach berechenbar), falls es eine k-DTM M mit M(x) = f(x) für alle x ∈ Σ* gibt.
- Aus historischen Gründen werden berechenbare Funktionen auch rekursiv (engl. recursive) genannt.

Definition

Für eine Sprache $A \subseteq \Sigma^*$ ist die charakteristische Funktion $\chi_A : \Sigma^* \to \{0,1\}$ wie folgt definiert:

$$\chi_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

Bemerkung

- In den Übungen wird gezeigt, dass eine Sprache A genau dann entscheidbar ist, wenn χ_A berechenbar (also rekursiv) ist. Dies erklärt die Bezeichnung REC für die Klasse der entscheidbaren Sprachen.
- Dort wird auch gezeigt, dass CSL echt in REC enthalten ist.
- Beispiele für interessante semi-entscheidbare Sprachen, die nicht entscheidbar sind, werden wir noch kennenlernen.
- Somit gilt REG \subseteq DCFL \subseteq CFL \subseteq DCSL \subseteq CSL \subseteq REC \subseteq RE.

Berechenbarkeit von partiellen Funktionen

Definition

- Eine partielle Funktion hat die Form $f: \Sigma^* \to \Gamma^* \cup \{\uparrow\}$.
- Für $f(x) = \uparrow$ sagen wir auch f(x) ist undefiniert.
- Der Definitionsbereich (engl. *domain*) von f ist $dom(f) = \{x \in \Sigma^* \mid f(x) \neq \uparrow\}.$
- $img(f) = \{f(x) \mid x \in dom(f)\}.$

• Das Bild (engl. image) von f ist

- f heißt total, falls $dom(f) = \Sigma^*$ ist.
- Eine partielle Funktion f heißt berechenbar, falls es eine k-DTM M mit M(x) = f(x) für alle $x \in \Sigma^*$ gibt (d.h. M(x) gibt für alle $x \in dom(f)$ das Wort f(x) aus und hält im Fall $x \notin dom(f)$ nicht).

Falls M die partielle Fkt. f berechnet, gilt also $dom(f) = \{x \in \Sigma^* \mid M(x) \downarrow \}$. Daher bezeichnen wir diese Menge auch mit dom(M).

Wir fassen die berechenbaren Funktionen und berechenbaren partiellen Funktionen in folgenden Klassen zusammen:

```
FREC = \{f \mid f \text{ ist eine berechenbare (totale) Funktion}\}\
FREC<sub>p</sub> = \{f \mid f \text{ ist eine berechenbare partielle Funktion}\}\
```

Dann gilt $FREC \subseteq FREC_p$.

Beispiel

- Bezeichne x^+ den lexikografischen Nachfolger von $x \in \Sigma^*$.
- Für $\Sigma = \{0, 1\}$ ergeben sich beispielsweise folgende Werte:

ullet Betrachte die auf Σ^* definierten partiellen Funktionen f_1, f_2, f_3, f_4 mit

$$f_1(x) = 0,$$

 $f_2(x) = x,$ und $f_4(x) = \begin{cases} \uparrow, & x = \varepsilon, \\ y, & x = y^+. \end{cases}$

- Da f_1, f_2, f_3, f_4 berechenbar sind, gehören die totalen Funktionen f_1, f_2, f_3 zu FREC und die partielle Funktion f_4 zu FREC_p.
- Da f₄ keine totale Funktion ist, gehört f₄ nicht zu FREC.

Definition

Sei $A \subseteq \Sigma^*$ eine Sprache.

• Die partielle charakteristische Funktion $\hat{\chi}_A$ von A ist

$$\hat{\chi}_A(x) = \begin{cases} 1, & x \in A \\ \uparrow, & x \notin A \end{cases}$$

• A heißt rekursiv aufzählbar, falls $A = \emptyset$ oder das Bild img(f) einer (totalen) berechenbaren Funktion $f : \Gamma^* \to \Sigma^*$ ist.

Charakterisierung der rekursiv aufzählbaren Sprachen

Satz

Folgende Eigenschaften sind für eine Sprache $A \subseteq \Sigma^*$ äquivalent:

- A ist semi-entscheidbar (d.h. A wird von einer DTM akzeptiert),
- A wird von einer 1-DTM akzeptiert,
- \bullet A ist vom Typ 0,
- A wird von einer NTM akzeptiert,
- **3** A ist rek. aufzählbar (d.h. $A=\emptyset$ oder A=img(f) für eine Fkt. $f \in FREC$),
- $\hat{\mathbf{Q}}$ $\hat{\chi}_A$ ist berechenbar (d.h. $\hat{\chi}_A \in \mathsf{FREC}_p$),
- es gibt eine DTM M mit A = dom(M).

Beweis

Die Implikationen $② \Rightarrow ③ \Rightarrow ④$ werden in den Übungen gezeigt.

Hier zeigen wir $\mathbf{1} \Rightarrow \mathbf{2}$ und $\mathbf{3} \Rightarrow \mathbf{5} \Rightarrow \mathbf{6} \Rightarrow \mathbf{7} \Rightarrow \mathbf{1}$.

Simulation einer k-DTM durch eine 1-DTM

Beweis von $\bullet \Rightarrow \bullet : \{L(M) | M \text{ ist eine DTM}\} \subseteq \{L(M) | M \text{ ist eine 1-DTM}\}$

- Sei $M = (Z, \Sigma, \Gamma, \delta, q_0, E)$ eine k-DTM mit L(M) = A.
- Wir konstruieren eine 1-DTM $M' = (Z', \Sigma, \Gamma', \delta', z_0, E)$ für A.
- M' simuliert M, indem sie jede Konfiguration K von M der Form

durch eine Konfiguration K' folgender Form nachbildet:

$ \begin{array}{c c} \hline & \begin{pmatrix} a \\ \vdots \\ \hat{e} \end{pmatrix} & \begin{pmatrix} b \\ \vdots \\ f \end{pmatrix} & \begin{pmatrix} \hat{c} \\ \vdots \\ g \end{pmatrix} & \begin{pmatrix} d \\ \vdots \\ h \end{pmatrix} \\ \end{array} $	•••
--	-----

Beweis von $\bullet \Rightarrow \bullet$: $\{L(M) | M \text{ ist eine DTM}\} \subseteq \{L(M) | M \text{ ist eine 1-DTM}\}$

 \bullet Das heißt, M' arbeitet mit dem Alphabet

$$\Gamma' = \Gamma \cup (\Gamma \cup \{\hat{a} \mid a \in \Gamma\})^k$$

• und erzeugt bei Eingabe $x = x_1 \dots x_n \in \Sigma^*$ zuerst die der Startkonfiguration

$$K_x = (q_0, \varepsilon, x_1, x_2 \dots x_n, \varepsilon, \sqcup, \varepsilon, \dots, \varepsilon, \sqcup, \varepsilon)$$

von M bei Eingabe x entsprechende Konfiguration

$$\mathcal{K}'_{\mathsf{x}} = q'_{0} \begin{pmatrix} \hat{x}_{1} \\ \hat{\square} \\ \vdots \\ \hat{\square} \end{pmatrix} \begin{pmatrix} x_{2} \\ \square \\ \vdots \\ \square \end{pmatrix} \cdots \begin{pmatrix} x_{n} \\ \square \\ \vdots \\ \square \end{pmatrix}.$$

Beweis von $\bullet \Rightarrow \bullet$: $\{L(M) | M \text{ ist eine DTM}\} \subseteq \{L(M) | M \text{ ist eine 1-DTM}\}$

- Dann simuliert M' jeweils einen Schritt von M durch folgende Sequenz von Rechenschritten:
 - Zuerst geht M' solange nach rechts, bis sie alle mit ^ markierten Zeichen (z.B. $\hat{a}_1, \ldots, \hat{a}_k$) gefunden hat.
 - Diese Zeichen speichert M' in ihrem Zustand.
 - Anschließend geht M' wieder nach links und realisiert dabei die durch $\delta(q, a_1, \ldots, a_k)$ vorgegebene Anweisung von M.
 - Dabei speichert M' den aktuellen Zustand q von M ebenfalls in ihrem Zustand.
- Sobald M in einen Endzustand übergeht, wechselt M' ebenfalls in einen Endzustand und hält.
- Somit gilt L(M') = L(M).

Charakterisierung der rekursiv aufzählbaren Sprachen

Beweis von $\mathfrak{G} \Rightarrow \mathfrak{G}$: $\{L(M) \mid M \text{ ist eine NTM}\} \subseteq \{A \mid A \text{ ist rek. aufzählbar}\}$

- Sei $M = (Z, \Sigma, \Gamma, \delta, q_0, E)$ eine k-NTM und sei $A = L(M) \neq \emptyset$.
- Sei $\tilde{\Gamma}$ das Alphabet $Z \cup \Gamma \cup \{\#\}$.
- Wir kodieren eine Konfiguration $K = (q, u_1, a_1, v_1, \dots, u_k, a_k, v_k)$ durch das Wort

$$code(K) = \#q\#u_1\#a_1\#v_1\#\dots\#u_k\#a_k\#v_k\#$$

und eine Rechnung $K_0 \vdash \cdots \vdash K_t$ durch $code(K_0) \ldots code(K_t)$.

• Dann lassen sich die Wörter von A durch folgende Funktion $f: \tilde{\Gamma}^* \to \Sigma^*$ aufzählen (dabei ist x_0 ein beliebiges Wort in A):

$$f(w) = \begin{cases} x, & w \text{ kodiert eine akz. Rechnung } K_0 \vdash \cdots \vdash K_t \text{ von } M(x), \text{ d.h. } K_0 = K_x \text{ und } K_t \in E \times (\Gamma^* \times \Gamma \times \Gamma^*)^k \\ x_0, & \text{sonst} \end{cases}$$

• Da f berechenbar ist, ist A = img(f) rekursiv aufzählbar.

Charakterisierung der rekursiv aufzählbaren Sprachen

Beweis von $\mathfrak{D} \Rightarrow \mathfrak{G} \colon \{A \mid A \text{ ist rek. aufzählbar}\} \subseteq \{A \mid \hat{\chi}_A \in \mathsf{FREC}_p\}$

- Sei M eine DTM, die eine Fkt. $f: \Gamma^* \to \Sigma^*$ mit A = img(f) berechnet.
- Dann wird ŷ_A von der DTM M' berechnet, die bei Eingabe x
 der Reihe nach für alle w ∈ Γ* das Wort f(w) berechnet und
 - der Wert 1 ausgibt, sobald f(w) = x ist.

Beweis von
$$\bullet \Rightarrow \bullet : \{A \mid \hat{\chi}_A \in \mathsf{FREC}_p\} \subseteq \{dom(M) \mid M \text{ ist eine DTM}\}$$

- Sei M eine DTM, die \(\hat{\chi}_A\) berechnet.
 Da \(dom(\hat{\chi}_A) = A\) ist, folgt \(A = dom(M)\).
- Beweis von $\bullet \Rightarrow \bullet$: $\{dom(M) | M \text{ ist eine DTM}\} \subseteq \{L(M) | M \text{ ist eine DTM}\}$
 - Sei A = dom(M) für eine DTM M.
 Dann gilt A = L(M') für die DTM M', die M simuliert und nur dann in einen Endzustand übergeht, wenn M hält.

Charakterisierung der entscheidbaren Sprachen

Satz

Folgende Eigenschaften sind äquivalent:

- A ist entscheidbar (d.h. A wird von einer DTM akzeptiert, die alle Eingaben entscheidet),
- \odot die charakteristische Funktion χ_A von A ist berechenbar,
- 3 A wird von einer 1-DTM akzeptiert, die bei allen Eingaben hält,
- 4 wird von einer NTM akzeptiert, die bei allen Eingaben hält,
- **5** A und \bar{A} sind semi-entscheidbar.

Beweis

Die Äquivalenz der Bedingungen **①** bis **④** wird in den Übungen gezeigt. Hier zeigen wir nur die Äquivalenz dieser vier Bedingungen zu **⑤**.

Charakterisierung der entscheidbaren Sprachen

Beweis von $\bullet \Rightarrow \bullet$: REC \subseteq RE \cap co-RE

• Falls A entscheidbar ist, ist mit χ_A auch $\chi_{\bar{A}}$ berechenbar, d.h. A und \bar{A} sind entscheidbar und damit auch semi-entscheidbar.

Beweis von $\mathfrak{S} \Rightarrow \mathfrak{O} \colon \mathsf{RE} \cap \mathsf{co}\text{-}\mathsf{RE} \subseteq \mathsf{REC}$

- Seien M_A und $M_{\bar{A}}$ DTMs, die die partiellen charakteristischen Funktionen $\hat{\chi}_A$ und $\hat{\chi}_{\bar{A}}$ berechnen.
- Betrachte folgende DTM M, die bei Eingabe x für $t=0,1,2,\ldots$ die beiden DTMs M_A und $M_{\bar{A}}$ bei Eingabe x für t Schritte simuliert und
 - in einem Endzustand hält, falls $M_A(x)$ nach t Schritten hält,
 - in einem Nichtendzustand hält, falls $M_{\bar{A}}(x)$ nach t Schritten hält.
- Da jede Eingabe x entweder in $dom(\hat{\chi}_A) = A$ oder in $dom(\hat{\chi}_{\bar{A}}) = \bar{A}$ enthalten ist, hält M bei allen Eingaben.
- Da zudem L(M) = A ist, folgt $A \in REC$.

Kodierung (Gödelisierung) von Turingmaschinen

- Um Eigenschaften von TMs algorithmisch untersuchen zu können, müssen wir TMs als Teil der Eingabe kodieren.
- Sei $M = (Z, \Sigma, \Gamma, \delta, q_0, E)$ eine 1-DTM mit
 - Zustandsmenge $Z = \{q_0, \dots, q_m\}$ (o.B.d.A. sei $E = \{q_m\}$),
 - Eingabealphabet $\Sigma = \{0, 1\}$ und
 - Arbeitsalphabet $\Gamma = \{a_0, \dots, a_l\}$, wobei wir o.B.d.A. $a_0 = 0$, $a_1 = 1$ und $a_2 = \square$ annehmen.
- Dann können wir eine Anweisung $q_i a_j \rightarrow q_{i'} a_{j'} D$ durch das Wort #bin(i)#bin(j)#bin(i')#bin(j')#bD#

kodieren. Dabei ist bin(n) die Binärdarstellung von n und

$$b_D = \begin{cases} 0, & D = N \\ 1 & D = L \\ 10, & D = R \end{cases}$$

Kodierung von Turingmaschinen

- M lässt sich nun als ein Wort über dem Alphabet $\{0,1,\#\}$ kodieren, indem wir die Anweisungen von M in kodierter Form auflisten.
- Kodieren wir die Zeichen 0, 1, # binär (z.B. $0 \mapsto 00, 1 \mapsto 01, \# \mapsto 10$), so gelangen wir zu einer Binärkodierung w_M von M.
- Die durch die Binärzahl $w_M = b_n \dots b_0$ repräsentierte natürliche Zahl $(w_M)_2 = \sum_{i=0}^n b_i 2^i$ wird auch die Gödel-Nummer von M genannt.
- M_w ist durch Angabe von w_M bzw. $(w_M)_2$ bis auf die Benennung ihrer Zustände und der Arbeitszeichen in $\Gamma \setminus \{\sqcup, 0, 1\}$ eindeutig bestimmt.
- Ganz analog lassen sich auch k-DTMs mit k > 1 (sowie NTMs, Konfigurationen oder Rechnungen von TMs) binär kodieren.
- Umgekehrt können wir jedem Binärstring $w \in \{0,1\}^*$ eine DTM M_w wie folgt zuordnen (dabei ist M_0 eine beliebige, aber fest gewählte DTM):

$$M_w = \begin{cases} M, & \text{falls eine DTM } M \text{ mit } w_M = w \text{ existiert} \\ M_0, & \text{sonst} \end{cases}$$

Unentscheidbarkeit des Halteproblems

Definition

• Das Halteproblem ist die Sprache

$$H = \left\{ w \# x \middle| \begin{array}{l} w, x \in \{0, 1\}^* \text{ und} \\ \text{die DTM } M_w \text{ hält} \\ \text{bei Eingabe } x \end{array} \right\}$$

Das spezielle Halteproblem ist

$$K = \left\{ w \in \{0, 1\}^* \middle| \begin{array}{c} \text{die DTM } M_w \\ \text{h\"{a}lt bei Eingabe } w \end{array} \right\}$$

χн	w_1	W_2	<i>W</i> 3	•••
w_1	0	1	0	
<i>W</i> 2	0	1	1	
W3	1	1	0	
÷	÷	÷	÷	% .
χκ				
w_1	0			
<i>W</i> 2		1		

Wз

Satz

 $K \in RE \setminus co\text{-}RE$.

Semi-Entscheidbarkeit des speziellen Halteproblems

Beweis von $K \in RE$

• Sei w_h die Kodierung einer DTM, die bei jeder Eingabe (sofort) hält und betrachte die Funktion $f: \{0,1\}^* \to \{0,1\}^*$ mit

$$f(x) = \begin{cases} w, & x \text{ ist die Binärkodierung einer haltenden Rechnung einer DTM } M_w \text{ bei Eingabe } w, \\ w_h, & \text{sonst.} \end{cases}$$

• Da f berechenbar und img(f) = K ist, folgt $K \in RE$.

Bemerkung

Ganz ähnlich lässt sich $H \in RE$ zeigen.

Unentscheidbarkeit des speziellen Halteproblems

Beweisidee

- Sei $B = (b_{ij})$ die durch $b_{ij} = \chi_H(w_i \# w_j) \in \{0,1\}^*$ definierte Binärmatrix.
- Dann kann keine Zeile $b_{i1}b_{i2}\dots$ von B mit der invertierten Diagonalen $\bar{b}_{11}\bar{b}_{22}\dots$ von B übereinstimmen, da sonst $b_{ii}=\bar{b}_{ii}$ sein müsste.
- Da aber die *i*-te Zeile von *B* wegen

$$b_{ij} = \chi_H(w_i \# w_j) = \chi_{dom(M_{w_i})}(w_j)$$

die Sprache $dom(M_{w_i}) = \{w_i \in \{0,1\}^* \mid M_{w_i}(w_i)\downarrow\} \in RE$ kodiert und

• die invertierte Diagonale wegen

$$\bar{b}_{ii} = \chi_{\bar{H}(w_i \# w_i)} = \chi_{\bar{K}}(w_i)$$

die Sprache \overline{K} kodiert, folgt $\overline{K} \neq dom(M_{Wi})$ für alle $i \geq 1$.

• Dies impliziert $\overline{K} \notin RE$, da die Zeilen von B wegen

$$\{dom(M_{w_i}) \mid i \geq 1\} = \{A \subseteq \{0,1\}^* \mid A \in RE\}$$

alle semi-entscheidbaren Binärsprachen kodieren.

Unentscheidbarkeit des speziellen Halteproblems

Beweis von $\bar{K} \notin RE$

Angenommen, die Sprache

$$\bar{K} = \{ w \mid M_w(w) \uparrow \}$$
 (*)

• Dann existiert eine DTM M_{W_i} mit

 $dom(M_{w_i}) = \overline{K} \tag{**}$

 χ_H W_1

W₁

Wэ

Wз

. . .

Dies führt jedoch auf einen Widerspruch:
$$w_{i} \in \overline{K} \iff M_{w_{i}}(w_{i}) \uparrow \iff w_{i} \notin dom(M_{w_{i}}) \iff w_{i} \notin \overline{K}$$

$$(**)$$

Korollar

REC ⊊ RE.

Beweis

Klar. da $K \in RE - REC$.

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt auf $B \subseteq \Gamma^*$ reduzierbar (kurz: $A \le B$), falls eine berechenbare Funktion $f : \Sigma^* \to \Gamma^*$ ex., so dass gilt:

$$\forall x \in \Sigma^* : x \in A \Leftrightarrow f(x) \in B.$$

Beispiel

• Es gilt $K \le H$ mittels $f: w \mapsto w \# w$, da für alle $w \in \{0,1\}^*$ gilt:

$$w \in K \iff M_w(w) \downarrow \iff w \# w \in H$$

• Es gilt sogar $A \le H$ für jede Binärsprache $A \in RE$ mittels $f : x \mapsto w \# x$, wobei w die Kodierung einer DTM M_w mit $dom(M_w) = A$ ist:

$$x \in A \iff M_w(x) \downarrow \iff w \# x \in H$$

Der Vollständigkeitsbegriff

Definition

Eine Sprache B heißt hart für eine Sprachklasse C (kurz: C-hart oder C-schwer), falls jede Sprache A ∈ C auf B reduzierbar ist:

$$\forall A \in \mathcal{C} : A < B$$
.

• Eine C-harte Sprache B, die zu C gehört, heißt C-vollständig.

Beispiel

Das Halteproblem H ist RE-vollständig. Es gilt nämlich

- *H* ∈ RE und
- ∀ A ∈ RF : A < H
 </p>

mittels der Reduktionsfunktion $x \mapsto w \# bin(x)$, wobei M_w eine DTM mit $dom(M_w) = \{bin(x) \mid x \in A\}$ ist.

Bemerkung

Auch das spezielle Halteproblem K ist RE-vollständig (siehe Übungen).

Abschluss von REC unter ≤

Definition

Eine Sprachklasse C heißt unter \leq abgeschlossen, wenn für beliebige Sprachen A, B gilt:

$$A < B \land B \in \mathcal{C} \Rightarrow A \in \mathcal{C}$$

Satz

Die Klasse REC ist unter \leq abgeschlossen.

Beweis

- Gelte $A \leq B$ mittels f und sei $B \in REC$.
- Wegen $B \in REC$ ex. eine DTM M, die χ_B berechnet.
- Betrachte folgende DTM M':
 - M' berechnet bei Eingabe x zuerst den Wert f(x) und
 - simuliert dann M bei Eingabe f(x).

Satz

Die Klasse REC ist unter ≤ abgeschlossen.

Beweis.

- Gelte A < B mittels f und sei $B \in REC$.
- Dann ex. eine DTM M, die χ_B berechnet.
- Betrachte folgende DTM M':
 - M' berechnet bei Eingabe x zuerst den Wert f(x) und
 - simuliert dann M bei Eingabe f(x).

• Wegen
$$x \in A \Leftrightarrow f(x) \in B$$
 ist $\chi_A(x) = \chi_B(f(x))$ und daher folgt $M'(x) = M(f(x)) = \chi_B(f(x)) = \chi_A(x)$.

• Also berechnet M' die Funktion χ_A , d.h. $A \in REC$.

Bemerkung

Der Abschluss von RE unter ≤ folgt analog (siehe Übungen).

H ist nicht entscheidbar

Korollar

- $A \leq B \land A \notin REC \Rightarrow B \notin REC$,
- $A \le B \land A \notin RE \Rightarrow B \notin RE$.

Beweis

Aus der Annahme, dass B entscheidbar (bzw. semi-entscheidbar) ist, folgt wegen $A \le B$, dass dies auch auf A zutrifft (Widerspruch).

Bemerkung

Wegen $K \leq H$ überträgt sich somit die Unentscheidbarkeit von K auf H.

Korollar

H ∉ REC.

Das Halteproblem bei leerem Band

Definition

Das Halteproblem bei leerem Band ist die Sprache

$$H_0 = \left\{ w \in \{0, 1\}^* \middle| \begin{array}{l} \text{die DTM } M_w \\ \text{hält bei Eingabe } \varepsilon \end{array} \right\}$$

χн	w ₁	<i>W</i> ₂	<i>W</i> 3	•••
 W ₁	0	1	0	
W_2	0	1	1	
W ₃	1	1	0	
÷	:	÷	÷	٠.

Satz

 H_0 ist RE-vollständig.

Beweis

• $H_0 \in RE$ folgt wegen $H_0 \le H \in RE$ mittels der Reduktionsfunktion $w \mapsto w \# \varepsilon$.

χ_{H_0}	$ w_1 $	$(=\varepsilon)$
w_1	0	
W_2	0	
W_3	1	
÷	:	

Beweis

- $H_0 \in RE$ folgt wegen $H_0 \le H \in RE$ mittels der Reduktionsfunktion $w \mapsto w \# \varepsilon$.
- Sei $A \in RE$ und sei M eine DTM mit dom(M) = A.
- Um A auf H_0 zu reduzieren, transformieren wir x in die Kodierung w_x einer DTM M_{w_x} , die zunächst ihre Eingabe durch x ersetzt und dann M(x) simuliert.
- Dann gilt

$$x \in A \iff w_x \in H_0$$

und somit $A \le H_0$ mittels der Reduktionsfunktion $x \mapsto w_x$.

Korollar

 $H_0 \notin REC$.

Frage

- Kann man einer beliebig vorgegebenen DTM ansehen, ob die von ihr berechnete partielle Funktion eine gewisse Eigenschaft hat?
- Kann man beispielsweise entscheiden, ob eine gegebene DTM bei allen Eingaben hält, also eine totale Funktion berechnet?

Antwort

Nein, außer wenn jede DTM oder keine DTM eine Funktion mit der fraglichen Eigenschaft berechnet.

Bemerkung

Formal lässt sich eine Eigenschaft, die das Ein-/Ausgabeverhalten von DTMs betrifft, durch eine Menge $\mathcal F$ von partiellen Wortfunktionen beschreiben. Eine DTM M berechnet dann eine Funktion f mit der Eigenschaft $\mathcal F$, wenn $f \in \mathcal F$ ist.

Definition

- Zu einer Klasse \mathcal{F} von partiellen Funktionen definieren wir die Sprache $L_{\mathcal{F}} = \{ w \in \{0,1\}^* \mid \text{die DTM } M_w \text{ ber. eine partielle Funktion in } \mathcal{F} \}$
- Die Eigenschaft \mathcal{F} heißt trivial, wenn $L_{\mathcal{F}} = \emptyset$ oder $L_{\mathcal{F}} = \{0,1\}^*$ ist.

Der Satz von Rice besagt, dass $L_{\mathcal{F}}$ nur für triviale Eigenschaften entscheidbar ist.

Satz (Satz von Rice)

Für jede nicht triviale Eigenschaft \mathcal{F} ist $L_{\mathcal{F}}$ unentscheidbar.

Beispiel

Betrachte die Sprachen

$$L_{1} = \{ w \in \{0,1\}^{*} \mid M_{w}(0^{n}) = 0^{n+1} \text{ für alle } n \geq 0 \},$$

$$L_{2} = \{ w \in \{0,1\}^{*} \mid M_{w}(x) \uparrow \text{ für alle } x \in \{0,1\}^{*} \} \text{ und}$$

$$L_{3} = \{ w \in \{0,1\}^{*} \mid M_{w}(x) = \hat{\chi}_{K}(x) \text{ für alle } x \in \{0,1\}^{*} \}$$

• Dann gilt $L_i = L_{\mathcal{F}_i}$ für die Eigenschaften

$$\mathcal{F}_2 = \{ f \in \mathsf{FREC}_p \mid dom(f) \cap \{0,1\}^* = \emptyset \} \text{ und}$$

$$\mathcal{F}_3 = \{ f \in \mathsf{FREC}_p \mid f(x) = \hat{\chi}_K(x) \text{ für alle } x \in \{0,1\}^* \}$$

 $\mathcal{F}_1 = \{ f \in \mathsf{FREC}_p \mid f(0^n) = 0^{n+1} \text{ für alle } n \ge 0 \},$

- \mathcal{F}_1 ist nicht trivial, da die partiellen Fkten $f, u : \{0, 1\}^* \to \{0, 1, \uparrow\}^*$ mit f(x) = x0 und $u(x) = \uparrow$ berechenbar sind und $f \in \mathcal{F}_1$ sowie $u \notin \mathcal{F}_1$ ist.
- Da zudem $u \in \mathcal{F}_2$ und $\hat{\chi}_K$ sowohl berechenbar als auch in \mathcal{F}_3 ist, während $f \notin \mathcal{F}_2$ und $f \notin \mathcal{F}_3$ ist, sind auch \mathcal{F}_2 und \mathcal{F}_3 nicht trivial.
- Daher sind L_1 , L_2 und L_3 nach dem Satz von Rice unentscheidbar.

Beispiel (Fortsetzung)

• Dagegen ist der Satz von Rice nicht auf folgende Sprachen anwendbar:

$$\begin{array}{l} L_4 = \{ w \in \{0,1\}^* \mid M_w(x) = \hat{\chi}_{\bar{K}}(x) \text{ für alle } x \in \{0,1\}^* \} \text{ und} \\ L_5 = \{ w \in \{0,1\}^* \mid M_w(0^n) \text{ hält für alle } n \geq 0 \text{ nach } n \text{ Schritten} \} \end{array}$$

- Es gilt $L_4 = L_{\mathcal{F}_4}$ für die Eigenschaft $\mathcal{F}_4 = \{\hat{\chi}_{\vec{K}}\}$, d.h. L_4 beschreibt zwar eine semantische Eigenschaft von DTMs, die sich nur auf deren Ein-/Ausgabeverhalten bezieht.
- Da aber $K \notin RE$ und somit $\hat{\chi}_{\bar{K}}$ nicht berechenbar ist, handelt es sich bei \mathcal{F}_4 um eine triviale Eigenschaft: $L_4 = L_{\mathcal{F}_4} = \emptyset$.
- Die Sprache L_5 bezieht sich nicht nur auf das Ein-/Ausgabeverhalten von DTMs, sondern auch auf deren Laufzeit.
- Daher existiert für L_5 keine Eigenschaft \mathcal{F} mit $L_5 = L_{\mathcal{F}}$.

Der Satz von Rice

Satz (Satz von Rice)

Für jede nicht triviale Eigenschaft ${\mathcal F}$ ist die Sprache $L_{\mathcal F}$ unentscheidbar.

Beweisidee

- ullet Die Idee besteht darin, H_0 auf $L_{\mathcal{F}}$ (oder auf $\overline{L}_{\mathcal{F}}$) zu reduzieren, indem wir für eine gegebene DTM M_w eine DTM $M_{w'}$ konstruieren mit
 - $w \in H_0 \Leftrightarrow M_{w'}$ berechnet (k)eine partielle Funktion in \mathcal{F} .
- Hierzu lassen wir $M_{w'}$ bei Eingabe x zunächst einmal die DTM M_w bei Eingabe ε simulieren.
- Falls $w \notin H_0$ ist, berechnet $M_{w'}$ also die überall undefinierte Funktion $u(x) = \uparrow$ für alle $x \in \{0,1\}^*$.
- Damit die Reduktion gelingt, müssen wir nur noch dafür sorgen, dass $M_{w'}$ im Fall $w \in H_0$ eine partielle Funktion f berechnet, die sich bzgl. der Eigenschaft \mathcal{F} von u unterscheidet d.h. $f \in \mathcal{F} \Leftrightarrow u \notin \mathcal{F}$.
- Da \mathcal{F} nicht trivial ist, ex. eine DTM M, die ein solches f berechnet.

Satz (Satz von Rice)

Für jede nicht triviale Eigenschaft $\mathcal F$ ist die Sprache $L_{\mathcal F}$ unentscheidbar.

Beweis

- Sei M eine DTM, die eine Funktion f mit $f \in \mathcal{F} \Leftrightarrow u \notin \mathcal{F}$ berechnet.
- Betrachte die Reduktionsfunktion

$$h(w) = w'$$
, wobei w' die Kodierung einer DTM ist, die bei Eingabe x zunächst die DTM $M_w(\varepsilon)$ simuliert und im Fall, dass $M_w(\varepsilon)$ hält, mit der Simulation von $M(x)$ fortfährt.

• Dann ist $h: w \mapsto w'$ eine totale berechenbare Funktion und es gilt

$$w \in H_0 \implies M_{w'} \text{ berechnet } f$$

 $w \notin H_0 \implies M_{w'} \text{ berechnet } u.$

• Dies zeigt, dass h das Problem H_0 auf $L_{\mathcal{F}}$ (oder auf $\overline{L}_{\mathcal{F}}$) reduziert, und da H_0 unentscheidbar ist, muss auch $L_{\mathcal{F}}$ unentscheidbar sein.

Der Satz von Rice für Akzeptoren

Der Satz von Rice gilt auch für Eigenschaften, die das Akzeptanzverhalten einer gegebenen Turingmaschine betreffen.

Satz (Satz von Rice für Spracheigenschaften)

Für eine beliebige Sprachklasse ${\mathcal S}$ sei

$$L_{\mathcal{S}} = \{ w \in \{0,1\}^* \mid L(M_w) \in \mathcal{S} \}.$$

Dann ist L_S unentscheidbar, außer wenn $L_S = \emptyset$ oder $L_S = \{0,1\}^*$ ist.

Beweis

Siehe Übungen.

Entscheidungsprobleme für Sprachklassen

Neben dem Wortproblem sind für eine Sprachklasse $\mathcal C$ auch folgende Entscheidungsprobleme interessant:

Das Leerheitsproblem ($LP_{\mathcal{C}}$)

Gegeben: Eine Sprache L aus C. Gefragt: Ist $L \neq \emptyset$?

Das Äquivalenzproblem ($\mathrm{\ddot{A}P}_{\mathcal{C}}$)

Gefragt: Gilt $L_1 = L_2$?

Das Schnittproblem ($\mathrm{SP}_\mathcal{C}$)

Gegeben: Zwei Sprachen L_1 und L_2 aus \mathcal{C} . Gefragt: Ist $L_1 \cap L_2 \neq \emptyset$?

Gegeben: Zwei Sprachen L_1 und L_2 aus C.

Hierbei repräsentieren wir Sprachen in $\mathcal{C}=\mathsf{REG},\mathsf{CFL},\mathsf{CSL},\mathsf{RE}$ durch entsprechende Grammatiken und Sprachen in $\mathcal{C}=\mathsf{DCFL},\mathsf{DCSL}$ durch entsprechende Akzeptoren (also DPDAs bzw. DLBAs).

Das Postsche Korrespondenzproblem (PCP)

Definition

- Sei Σ ein beliebiges Alphabet mit $\# \notin \Sigma$.
- Das Postsche Korrespondenzproblem über Σ (kurz PCP $_{\Sigma}$) ist: gegeben: k Wortpaare $(x_1, y_1), \ldots, (x_k, y_k) \in \Sigma^+ \times \Sigma^*$ gefragt: Gibt es eine Folge $\alpha = (i_1, \ldots, i_n), \ n \ge 1$, von Indizes $i_i \in \{1, \ldots, k\}$ mit $x_i, \ldots, x_{i_n} = y_i, \ldots, y_{i_n}$?
- Das modifizierte PCP über Σ (kurz MPCP $_{\Sigma}$) fragt nach einer Lösung $\alpha = (i_1, \dots, i_n)$ mit $i_1 = 1$.
- Wir notieren eine PCP-Instanz meist in Form einer Matrix $\binom{x_1...x_k}{y_1...y_k}$ und kodieren sie durch das Wort $x_1 \# y_1 \# \dots \# x_k \# y_k$.

Beispiel

Die Instanz $I = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = \begin{pmatrix} a & ab & caa \\ aca & bc & aa \end{pmatrix}$ besitzt wegen $x_1x_3x_2x_3 = acaaabcaa$ $y_1y_3y_2y_3 = acaaabcaa$

die PCP-Lösung $\alpha = (1, 3, 2, 3)$, die auch eine MPCP-Lösung ist.

Das Postsche Korrespondenzproblem

Lemma

Für jedes Alphabet Σ gilt $\operatorname{PCP}_{\Sigma} \leq \operatorname{PCP}_{\{0,1\}}$.

Beweis

- Sei $\Sigma = \{a_1, \ldots, a_m\}$ und sei $k = \max(1, \lceil \log_2(m) \rceil)$. Dann können wir a_i durch eine k-stellige Binärzahl $bin_k(a_i)$ mit dem Wert i-1 und ein Wort $w = w_1 \ldots w_n$ durch $bin(w) = bin_k(w_1) \ldots bin_k(w_n)$ kodieren.
- Nun folgt $PCP_{\Sigma} \leq PCP_{\{0,1\}}$ mittels der Reduktionsfunktion

$$f: \begin{pmatrix} x_1 \dots x_k \\ y_1 \dots y_k \end{pmatrix} \mapsto \begin{pmatrix} bin(x_1) \dots bin(x_k) \\ bin(y_1) \dots bin(y_k) \end{pmatrix}.$$

Beispiel

Sei $\Sigma = \{a, b, c\}$. Dann ist $k = \max(1, \lceil \log_2(3) \rceil) = 2$ und $bin_2(a) = 00$, $bin_2(b) = 01$ und $bin_2(c) = 10$. Somit ist

$$bin_2(b) = 01$$
 und $bin_2(c) = 10$. Somit ist

$$f\begin{pmatrix} a & ab & caa \\ aca & bc & aa \end{pmatrix} = \begin{pmatrix} 00 & 0001 & 100000 \\ 001000 & 0110 & 0000 \end{pmatrix}$$

Das Postsche Korrespondenzproblem

Wir schreiben für $PCP_{\{0,1\}}$ auch PCP (bzw. MPCP für $MPCP_{\{0,1\}}$).

Satz

 $MPCP \leq PCP$.

Beweis

- Wir zeigen $MPCP \le PCP_{\Sigma}$ für $\Sigma = \{0, 1, \langle, |, \rangle\}$.
- Für ein Wort $w = w_1 \dots w_n$ sei

$$\frac{\overleftarrow{w}}{\langle w_1| \dots |w_n|} \quad \overleftarrow{w} \quad \overleftarrow{w} \quad \overrightarrow{w}} \quad \overrightarrow{w}$$

• Wir reduzieren MPCP mittels folgender Funktion f auf PCP-

• Wir reduzieren MPCP mittels folgender Funktion
$$f$$
 auf PCP_{Σ} :
$$f: \begin{pmatrix} x_1 & \dots & x_k \\ y_1 & \dots & y_k \end{pmatrix} \mapsto \begin{pmatrix} \overleftarrow{x_1} & \overrightarrow{x_1} & \dots & \overrightarrow{x_k} & \\ \overleftarrow{y_1} & \overleftarrow{y_1} & \dots & \overleftarrow{y_k} & | \end{pmatrix}$$

Das Postsche Korrespondenzproblem

Beweis

- Wir zeigen $MPCP \leq PCP_{\Sigma}$ für $\Sigma = \{0, 1, \langle , |, \rangle \}$.
- Für ein Wort $w = w_1 \dots w_n$ sei

$$\frac{\swarrow}{\langle w_1|\dots|w_n|} \quad \stackrel{\longleftarrow}{\langle w_1|\dots|w_n} \quad \stackrel{\longleftarrow}{|w_1|\dots|w_n} \quad \stackrel{\longrightarrow}{|w_1|\dots|w_n|}$$

• Wir reduzieren MPCP mittels folgender Funktion f auf PCP_{Σ} :

$$f:\begin{pmatrix} x_1 & \dots & x_k \\ y_1 & \dots & y_k \end{pmatrix} \mapsto \begin{pmatrix} \overleftarrow{x_1} & \overrightarrow{x_1} & \dots & \overrightarrow{x_k} & \rangle \\ \overleftarrow{y_1} & \overleftarrow{y_1} & \dots & \overleftarrow{y_k} & | \rangle \end{pmatrix}$$

Beispiel

```
f: \begin{pmatrix} 00 & 1 & 101 & 11 \\ 001 & 11 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} \langle |0|0| & 0|0| & 1| & 1|0|1| & 1|1| \\ \langle |0|0|1 & |0|0|1 & |1|1 & |0 & |1| \end{pmatrix}
```

• Wir reduzieren MPCP mittels folgender Funktion f auf PCP_{Σ} :

$$f: \begin{pmatrix} x_1 & \dots & x_k \\ y_1 & \dots & y_k \end{pmatrix} \mapsto \begin{pmatrix} \overleftarrow{x_1} & \overrightarrow{x_1} & \dots & \overrightarrow{x_k} & \rangle \\ \overleftarrow{y_1} & \overleftarrow{y_1} & \dots & \overleftarrow{y_k} & | \rangle \end{pmatrix}$$

• Da jede MPCP-Lösung $\alpha = (1, i_2, ..., i_n)$ für I auf eine PCP-Lösung $\alpha' = (1, i_2 + 1, ..., i_n + 1, k + 2)$ für f(I) führt, folgt

$$I\in \mathrm{MPCP}\Rightarrow f(I)\in \mathrm{PCP}_{\Sigma}.$$

- Für die umgekehrte Implikation sei $\alpha' = (i_1, \dots, i_n)$ eine PCP-Lösung für f(I).
- Dann muss $i_1 = 1$ sein, da nur $\stackrel{\longleftarrow}{x_1}$ und $\stackrel{\longleftarrow}{y_1}$ mit dem gleichen Zeichen beginnen. Zudem muss $i_n = k + 2$ sein, da nur \rangle und $|\rangle$ mit dem gleichen Zeichen enden.
- Wählen wir α' von minimaler Länge, so ist $i_j \in \{2, \dots, k+1\}$ für $j = 2, \dots, n-1$.
- Folglich ist $\alpha = (i_1, i_2 1, \dots, i_{n-1} 1)$ eine MPCP-Lösung für I.

Unentscheidbarkeit des PCP

Satz

PCP ist RE-vollständig und damit unentscheidbar.

Beweis.

- PCP ist semi-entscheidbar, da eine DTM systematisch nach einer Lösung suchen kann.
- Um zu zeigen, dass PCP RE-hart ist, sei A eine beliebige Sprache in RE und sei $G = (V, \Sigma, P, S)$ eine Typ-0 Grammatik für A.
- Wir zeigen $A \leq \text{MPCP}_{\Gamma}$ für $\Gamma = V \cup \Sigma \cup \{\langle,|,\rangle\}$.
- Wegen $MPCP_{\Gamma} \leq PCP$ folgt hieraus $A \leq PCP$.

Beweisidee für die Reduktion $A \leq MPCP_{\Gamma}$:

Transformiere eine Eingabe $w \in \Sigma^*$ in eine Instanz $f(w) = \binom{x_1...x_k}{y_1...y_k}$, so dass $\alpha = (i_1, ..., i_n)$ genau dann eine MPCP-Lösung für f(w) ist, wenn das zugehörige Lösungswort $x_{i_1} ... x_{i_n} = y_{i_1} ... y_{i_n}$ eine Ableitung $S = \alpha_0 \Rightarrow \cdots \Rightarrow \alpha_m = w$ von w kodiert.

Beweis von $A \leq MPCP_{\Gamma}$

- Wir bilden f(w) aus folgenden Wortpaaren:
 - $(\langle,\langle|S\rangle,$
 - für jede Regel $I \rightarrow r$ in P: (I, r),
 - für alle $a \in V \cup \Sigma \cup \{|\}: (a, a),$
 - sowie das Paar $(w \mid \rangle, \rangle)$

"Startpaar" "Ableitungspaare"

"Kopierpaare"

"Abschlusspaar"

Unentscheidbarkeit des PCP

Beispiel

- Sei $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ und w = aabb.
- Die MPCP-Instanz f (aabb) enthält dann die acht Wortpaare

$$f(aabb) = \left(\begin{array}{ccccc} \langle & S & S & S & a & b & | & aabb | \rangle \\ \langle |S & aSbS & \varepsilon & S & a & b & | & \rangle \end{array} \right).$$

• Der Ableitung $\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aaSb\underline{S}bS \Rightarrow aa\underline{S}bbS \Rightarrow aabb\underline{S} \Rightarrow aabb$ entspricht dann das MPCP-Lösungswort

```
(|S|aSbS|aaSbSbS|aaSbbS|aabbS|aabb|)
(|S|aSbS|aaSbSbS|aaSbbS|aabbS|aabb|)
```

• Das kürzeste MPCP-Lösungswort für f(aabb) ist

```
\langle |S|aSbS|aaSbSb|aabb| \rangle
\langle |S|aSbS|aaSbSb|aabb| \rangle
```

Dieses entspricht der "parallelisierten" Ableitung

$$\underline{S} \Rightarrow a\underline{S}b\underline{S} \Rightarrow^2 aa\underline{S}b\underline{S}b \Rightarrow^2 aabb$$

"Startpaar"

"Ableitungspaare"

"Kopierpaare"

"Abschlusspaar"

Unentscheidbarkeit des PCP

Beweis von $A \leq MPCP_{\Gamma}$

- Wir bilden f(w) aus folgenden Wortpaaren:
 - $\bullet \ (\langle \ , \langle \ | \ S), \$
 - für jede Regel $I \rightarrow r$ in P: (I, r),
 - für alle $a \in V \cup \Sigma \cup \{|\}: (a, a),$
 - sowie das Paar $(w \mid \rangle, \rangle)$
- Nun lässt sich leicht aus einer Ableitung $S=\alpha_0\Rightarrow\cdots\Rightarrow\alpha_m=w$ von w in G eine MPCP-Lösung mit dem Lösungswort

$$\langle |\alpha_0|\alpha_1|\dots|\alpha_m| \rangle$$

angeben.

ullet Umgekehrt lässt sich aus jeder MPCP-Lösung auch eine Ableitung von w in G gewinnen, womit

$$w\in L(M)\Leftrightarrow f(w)\in\mathrm{MPCP}_\Gamma$$

gezeigt ist.

Unentscheidbarkeit des Schnittproblems für CFL

Das Schnittproblem für kontextfreie Grammatiken (SP_{CFL})

Gegeben: Zwei kontextfreie Grammatiken G_1 und G_2 .

Gefragt: Ist $L(G_1) \cap L(G_2) \neq \emptyset$?

Satz

Das Schnittproblem für kontextfreie Grammatiken ist RE-vollständig.

Unentscheidbarkeit des Schnittproblems für CFL

Satz

Das Schnittproblem für kontextfreie Grammatiken ist RE-vollständig.

Beweis

- Das Problem SP_{CFL} ist semi-entscheidbar, da eine DTM systematisch nach einem Wort $x \in L(G_1) \cap L(G_2)$ suchen kann.
- Um PCP auf SP_{CFL} zu reduzieren, betrachten wir für eine Folge $s = (x_1, \dots, x_k)$ von Strings $x_i \in \{0, 1\}^*$ die Sprache

$$L_s = \{i_n \dots i_1 \# x_{i_1} \dots x_{i_n} \mid n \ge 1, 1 \le i_1, \dots, i_n \le k\}$$

über dem Alphabet $\Sigma = \{0, 1, \dots, k, \#\}.$

• Die Sprache L_s wird von der Grammatik $G_s = (\{A\}, \Sigma, P_s, A)$ mit der Regelmenge

$$P_s$$
: $A \rightarrow 1Ax_1, \dots, kAx_k, 1\#x_1, \dots, k\#x_k$ erzeugt.

Reduktion von PCP auf das Schnittproblem für CFL

- Zu einer PCP-Instanz $I = \begin{pmatrix} x_1 \dots x_k \\ y_1 \dots y_k \end{pmatrix}$ bilden wir das Paar (G_s, G_t) , wobei $s = (x_1, \dots, x_k)$ und $t = (y_1, \dots, y_k)$ ist.
- Dann ist $L(G_s) \cap L(G_t)$ die Sprache

$$\{i_n \dots i_1 \# x_{i_1} \dots x_{i_n} \mid 1 \leq n, x_{i_1} \dots x_{i_n} = y_{i_1} \dots y_{i_n}\}.$$

• Folglich ist $\alpha = (i_1, \dots, i_n)$ genau dann eine Lösung für I, wenn $i_n \dots i_1 \# x_{i_1} \dots x_{i_n} \in L(G_s) \cap L(G_t)$ ist, d.h. es gilt

$$I \in PCP \Leftrightarrow L(G_s) \cap L(G_t) \neq \emptyset$$

• Also vermittelt $f: I \mapsto (G_s, G_t)$ eine Reduktion von PCP auf das Schnittproblem für CFL.

Beispiel

Die PCP-Instanz

$$I = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = \begin{pmatrix} 0 & 001 & 01100 \\ 00110 & 01011 & 00 \end{pmatrix}$$

wird auf das Grammatikpaar (G_s, G_t) mit folgenden Regeln reduziert:

$$P_s$$
: $A \to 1A0$, 2A001, 3A01100, 1#0, 2#001, 3#01100
 P_t : $A \to 1A00110$, 2A01011, 3A00, 1#00110, 2#01011, 3#00

• Der PCP-Lösung $\alpha = (1,3,2,3)$ entspricht dann das Wort

$$3231 \# x_1 x_3 x_2 x_3 = 3231 \# 00110000101100$$

= $3231 \# 00110000101100 = 3231 \# y_1 y_3 y_2 y_3$

im Schnitt $L(G_s) \cap L(G_t)$.

<

Unentscheidbarkeit des Schnittproblems für DCFL

Das Schnittproblem für DPDAs (SP_{DPDA})

Gegeben: Zwei DPDAs M_1 und M_2 .

Gefragt: Gilt $L(M_1) \cap L(M_2) \neq \emptyset$?

Korollar

SP_{DPDA} ist RE-vollständig und daher unentscheidbar.

Beweis

Für die Sprache $L_s = \{i_n \dots i_1 \# x_{i_1} \dots x_{i_n} \mid n \ge 1, 1 \le i_1, \dots, i_n \le k\}$ lässt sich leicht ein DPDA M_s angeben mit $L(M_s) = L_s$.

Das Leerheitsproblem für DLBAs

Das Leerheitsproblem für DLBAs (LP_{DLBA})

Gegeben: Ein DLBA M. Gefragt: Ist $L(M) \neq \emptyset$?

Satz

 $\operatorname{LP}_{\text{DLBA}}$ ist RE-vollständig und daher unentscheidbar.

Beweisidee

- Es ist leicht zu sehen, dass $LP_{DLBA} \in RE$ ist.
- Wir reduzieren PCP auf LPDI BA.
- Hierzu überführen wir eine PCP-Instanz $I = \binom{s}{t}$ in einen DLBA M mit

$$L(M) = L_s \cap L_t$$
.

• Dann ist die Funktion $f: I \mapsto M$ berechenbar und es gilt

 $I \in \text{PCP} \iff L_s \cap L_t \neq \emptyset \iff L(M) \neq \emptyset \iff M \in \text{LP}_{\mathsf{DLBA}}$

Das Äquivalenzproblem für kontextfreie Sprachen

Das Äquivalenzproblem für kontextfreie Grammatiken (ÄP_{CFL})

Gegeben: Zwei kontextfreie Grammatiken G_1 und G_2 . Gefragt: Gilt $L(G_1) = L(G_2)$?

Satz ÄP_{CFL} ist unentscheidbar.

Beweisidee

- ullet Wir reduzieren $\overline{\mathrm{PCP}}$ auf $\mathrm{\ddot{A}P_{CFL}}$
- Es gilt $I \notin PCP \iff L_s \cap L_t = \emptyset \iff \overline{L}_s \cup \overline{L}_t = \Sigma^*.$

 $L(G_1) = \overline{L}_s \cup \overline{L}_t \text{ und } L(G_2) = \Sigma^*$

• Daher vermittelt die Funktion $f:I\mapsto \langle\,G_1,\,G_2\,\rangle$ die gewünschte Reduktion, wobei G_1 und G_2 kontextfreie Grammatiken sind mit

Entscheidbare Probleme

Dagegen ist es nicht schwer,

- für eine kontextsensitive Grammatik G und ein Wort x zu entscheiden, ob $x \in L(G)$ ist (Wortproblem $\mathrm{WP}_{\mathsf{CSL}}$),
- für eine kontextfreie Grammatik G zu entscheiden, ob $L(G) \neq \emptyset$ ist (Leerheitsproblem LP_{CFL}), und
- für zwei reguläre Grammatiken G_1 und G_2 zu entscheiden, ob $L(G_1) = L(G_2)$ ist (Äquivalenzproblem ÄP_{REG}),
- für zwei reguläre Grammatiken G_1 und G_2 zu entscheiden, ob $L(G_1) \cap L(G_2) \neq \emptyset$ ist (Schnittproblem SP_{REG}).

Satz

Die Probleme WP_{CSL} , LP_{CFL} , $\ddot{A}P_{\text{REG}}$ und SP_{REG} sind entscheidbar.

Beweis.

Siehe Übungen.

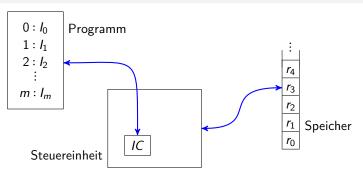
Überblick der (Un-)Entscheidbarkeitsresultate

Folgende Tabelle zeigt, welche der betrachteten Entscheidungsprobleme für die verschiedenen Stufen der Chomsky-Hierarchie entscheidbar sind.

	Wort- problem $x \in L$?	Leerheits- problem $L=\emptyset$?	Äquivalenz- problem $L_1 = L_2$?	Schnitt- problem $L_1 \cap L_2 \neq \emptyset$?		
REG	ja	ja	ja	ja		
DCFL	ja	ja	ja ^a	nein		
CFL	ja	ja	nein	nein		
DCSL	ja	nein	nein	nein		
CSL	ja	nein	nein	nein		
RE	nein	nein	nein	nein		

^aBewiesen in 1997 von Géraud Sénizergues (Univ. Bordeaux).

Die Registermaschine (random access machine, RAM)



- führt ein Programm $P = (I_0, ..., I_m)$ aus, das aus einer endlichen Folge von Befehlen (instructions) I_i besteht,
- hat einen Befehlszähler (instruction counter) *IC*, der die Nummer des nächsten Befehls angibt (zu Beginn ist *IC* = 0),
- verfügt über einen frei adressierbaren Speicher (random access memory) mit unendlich vielen Speicherzellen (Registern) r_i , $i \ge 0$, die beliebig große natürliche Zahlen aufnehmen können.

In GOTO-Programmen sind folgende Befehle zulässig (wobei $i, j, c \in \mathbb{N} = \{0, 1, 2, \dots\}$):

Befehl	Semantik
$r_i := r_j + c$	setzt Register r_i auf den Wert $r_j + c$
$r_i := r_j \div c$	setzt Register r_i auf den Wert $\max(0, r_j - c)$
GOTO <i>j</i>	setzt den Befehlszähler IC auf den Wert j
IF $r_i = c$ THEN GOTO j	setzt IC auf j , falls r_i den Wert c hat
HALT	beendet die Programmausführung

Bei Ausführung der ersten beiden Befehle wird zudem der Befehlszähler *IC* um eins erhöht.

Definition

Eine partielle Funktion $f: \mathbb{N}^k \to \mathbb{N} \cup \{\uparrow\}$ heißt GOTO-berechenbar, falls es ein GOTO-Programm $P = (I_0, ..., I_m)$ mit folgender Eigenschaft gibt:

- Wird P auf einer RAM mit den Werten $r_i = n_i$ für i = 1, ..., k, sowie IC = 0 und $r_i = 0$ für i = 0, k + 1, k + 2, ... gestartet, so
- hält P genau dann, wenn $(n_1, \ldots, n_k) \in dom(f)$ ist, und
- sobald P hält, hat r_0 den Wert $f(n_1, \ldots, n_k)$.

Beispiel

4 HALT

Folgendes GOTO-Programm berechnet die Funktion f(x, y) = xy:

- 0 IF $r_1 = 0$ THEN GOTO 4
 - 1 $r_1 := r_1 \div 1$
- $2 r_0 := r_0 + r_2$ **GOTO** 5
- 3 **GOTO** 0

8 $r_0 := r_0 + 1$

 $5 r_3 := r_2$

7 $r_3 := r_3 \div 1$

9 **GOTO** 6

6 **IF** $r_3 = 0$ **THEN GOTO** 3

- Die Syntax von WHILE-Programmen ist induktiv wie folgt definiert (wobei $i, j, c \in \mathbb{N}$):
 - Jede Wertzuweisung der Form $x_i := x_j + c$ oder $x_i := x_j \div c$ ist ein WHILE-Programm.
 - Falls P und Q WHILE-Programme sind, so auch
 - P; Q und
 - IF $x_i = c$ THEN P ELSE Q END
 - WHILE $x_i \neq c$ DO P END
- Die Syntax von LOOP-Programmen ist genauso definiert, nur dass Schleifen der Form LOOP x_i DO P END an die Stelle von WHILE-Schleifen treten.
- Die Semantik von WHILE-Programmen ist selbsterklärend.
- Eine LOOP-Schleife LOOP x_i DO P END wird so oft ausgeführt, wie der Wert von x_i zu Beginn der Schleife angibt.

WHILE- und LOOP-Berechenbarkeit

- Eine partielle Funktion $f: \mathbb{N}^k \to \mathbb{N} \cup \{\uparrow\}$ heißt WHILE-berechenbar, falls es ein WHILE-Programm P mit folgender Eigenschaft gibt:
 - Wird P mit den Werten $x_i = n_i$ für i = 1, ..., k gestartet, so
 - hält P genau dann, wenn $(n_1, \ldots, n_k) \in dom(f)$ ist, und
 - sobald P hält, hat x_0 den Wert $f(n_1, \ldots, n_k)$.
- Die LOOP-Berechenbarkeit von *f* ist entsprechend definiert.

Beispiel

Die Funktion $f(n_1, n_2) = n_1 n_2$ wird von dem WHILE-Programm

WHILE
$$x_1 \neq 0$$
 DO $x_3 := x_2$;
 $x_0 := x_0 + x_2$; WHILE $x_3 \neq 0$ DO

 $x_1 := x_1 \div 1$ $x_0 := x_0 + 1; x_3 := x_3 \div 1$ **END**

sowie von folgendem LOOP-Programm berechnet:

LOOP x_1 **DO** $x_0 := x_0 + x_2$ **END LOOP** x_2 **DO** $x_0 := x_0 + 1$ **END** \triangleleft

Numerische Repräsentation von Wörtern

- Da DTMs auf Wörtern und GOTO-Programme auf Zahlen operieren, müssen wir Wörter durch Zahlen (und umgekehrt) kodieren.
- Sei $\Sigma = \{a_0, \dots, a_{m-1}\}$ ein Alphabet. Dann können wir jedes Wort $x = a_{i_1} \dots a_{i_n} \in \Sigma^*$ durch eine natürliche Zahl $num_{\Sigma}(x)$ kodieren:

$$num_{\Sigma}(x) = \sum_{j=0}^{n-1} m^j + \sum_{j=1}^n i_j m^{n-j} = \begin{cases} n, & m=1\\ \frac{m^n-1}{m-1} + (i_1 \dots i_n)_m, & m \geq 2 \end{cases}$$

• Da die Abbildung $num_{\Sigma}: \Sigma^* \to \mathbb{N}$ bijektiv ist, können wir umgekehrt jede natürliche Zahl n durch das Wort $str_{\Sigma}(n) = num_{\Sigma}^{-1}(n)$ kodieren.

Beispiel

- Für das Alphabet $\Sigma = \{a\}$ ist $num_{\Sigma}(a^n) = n$ und $num_{\Sigma}^{-1}(n) = a^n$
 - Für $\Sigma = \{a, b, c\}$ erhalten wir folgende Kodierung:

	_														
W	ε	а	b	С	aa	ab	ac	ba	bb	bc	ca	cb	сс	aaa	
$num_{-}(u_{i})$		1	2	2	1	F	6	7	Q	Ω	10	11	12	12	

Transformation zw. Wort- und numerischen Funktionen

• Ist $\Sigma = \{0, 1\}$, so lassen wir den Index weg und schreiben einfach *num* und *str* anstelle von num_{Σ} und str_{Σ} :

x $num(x)$	$ \varepsilon $	0	1	00	01	10		n str(n)	0	1	2	3	4	5	
num(x)	0	1	2	3	4	5	•••	str(n)	ε	0	1	00	01	10	

• Zudem erweitern wir die Kodierungsfunktion $str: \mathbb{N} \to \{0,1\}^*$ zu einer Kodierungsfunktion $str_k: \mathbb{N}^k \to \{0,1,\#\}^*$ wie folgt:

$$str_k(n_1,\ldots,n_k) = str(n_1)\#\ldots\#str(n_k)$$

• Nun können wir eine partielle Funktion $f: \mathbb{N}^k \to \mathbb{N} \cup \{\uparrow\}$ durch folgende partielle Wortfunktion $\hat{f}: \{0,1,\#\}^* \to \{0,1\}^* \cup \{\uparrow\}$ repräsentieren:

$$\hat{f}(w) = \begin{cases} str(n), & w = str_k(n_1, \dots, n_k) \text{ und } f(n_1, \dots, n_k) = n \in \mathbb{N}, \\ \uparrow, & \text{sonst} \end{cases}$$

• Wir nennen \hat{f} die String-Repräsentation von f und f die numerische Repräsentation von \hat{f} .

Transformation zw. Wort- und numerischen Funktionen

Beispiel

Die Fkt. $f:(n_1,n_2)\mapsto n_1n_2$ wird durch folgende Wortfkt. repräsentiert:

$$\hat{f}(w) = \begin{cases} str(n_1n_2), & w = str_2(n_1, n_2), \\ \uparrow, & \text{sonst.} \end{cases}$$

W	001	00#	010	011	01#	0#0	0#1	0##	100	101	10#	
(n_1,n_2)	-	(3,0)	-	-	(4,0)	(1,1)	(1, 2)	-	-	-	(5,0)	
$n_1 n_2$	-	0	-	-	0	1	2	-	-	-	0	•••
$\hat{f}(w)$	1	ε	\uparrow	↑	ε	0	1	↑	↑	↑	ε	•••

Äquivalenz von Turing- und GOTO-Berechenbarkeit

Satz

Eine partielle Funktion $f: \mathbb{N}^k \to \mathbb{N} \cup \{\uparrow\}$ ist genau dann GOTO-berechenbar, wenn ihre String-Repräsentation \hat{f} Turing-berechenbar ist.

Beweis

- Sei P ein GOTO-Programm, das eine partielle Fkt. $f: \mathbb{N}^k \to \mathbb{N} \cup \{\uparrow\}$ auf einer RAM R berechnet.
- Dann existiert eine Zahl m, so dass P nur Register r_i mit i ≤ m benutzt.
 Daher lässt sich eine Konfiguration von R durch Angabe der Inhalte des
 - Befehlszählers IC und der Register r_0, \ldots, r_m beschreiben.
- Wir konstruieren eine (m+2)-DTM M, die
 - den Inhalt von IC in ihrem Zustand.
 - die Registerwerte r_1, \ldots, r_m auf den Bändern $1, \ldots, m$ und
 - den Wert von r_0 auf dem Ausgabeband m+2 speichert.
 - Ein Registerwert r_i wird hierbei in der Form $str(r_i)$ gespeichert.
 - Band m+1 wird zur Ausführung von Hilfsberechnungen benutzt.

Simulation eines GOTO-Programms durch eine DTM

- Die Aufgabe von M ist es, bei Eingabe $w \in \{0, 1, \#\}^*$ das Wort $str(f(n_1, ..., n_k))$ auszugeben, wenn $w = str_k(n_1, ..., n_k)$ für ein Tupel $(n_1, ..., n_k) \in dom(f)$ ist, und andernfalls nicht zu halten.
- Zuerst überprüft M, ob in w das #-Zeichen (k-1)-mal vorkommt.
- Dann kopiert M die Teilwörter $str(n_i)$ für $i=2,\ldots,k$ auf das i-te Band und löscht auf dem 1. Band alle Eingabezeichen bis auf $str(n_1)$.
- Für i = 1, ..., m sind nun auf Band i die Registerinhalte $r_i = n_i$ und auf Band m + 2 der Wert $r_0 = 0$ gespeichert.
- Danach führt *M* das Programm *P* Befehl für Befehl aus.
- Es ist klar, dass M jeden Befehl I in P durch eine geeignete Folge von Anweisungen simulieren kann, die die Registerinhalte und den Wert von IC entsprechend modifizieren.
- Sobald P stoppt, hält auch M und gibt das auf Band m+2 befindliche Wort $str(r_0) = str(f(n_1, \ldots, n_k)) = \hat{f}(w)$ aus.

Simulation einer DTM durch ein GOTO-Programm

- Sei $M = (Z, \Sigma, \Gamma, \delta, q_0, E)$ eine DTM, die die String-Repräsentation \hat{f} einer partiellen Funktion $f : \mathbb{N}^k \to \mathbb{N} \cup \{\uparrow\}$ berechnet.
- M gibt also bei Eingabe w das Wort $str(f(n_1, \ldots, n_k))$ aus, falls w die Form $w = str_k(n_1, \ldots, n_k)$ hat und $f(n_1, \ldots, n_k)$ definiert ist, und hält andernfalls nicht.
- Wir konstruieren ein GOTO-Programm P, das bei Eingabe (n_1, \ldots, n_k) die DTM M bei Eingabe $w = str_k(n_1, \ldots, n_k)$ simuliert.
- Wir können annehmen, dass M eine 1-DTM ist.
- Sei $Z = \{q_0, \ldots, q_r\}$ und $\Gamma = \{a_0, \ldots, a_{m-1}\}$, wobei wir annehmen, dass $a_0 = \sqcup$, $a_1 = 0$, $a_2 = 1$ und $a_3 = \#$ ist.
- Eine Konfiguration $K = uq_iv$ von M mit $u = a_{i_1} \dots a_{i_s}$ und $v = a_{j_1} \dots a_{j_t}$ wird wie folgt in den Registern r_0, r_1, r_2 gespeichert:
 - $r_0 = (i_1 \dots i_s)_m$
 - $r_1 = i$
 - $r_2 = (j_t \dots j_1)_m$

Simulation einer DTM durch ein GOTO-Programm

- Eine Konfiguration $K = uq_iv$ von M mit $u = a_{i_1} \dots a_{i_s}$ und $v = a_{j_1} \dots a_{j_t}$ wird wie folgt in den Registern r_0, r_1, r_2 gespeichert:
 - $r_0 = (i_1 \dots i_s)_m$
 - $r_1 = i$
 - $r_2 = (j_t \dots j_1)_m$
- P besteht aus 3 Programmteilen $P = P_1, P_2, P_3$:
 - P_1 stellt in den drei Registern r_0, r_1, r_2 die Startkonfiguration $K_w = q_0 w$ von M bei Eingabe $w = str_k(n_1, \ldots, n_k)$ her, d.h. P_1 berechnet in Register r_2 die Zahl $(j_t \ldots j_1)_m$, wobei $w = a_{j_1} \ldots a_{j_t}$ ist, und setzt r_0 und r_1 auf den Wert 0.
 - P_2 überführt die in r_0, r_1, r_2 gespeicherte Konfiguration von M solange in die zugehörige Nachfolgekonfiguration bis M hält (siehe nächste Folie).
 - Danach transformiert P_3 noch den aktuellen Inhalt $(i_1 \dots i_s)_m$ von Register r_0 in die Zahl $num(a_{i_1} \dots a_{i_s})$ und hält.

Simulation einer DTM durch ein GOTO-Programm

Das Programmstück P₂ hat die Form

```
M_2 r_3 := r_2 MOD m

IF r_1 = 0 \land r_3 = 0 THEN GOTO M_{0,0}

\vdots

IF r_1 = r \land r_3 = m-1 THEN GOTO M_{r,m-1}
```

- Die Befehle ab Position $M_{i,j}$ hängen von $\delta(q_i, a_j)$ ab:
 - Im Fall $\delta(q_i, a_j) = \emptyset$ markiert $M_{i,j}$ den Beginn von P_3 .
 - Im Fall $\delta(q_i, a_j) = \{(q_{i'}, a_{j'}, L)\}$ werden folgende Befehle ausgeführt:

$$M_{i,j}$$
 $r_1 := i'$ $r_2 := r_2 m + (r_0 \text{ MOD } m)$
 $r_2 := r_2 \text{ DIV } m$ $r_0 := r_0 \text{ DIV } m$
 $r_2 := r_2 m + j'$ GOTO M_2

- Die übrigen Fälle sind ähnlich.
- Makros wie die MOD- und DIV- Befehle k\u00f6nnen durch entsprechende GOTO-Programmst\u00fccke ersetzt werden.

Äquivalenz von WHILE- und GOTO-Berechenbarkeit

Satz

Eine partielle Funktion $f: \mathbb{N}^k \to \mathbb{N} \cup \{\uparrow\}$ ist genau dann GOTO-berechenbar, wenn sie WHILE-berechenbar ist.

Simulation eines WHILE- durch ein GOTO-Programm

- Sei P ein WHILE-Programm, das $f : \mathbb{N}^k \to \mathbb{N} \cup \{\uparrow\}$ berechnet.
- Wir übersetzen P wie folgt in ein äquivalentes GOTO-Programm P'.
- P' speichert den Variablenwert x_i im Register r_i .
- Damit lassen sich alle Wertzuweisungen von P direkt in entsprechende Befehle von P' transformieren.
- Eine Schleife der Form WHILE x_i ≠ c DO Q END simulieren wir durch folgendes GOTO-Programmstück:

```
M_1 IF r_i = c THEN GOTO M_2 Q' GOTO M_1 M_2:
```

- Ähnlich lässt sich die Verzweigung **IF** $x_i = c$ **THEN** Q_1 **ELSE** Q_2 **END** in ein GOTO-Programmstück transformieren.
- Zudem fügen wir ans Ende von P' den HALT-Befehl an.

Simulation eines GOTO- durch ein WHILE-Programm

- Sei $P = (I_0, ..., I_m)$ ein GOTO-Programm, das $f : \mathbb{N}^k \to \mathbb{N} \cup \{\uparrow\}$ berechnet, und sei r_z , z > k, ein Register, das in P nicht benutzt wird.
- Wir übersetzen P wie folgt in ein äquivalentes WHILE-Programm P': $x_z := 0$:

```
WHILE x_z \neq m+1 DO

IF x_z = 0 THEN P'_0 END;

:

IF x_z = m THEN P'_m END
```

• Dabei ist P'_{ℓ} abhängig vom Befehl I_{ℓ} folgendes WHILE-Programm:

```
I_{\ell} \qquad \qquad P'_{\ell} \\ r_i := r_j + c \qquad \qquad x_i := x_j + c; \ x_z := x_z + 1 \\ r_i := r_j - c \qquad \qquad x_i := x_j - c; \ x_z := x_z + 1 \\ \mathsf{GOTO} \ j \qquad \qquad x_z := j \\ \mathsf{IF} \ r_i = c \ \mathsf{THEN} \ \mathsf{GOTO} \ j \qquad \mathsf{IF} \ x_i = c \ \mathsf{THEN} \ x_z := j \ \mathsf{ELSE} \ x_z := x_z + 1 \ \mathsf{END} \\ \mathsf{HALT} \qquad \qquad x_z := m + 1
```

• Man beachte, dass P' nur eine WHILE-Schleife enthält.

Vergleich von LOOP- und WHILE-Berechenbarkeit

- Offensichtlich lässt sich jedes LOOP-Programm durch ein WHILE-Programm simulieren.
- Andererseits können LOOP-Programme nur totale Funktionen berechnen, d.h. nicht jedes WHILE-Programm ist durch ein LOOP-Programm simulierbar.
- Es gibt auch totale WHILE-berechenbare Funktionen, die nicht LOOP-berechenbar sind.
- Eine solche Funktion kann mittels Diagonalisierung definiert werden.
- Ein Beispiel für eine "natürliche" Funktion mit dieser Eigenschaft ist die Ackermannfunktion $a: \mathbb{N}^2 \to \mathbb{N}$, die wie folgt definiert ist

$$a(x,y) = \begin{cases} y+1, & x=0, \\ a(x-1,1), & x \ge 1, y=0, \\ a(x-1,a(x,y-1)), & x,y \ge 1. \end{cases}$$