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1 Introduction

1.1 Problem Description

A common problem, when capturing a scene using multiple cameras, are certain deviations

of color reproduction, even if the cameras are of the same type. This is caused by (partly

unavoidable) differences in capture settings or by variances of physical properties causing

different cameras to never produce perfectly identical results. The definition of camera here

includes the lens attached to it, for which the same restrictions apply.

In this thesis an approach developed by the author to compensate for these issues is pre-

sented, which works by measuring the color differences between different shots using the

color data of a color rendition chart1 placed in the captured scene to then color correct the

images or to correct the camera settings or both.

The objective was to explore and study models and methods to (semi-)automatically detect

the color chart within images and to extract the color data from it, as well as to establish a

model to explain the color deviations and to correct them.

This thesis is accompanied by a prototype implementation called caccrc.py which imple-

ments the algorithms described later. It is itself implemented in the Python2 programming

language (version 2.7) using mainly the NumPy3 and SciPy4 modules for numerical scientific

calculations among other libraries.

1.2 Outline and Overview

This work can be split up into three major section:

First, in Section 2 (“Chart Discovery Algorithm”), the algorithms to locate the color rendition

chart within an image and to extract the color data from it are described.

Then, in Section 3 (“Color Analysis and Correction”), the models and algorithms explaining

the color differences between different shots and the ones used for compensating for them are

presented.

Last, in Section 4 (“Practical Experiments and Results”), the results of applying the described

algorithms in form of the prototype implementation caccrc.py on test footage and the influ-

ence of varying different processing parameters onto the quality of the results are shown.

1The color rendition chart used for this entire work was a “Color Checker” chart from X-Rite.
2see https://www.python.org
3see https://www.numpy.org
4see https://www.scipy.org

3

https://www.python.org
https://www.numpy.org
https://www.scipy.org


2 Chart Discovery Algorithm

2.1 Overview

The first objective of the whole algorithm chain is to find a color chart within an image. The

idea from the beginning was to look for certain specific ‘features’ of the chart or its patches,

which would allow to distinguish them from the background or other objects in the image.

An initial but unsuccessful try was to look for statistical abnormalities in the histogram of the

image, converted to a different color space if necessary, which did not work reliable enough.

Another idea, that was considered but not pursued, was to detect edges in the image to recon-

struct the charts location. Although this idea was discarded, the edges are still used someway

by the current algorithm by analyzing the shape of regions or the respective region masks de-

scribed later.

Because each patch is homogeneous in color and texture, the idea ultimately pursued was to

look for ‘homogeneous’ areas within the image and then to ‘puzzle’ them together to form

the chart.

The entire process is divided into the following steps:

Ź A short preprocessing phase

Ź A patch discovery (Section 2.3) phase further divided into

– a region discovery (2.3.1) phase to find interesting areas within the image and

– a region selection (2.3.2) phase to remove non-relevant areas found so far.

Ź A chart discovery phase (Section 2.4) to ‘puzzle’ the selected areas together to obtain a

chart, further divided into

– axes orientation guessing (2.4.1),

– region alignment (2.4.2),

– chart orientation correction (2.4.3) and

– a final coordinate transform calculation (2.4.4).

The details of these phases will be explained in the following sections.

2.1.1 Related Work

A current paper on the topic discussed in this section has been written by A. ERNST, A. PAPST,

T. RUF and J.-U. GARBAS, in which they propose a robust method of finding and tracking a

color chart within an image (see [CheckMyChart]). Their method differs from the one pre-

sented in this paper, as their approach tries to fit a complete model of the chart onto the image

using an general-purpose optimization algorithm adjusting the parameters of a homography
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(and a color correction), while the method presented here takes an constructive approach,

reconstructing the chart ‘bottom-up’.

They as well use the reference colors of the chart, matching them against the colors currently

‘masked’ by their model using an affine color transform to compensate for illumination and

camera effects. The error measure used is the root mean square of the color differences and

of the color variance within the masked regions (as they try to exploit the homogeneity of the

patches, similar to this work). Color correction was not the focus of their work.

Additionally, their paper contains a comprehensive list of references to other papers on the

topic of find color charts in images.
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2.2 Preprocessing

The preprocessing phase currently only consists of one operation, namely down-scaling of

the image, to improve processing performance, which therefore is optional.

Let FullImage be the original full resolution color image, then DownScaled should be the rescaled

image:

DownScaled :“ rescalepFullImageq

The caccrc.py currently uses the scipy.misc.imresize function with a "cubic" interpola-

tion and per default images are scaled-down to have their longer side have a length of 1024 px

(the processing_image_size_bounds parameter) while preserving the aspect ratio.
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2.3 Patch Discovery

2.3.1 Region Discovery

The first objective of the region discovery procedure is to find sets of connected pixels within

the image called regions, which correspond to the perspectively projected and lens-distorted

square patches of the color chart. Because the patches are homogeneous in color and texture

the idea is to look a the ‘(color) gradient’ of the image or rather its absolute value or magni-

tude, since the ‘direction’ of the gradient is not important and at totally flat points not even

determinable.

Color Channel “Fusion”

As a preprocessing step the third dimension, the color dimension, is first removed from the

DownScaled image. The result of that operation is called the ProcessingImage. Currently a

simple point-wise mean along the color dimension is used:

ProcessingImagerrow, cols :“
ÿ

c

DownScaledrrow, col, cs

3

There are of course plenty of other options to do that, for example choosing a single channel

(the green one for example) or calculating a weighted mean and of course it is possible to

transform the image to a different color space first, but the simple mean worked quite well.

An example of a ProcessingImage is given in Figure 1a on the following page.

Gradient Analysis

To reduce the influence of high frequency noise onto the gradient, the image is Gaussian

filtered first. This is accomplished by convolving the image with a Gaussian kernel. Because

of the properties of the convolution operator it is possible to combine the Gaussian filtering

and the gradient calculation into a single convolution with a Gaussian-derivative kernel.

The prototype implementation uses the gaussian_gradient_magnitude function that resists

in the scipy.ndimage.filters module to calculate GradientMagnitude from ProcessingImage,

which is implemented by one-dimensional convolving the image successively with a one-

dimensional Gaussian kernel or the derivative of a Gaussian kernel and combining the result

as follows:

Gradientvertical “ pProcessingImage ˚vertical GaussianDerivativeq ˚horizontal Gaussian

Gradienthorizontal “ pProcessingImage ˚vertical Gaussianq ˚horizontal GaussianDerivative

GradientMagnitude “

b

Gradient2
vertical ` Gradient2

horizontal

where ˚vertical and ˚horizontal denotes the convolution of a two-dimensional image which a one-

dimensional kernel along the vertical and horizontal image dimension, respectively. Gaussian

is a sampled one-dimensional Gaussian curve with its length truncated to approximately four
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(a) The ProcessingImage resulting
(among other things) from color
averaging the original input
image (FullImage).

(b) The GradientMagnitude of the
ProcessingImage. Dark regions
have non-zero gradient magni-
tude.

(c) Image (Homogeneous) of the pix-
els considered ‘flat’ (dark color).

Figure 1: Examples of the different intermediate results of the patch discovery algorithm.

times the standard deviation. Likewise GaussianDerivative is the sampled first derivative of

the Gaussian curve.

Per default the Gaussian curve used has a standard deviation of 0.002 (the gradient_sigma

parameter) times the image width, which is approximately 2 px with default settings and a

landscape image.

An Example of a GradientMagnitude is given in Figure 1b.

Homogeneous Pixels

Because pixels associated with a patch are assumed to have a small gradient magnitude, these

will now be selected using a simple threshold operation:

Homogeneous :“ pGradientMagnitude ă thresholdq

Homogeneous masks those pixels for which the gradient is considered ‘flat’ at their location.

An example of how Homogeneous looks like is given in Figure 1c. How the threshold and the

other processing parameters can be tuned is demonstrated in Section 4.2. Per default the

threshold is set to 0.5 (the gradient_threshold parameter).

Since isolated pixels are of no use the next step is to look for sets of connected homogeneous

pixels the next step is to find these sets. By considering two pixel to be connected when they

share a common edge now the connected components of Homogenous are enumerated, assigning

each pixel the ‘number’ of its component. This is called labeling. Let Labelrrow, cols be the label

of the pixel at prow, colq. The background (all pixels not considered ‘flat’) is assigned the

integer 0 while all other labels are positive integers.

The prototype implementation uses the label function of the scipy.ndimage.measurements

module to label the Homogene image.
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2.3.2 Region Selection

Since not all regions found so far are associated with a patch of the color chart, those who

are have to be selected by some criteria. Regions corresponding to patch are called valid, the

others are called invalid.

The process of selecting the valid regions and discarding the invalid is separated into multiple

phases:

Ź First the regions are filtered based on ‘local’ features (preselection phase).

Ź Then statistics about the preselected regions are collected (statistics phase).

Ź At last the preselected regions are compared against each other and filtered based on

the gathered statistics (selection phase).

Preselection Phase

In the preselection phase first all regions consisting of to few or to many pixels are removed.

The upper bound is chosen based on the maximum area a patch of the chart can reasonably

occupy within the image assuming that the chart is still completely visible. Similar the lower

bound is chosen based on the assumption that the chart will occupy some minimal fraction

of the image.

The default for the lower bound is 0.0005 (the minimum_relative_patch_area parameter)

times the image area (width times height) and the upper bound is 0.02 (the maximum_relative_patch_area

parameter) times the image area.

Now each region, not already filtered out by some of the previous criteria, is assigned four

vertices. This is done by assuming the region is a rasterized quadrilateral. The algorithm

used is explained in Section 2.3.3 on page 11. The convex area covered by the quadrilateral

spanned by the found four vertices is called a region mask.

All following selection criteria are based on the region mask. The following criteria are cur-

rently implemented:

Ź Distance of the four vertices of the region mask to the image border:

If at least one vertex is close to the border it is very likely the the region is part of some-

thing which has been cropped by the camera frame and is thus unlikely to be patch of

the color chart. Even if it was, it would be considered invalid.

Per default a vertex is considered to be to close to border, if it has a vertical or horizon-

tal distance of less then 0.03 (the border_distance_threshold parameter) of the image

width or height to the image border, respectively.

Ź Parallelism of the four sides of the region mask:

The projected patches should be nearly perfect parallelograms. A region mask does not

comply with this criterion, if the difference of opposite side length is more than 0.15 (the

parallelism_threshold parameter) from the average of both side lengths.
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Ź Aspect ratio of the region mask:

Because the camera normally looks nearly orthogonal onto the chart, the aspect ratio of

the patches should be near one. The aspect ratio is defined as the quotient of the the

sum of the lengths of opposite sides. Per default a region mask violates this criterion,

if its aspect ratio is smaller than 0.5 (the aspect_ratio_tolerance parameter) or larger

than the inverse of that, which is 2.0.

Ź Similarity of the region with the region mask:

The projected patch should look like a quadrilateral. By comparing the rasterized re-

gion mask with the actual region, it can be checked if it has approximately quadrilat-

eral shape. Per default a region mask violates this criterion, if more than 0.175 (the

mask_coverage_tolerance parameter) of the pixels of the rasterized region mask differ

from the pixels of the region. Note that both are binary images and indicate, if a pixel

belongs to the region mask or the region, respectively.

Of course other criteria are possible and easily implementable, but the reference implementa-

tion confines itself to aforementioned ones.

Statistics Phase

Assuming that most of the regions selected in the preselection phase are valid, the idea is now

to gather statistics to find the remaining outliers, which are assumed to be invalid patches.

As with the preselection criteria there are plenty of options, but the reference implementation

currently uses only one criterion, which is the sides lengths of the region masks. The side

lengths of the edges are first sorted, each region mask a time, and the the median for the

longest, the second longest and so forth side is calculated.

These statistics are used in the final selection phase which follows next.

Selection Phase

The objective in the selection phase is to remove the remaining invalid patches and thus to select

the regions used for further processing. Since the chart discovery process currently cannot

handle invalid regions, it is important to remove all of them. It is however acceptable to

discard a few valid regions as long as one region per column and one per row remain.

Since the prototype implementation only gathers statistics on the side lengths of the region

masks during the statistics phase, the only filtering step possible is based on the comparison of

the side lengths, sorted by length, of each region against the median and to remove the regions

which deviate to much. The region is discarded, if one of its side lengths deviate more then

0.15 (the side_length_tolerance parameter) times the respective median side length from

the respective median side length.

Figure 2 on the following page shows an example of all found regions and the criteria of their

removal.
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Preselection Phase
maximum area exceeded

minimum area undershot

to close to border

parallelism

aspect ratio

patch mask similarity

Selection Phase
side lengths

Other
valid patch

Figure 2: Shown are all regions in the color of the first criteria, which matched the region and
led to their removal (except of course for “valid patch”).

2.3.3 Rasterized Quadrilateral Vertices Discovery

base1

base2

center of mass

V1

V2

V3

V4

Figure 3: Finding the vertices of a rasterized
quadrilateral.

In this section the algorithm used to assign

each region four vertices to form the region

mask is described.

Under the assumption that the camera or

its lens respectively applies a perspective

projection onto the chart, all patches will

be transformed into convex quadrilaterals

at the image plane and therefore all regions

corresponding to patch are the result of per-

spectively projecting and rasterizing square

patches. The goal of the algorithms de-

scribed here is to find the locations of the

vertices of these rasterized quadrilaterals by

looking at the shape of each region.

The mathematical objects defined subse-

quently are shown in Figure 3.

First the center of mass C of the region is cal-

culated. In SciPy this can be accomplished

easily with the center_of_mass function in the scipy.ndimage.measurements module.

Next the distance of every pixel of the region to that center is calculated and the farthest pixel

is chosen to be the first vertex V1.

Now an auxiliary orthogonal affine coordinate transform with origin C and first base vector
ÝÝÑ
CV1 “: pb1, b2q is constructed. The other base vector may be p´b2, b1q for example.5

5The two base vectors should have the same length, but the coordinate transform may but does not have to be
orthonormal.
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Next, the coordinates of all pixels of the region are recalculated relative to this new coordinate

system. Assuming row vectors, this is simple matrix inversion and multiplication:

¨

˚

˝

— newcoords1 —
...

— newcoordsn —

˛

‹

‚
“

¨

˚

˝

— coords1 —
...

— coordsn —

˛

‹

‚
¨

˜

— base1 —

— base2 —

¸

´1

looooooooomooooooooon

M´1

Since the coordinate system is orthogonal (and thus the transformation matrix M) inverting

M is equal to transposing M:

M :“

˜

b1 b2

´b2 b1

¸

ñ M´1 “ MT “

˜

b1 ´b2

b2 b1

¸

The remaining three vertices V2, V3 and V4 are chosen by selecting the farthest pixels along

the other three directions using the following three simple distance functions d2, d3 and d4:

d2pc1, c2q :“ c2

d3pc1, c2q :“ ´c1

d4pc1, c2q :“ ´c2

This choice of base vectors and distance functions in this order guaranties that the vertices

will be in clockwise orientation.
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2.4 Chart Discovery

edge vectors of the region masks

(intermediate) linear coordinate transform

(intermediate) integer coordinates

(corrected) integer coordinates

bilinear transform

Axis Orientation Guessing

Region Alignment

Chart Orientation Correction

Final Coordinate Transform

Figure 4: Chart Discovery Algorithm

The patch discovery procedure described in the pre-

vious section provides a most likely incomplete and

possibly erroneous set of regions in form of the ver-

tices of their region masks. Before a coordinate

transform capable of uniquely addressing each patch

within the image can be calculated, these regions have

to be brought into a grid-like order. Apart from the

problem of missing regions and additional erroneous

regions not corresponding to a patch but some other

object in the picture, this means the alignment of the

regions and the orientation of the chart have some-

how to be guessed.

The process, constructing the chart form the region

data, is called chart discovery and consists of first com-

pensating for small rotation (meant is a rotation up

to ±45°) of the chart by looking at the orientation of

the region edges (Axes Orientation Guessing). This

brings the chart in an upright position, which allows

row and column numbers to be assigned to each re-

gion (Region Alignment). From that an intermediate

coordinate system can be calculated. Then certain er-

rors like coarse rotation (by 90°, 180°, 270°), flipping

and shifting of the chart are corrected (Chart Orienta-

tion Correction) and the desired coordinate transform

is calculated (Final Coordinate Transform).

The whole processing chain is shown in figure 4.

2.4.1 Axes Orientation Guessing

Because the patches of the chart are aligned in a grid, they can be addressed using an affine

coordinate transform using only integer coordinates (Figure 5a on the following page). The

projection caused by the camera and the lens respectively transforms that into a bilinear co-

ordinate system6 (Figure 5b on the next page).

Thus the selected regions, assuming they all correspond to patches, ‘sit’ on a bilinear grid ad-

dressable by integer coordinates as well. Since the perspective distortion of the chart should

be relatively small, the problem of just finding the grid can be simplified by using an affine

coordinate transform as an reasonable approximation of the bilinear one.

6It is actually a homography, but a bilinear transformation should be a sufficient approximation.
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origin

row

col

(a) The patches of the color chart are addressable using
an affine coordinate system using only integer coor-
dinates.

origin

row1
row2

col1

col2

(b) In the image the affine coordinate system becomes
a bilinear coordinate system. Please note that four
vectors would suffice to describe the transform in-
stead of the displayed five (for example by replacing
row2 and col2 with their sum row2 ` col2).

Figure 5: Coordinate Systems

First the orientation of the axes of the affine coordinate transform, that is the direction but not

the length of row and col, is guessed from the edges of region masks. Because the edges of the

patches and the thus the edges of the regions masks are parallel to the axes of the coordinate

system, the axes orientation can be estimated using the later. The edges of the region masks

are shown as arrows in Figure 6a.

But there is still one problem: Although the “rasterized quadrilateral vertices discovery algo-

rithm” described in Section 2.3.3 guarantees that the vertices and thus the edges of all region

mask are always aligned clockwise, there is no guarantee that the ‘first’ edge of one region

mask is on the ‘same side’ as the ‘first’ edge of another region mask.

The solution chosen here is to apply four-means clustering on the set of all edge vectors

(shown in Figure 6b) which generates four vectors, each one parallel to one side of all re-

gion masks. Since only two vectors are needed, the two selected vectors are combined with

their respective negated opposite ones by averaging.

2.4.2 Region Alignment

Although the previous step generates the correct orientation of the base vectors of the affine

coordinate transform, it does not provide information about the correct base vector length nor

about the origin vector. Therefore the lengths are temporarily set one pixel and the origin is

set to be located at the image origin (effectively a linear transform). Now the coordinates of

the region masks centers are calculated according to this coordinate system. This is simply a

rotation of the coordinates in pixel space to align the region masks edges with the axes of the

image coordinate system.

By looking at either the row or the column coordinates of the region mask centers, which is
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(a) The edge vectors of the region masks of the se-
lected regions shown as arrows at the location of
the respective edge.

(b) In gray the set of all region mask edge vectors and
in black the means of all vectors within one of the
four clusters.

Figure 6: The base vectors of the intermediate coordinate system are obtained by clustering all
region mask edge vectors into four clusters and then combining two of the cluster
means with the respective negated opposite cluster mean by average the two.

equal to a projection onto either axis, it is clearly visible, that the coordinates from clusters

(see 7a on page 17). Every cluster belongs to one row or one column of the chart, so by

assigning integers to the clusters it is possible to address each region by integer row and

column coordinates, which is the desired result.

Special care has to be taken if complete rows or columns of regions are missing. This could

be compensated for by looking at the distance between adjacent cluster (i. e. adjacent rows

or columns respectively) to detect gaps. The prototype implementation currently does not

handle missing rows or columns, but at least there is no problem as long as there is at least

one region per row and column.

Now the complete intermediate affine coordinate transform, including the origin vector, is

calculated by fitting a affine coordinate transform to the region centers locations and coordi-

nates we have now. A least square solution can be found by expressing the region center lo-

cations and coordinates as homogeneous coordinates, which gives an overdetermined linear

equation, and by calculating a Moore-Penrose pseudoinverse and thus solving the following

equation:

¨

˚

˝

locRow1 locCol1 1
...

...
...

locRown locColn 1

˛

‹

‚
“

¨

˚

˝

coordsRow1 coordsCol1 1
...

...
...

coordsRown coordsColn 1

˛

‹

‚
¨ TransformMatrix

But these coordinates might still be wrong, because of missing first or last rows or columns

or because the chart is flipped or rotated in the image. This cannot be corrected using the

information available at this stage. Instead the colors of the pixels covered by the region

masks have to be taken into account, which is the topic of the next section.
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2.4.3 Chart Orientation Correction

Although the intermediate coordinate transform calculated in the last section allows to ad-

dress the patches by integer coordinates, these coordinates might sill be wrong, because the

chart could be rotated (by 90°, 180° or 270°) or flipped7. The coordinates could as well be

shifted because of missing first or last rows or columns, but the reference implementation

currently does not regard that.

These errors cannot be corrected using just geometric information, since all patches have the

same shape. Therefore the colors of the pixels of each region have to be taken into account

by comparing them to some reference data8. The idea is to generate all possible (flipped,

rotated, shifted) coordinate transforms and to choose the one with least color error while

compensating for the illumination.

caccrc.py partly corrects the rotation by simply making the larger dimension the column

dimension. Then it is checked, if reversing one or both dimension gives a better color match,

which means currently four possibilities are checked. At the same time, shifting caused by

missing first or last rows or columns could be tested for, which is however currently not

implemented.

The current prototype implementation uses an affine color transform for illumination com-

pensation, which is not suitable for color correcting the images later, but serves the purpose

of finding the correct coordinate transform, and chooses the coordinate transform with the

smallest color error.

The calculation of this color transform is done exactly like the calculation of the affine coordi-

nate transform in the previous section, just using colors instead of locations. This transform

is then applied to the image colors and expressed a non-homogeneous coordinates. Then

these colors are subtracted from the reference colors and the root-mean-square of all color

components is calculated as the error measure.

7Although a flipped chart is due to some ‘error’ in the image processing chain, because the backside of the chart
has no patches. But since the algorithms might flip the chart by swapping row and column coordinates, this is
nonetheless checked for.

8The reference data for the “Color Checker” chart can be downloaded from the X-Rite website at
http://xritephoto.com/ph_product_overview.aspx?ID=1192 in form of the PDF http://xritephoto.com/

documents/literature/en/ColorData-1p_EN.pdf.
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(a) Shown are crosses through every region center
with both cross lines being parallel to the axes of
the intermediate coordinate system. Clustering is
clearly visible which allows to assign row and col-
umn numbers to each region.
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(b) The final bilinear coordinate transform.

Figure 7

2.4.4 Final Coordinate Transform

In the last step a final coordinate transform is generated by ‘fitting’ a bilinear coordinate trans-

form onto the locations of the region centers, simply calculated by averaging the region mask

vertices, and the region coordinates, which were calculated and corrected in the previous

steps.

The prototype implementation uses the scipy.optimize.leastsq function, which in turn

uses the MINPACK’s “lmdif” and “lmder” algorithms, to ‘fit’ the bilinear coordinate system

onto the data. The definition of bilinear coordinate transform currently used by caccrc.py,

which might differ from depiction shown early, is defined as follows:

locationprow, colq “ origin ` row ¨ row2 ` col ¨ col2 ´ row ¨ col ¨ prow2 ´ row1 ` col2 ´ col1q

with col2 “ pcol1 ` row2 ´ row1q.

An example for the final coordinate transform is depicted in figure 7b.
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3 Color Analysis and Correction

3.1 Overview

In this section a method is demonstrated how to use the gathered data to correct the colors of

a captured image or rather how to align the colors of one image to another.

Therefor first a model for how a camera transforms light into color is proposed in Section 3.2,

followed by a model for color correction in Section 3.3.

3.1.1 Related Work

The camera model, presented in the next section, is based on the author’s experience with

colorimetry and spectrometry. The author considers the book of WYSZECKI and STILES the

standard work on that and similar topics (see [ColorScience]).

The idea of using a scaling or a linear transform based color correction model and espe-

cially the use of the EMoR model of response is inspired by the author’s use of the Hugin

panorama creation software (see [Hugin]), which implements a similar model for color cor-

rection to seamlessly stitch sets of images together to form a panorama. This model is briefly

described in PABLO D’ANGELOs paper “Radiometric alignment and vignetting calibration”

(see [HuginPaper]).

E. REINHARD ET AL. have written a paper on the topic of aligning the colors of one image to

another, which they call “color transfer”. Their method is based on transforming the image

from RGB space (implicitly assuming a certain color space) into the LMS space (the space

modeling the reactions of the cones in the human retina). Then they apply a log transform

and then further transform the colors into the lαβ space proposed by RUDERMAN ET AL.. The

the colors are then shifted and scaled based on the mean and standard deviation of the target

and the reference images and then transformed back into the RGB scpae. All transforms,

except for the log part, are, as far the author can tell, linear or affine.

A different method is presented in paper “Color Transfer in Correlated Color Space” of X.

XIAO and L. MA (see [ColorTransfer2]). Their method works in RGB space by constructing

an affine transform based on the Singular Value Decomposition of the covariance matrices of

the target and reference images.
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3.2 Camera Color Model

Light : Spec

Patch : Spec Ñ Spec

Sensor : Spec Ñ r0; 1s3

RawChannelMix : r0; 1s3 Ñ r0; 1s3

Response : r0; 1s3 Ñ r0; 1s3

Spec :“ pWaveLength Ñ r0; 1sq

Figure 8: A general camera color model in form of chain of functions.

Analog Processing

First, it is assumed that the color chart is homogeneously illuminated by some light source

with a spectral distribution modeled by the function xLighty mapping wavelength onto in-

tensity:

Light : Wavelength Ñ r0; 8r

Lightpλq fl “intensity of wavelength λ”

The symbol Spec will be used as an abbreviation for such a function which maps Wavelength

onto Intensity:

Spec :“ pWavelength Ñ r0, 8rq

The light is reflected by each patch differently depending on its reflectance. The function

xPatchiy maps the initial light spectrum onto the reflected spectrum:

Patchi : Spec Ñ Spec

Patchipλq fl “intensity of wavelength λ of the reflected light”

The light will pass through the lens and the sensor color filter, hit the sensor, be transformed

into an electric charge, amplified and digitized into three raw values9 for each image pixel.

All effects, if they depend on wavelength or not or if they are linear or not, are modeled by

the xSensory function:

Sensor : Spec Ñ r0; 1s3 “

¨

˚

˝

r0; 1s

r0; 1s

r0; 1s

˛

‹

‚
Sensor fl

¨

˚

˝

“raw signal of ‘red’ pixels”

“raw signal of ‘green’ pixels”

“raw signal of ‘blue’ pixels”

˛

‹

‚

In the color correction model described later we will in fact assume that the xSensory function

is linear which is not true for real sensors due to non-linear effects in the sensor such as

saturation.

9Assuming a sensor with three different filter colors.
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Digital Processing

Now, in the digital domain, the camera has to perform (at least) two additional tasks: It has

to adjust the white point to match those of the light source (or some predefined white point)

and to apply or correct a certain non-linear response (often called “gamma”).

In the following it will be assumed, that the white point correction is a simple linear transform

xRawChanelMixy through multiplication of each color triple with a 3x3 matrix:

RawChannelMix : r0; 1s3 Ñ r0; 1s3

RawChannelMix

¨

˚

˝

rraw

graw

braw

˛

‹

‚
:“

¨

˚

˝

rr gr br

rg gg bg

rb gb bb

˛

‹

‚
¨

¨

˚

˝

rraw

graw

braw

˛

‹

‚

The xRawChannelMixy function also is ‘responsible’ for intensity differences due to different

aperture, sensor sensitivity (“ISO”) or exposure time settings.

The last step in the camera model is the application of a response curve (correction) via the

xResponsey function, which is assumed to be a monotone function:

Response : r0; 1s3 Ñ r0; 1s3

How the response function is models is described in Section 3.3.1.
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3.3 Color Correction Model

The objective of the color correction step is to let the colors look as equal as possible across a

set of cameras of an array by adjusting the colors of all cameras to match one reference camera

of choice. The reference camera can be a virtual camera, which only exists as a model, or a

real camera in the array.

It is assumed that the reason for color errors originate in differences of:

Ź the sensor characteristics (including its color filter array) modeled by the xSensory func-

tion,

Ź the used in-camera color transform including different aperture, sensor sensitivity (“ISO”)

or exposure time settings represented by the xRawChannelMixy function or the used

matrix (assuming a linear transform) or

Ź the applied camera response curve represented by the xResponsey function.

The perfect correction of these color errors would require the knowledge all model parameters

and the model to perfectly characterize the camera, which is beyond the possibilities of this

thesis’ approach, except maybe for some virtual reference camera models which have defined

behavior.

The response function and the mix of raw channels of the camera and the reference camera

(represented by Responsemain, RawChannelMixmain, Responseref and RawChannelMixref ) will

simply be guessed from the color data.

An overview over the color correction model is depicted in Figure 9 on the next page.

If the reference camera is real camera of the array and the array consists of identical cameras

set to the same settings, most of the parameters should be quite similar (indicated by the

dashed lines ). Other parameters are assumed to or intended to be equal (indicated by the

solid lines ).

3.3.1 Camera Response Models

Since only one color sample per patch is extracted, only a handful samples are available to

guess the response function from. Moreover, the only restriction for that function is that it has

to be monotone and maps the range (normalized to r0; 1s) of allowed amounts of light falling

onto the sensor (input irradiance) onto the possible image brightnesses (normalized to r0; 1s as

well). Beyond that, it could have any shape and thus an unlimited number of parameters. But

with only a few color samples at hand, only a limited number of parameters can reasonably be

guessed. This is aggravated by the fact, that the color correction parameters will be guessed

at the same time, which increases the total number of parameters even further. So the (more

or less obvious) idea is to use a model for camera response, which only has a small number

of parameters.
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Figure 9: Shown are the functions involved in ‘creating’ and correcting image colors. Parame-
ters, which ideally would be equal, but most likely won’t, are joined by dashed lines
and parameters, which assumed or intended to be equal, are joined by solid lines.

A possible very simple model would be a gamma function like

brightnesspirradianceq :“ irradianceγ

which has only one parameter and is often used as the response function in defined (standard)

color spaces and models. But real cameras do not have a such simple response curve, but non

the less, the gamma function could be used if artificial images or certain reference images

with defined response are used as input.

Empirical Model of Response (EMoR)

Another approach is to approximate the response function of a real camera with some stan-

dard mathematical model, like a low degree polynomial. An even better solution has been

proposed by GROSSBERG and NAYAR in [EMoR]. Their idea was to directly find the space

of existing response functions of real analog films and digital sensors, not some standard

function space like polynomials.

Therefor they collected response curves from various analogs films and digital sensors and

build a database from that they called “Database of Response Functions” (DoRF) available

at [EMoR-Web]. To create a model from that large set of response functions, they used a
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Figure 10: Base of the “Empirical Model of Response” (EMoR) vector space of response func-
tions. Data from [EMoR-Web].

standard method of signal processing to reduce the number of parameters needed to describe

an arbitrary response function: Principal Component Analysis (PCA).

PCA requires a set of vectors of a finite-dimensional vector space. But the space of monotone

functions has infinite dimension, so the functions have to be sampled first to “reduce” their

dimensionality to some finite value. GROSSBERG and NAYAR chose to take one thousand

samples per function and thus a one-thousand-dimensional vector space. From that the PCA

generates a series of base functions (principal components) of decreasing ‘importance’, the

first one being the average of all response functions. The first few base functions are shown

in Figure 10.

GROSSBERG and NAYAR found out, that three to five base functions (not counting the average

function, for which no parameter has to be calculated or stored) may suffice to approximate

most response functions very closely. So we will use the EMoR as our standard model for

response functions.

3.3.2 Color Transforms

Now after linearizing the response of the target image and the reference image using the

EMoR model, a color transform is calculated, which should map, with minimal error, the col-

ors of the target image onto the colors of reference image. Since this is as well an optimization

problem, a model with few parameters is needed.

Currently only two simple linear models are used: First, a simple scaling of each channel:

¨

˚

˝

rref

gref

bref

˛

‹

‚
“

¨

˚

˝

rscale ¨ rtarget

gscale ¨ gtarget

bscale ¨ btarget

˛

‹

‚
“

¨

˚

˝

rscale 0 0

0 gscale 0

0 0 bscale

˛

‹

‚
¨

¨

˚

˝

rtarget

gtarget

btarget

˛

‹

‚
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which is a model with only three parameters. And second a linear transform which could

also be called channel (re-)mixing:

¨

˚

˝

rref

gref

bref

˛

‹

‚
“

¨

˚

˝

rr gr br

rg gg bg

rb gb bb

˛

‹

‚
¨

¨

˚

˝

rtarget

gtarget

btarget

˛

‹

‚

which is a superset of the scaling model and has nine parameters.

A better model would be a transform based on the target and the reference color temperature

and tint (green-pink-balance) which has only four parameters. But since color temperature

based model eventually results in a linear transformation matrix as well (although it is not

linear in its parameters) and since they are far more complicated and might even require

knowledge about the camera sensor sensitivity spectra, they are not considered here.

3.3.3 Fitting Models to Data

Now, having a model for camera responses and for color transformations, the parameters of

these models have to be adjusted to match the set of data points gathered from the color chart

within the images. This is done by using a generic optimization algorithm, which needs some

‘error measure’ to minimize.

After some experimentation with different error measures, the author decided to use a simple

geometric distance. First, given the colors points c1 :“ pr1, g1, b1q and c2 :“ pr2, g2, b2q, the

distance between them is defined by:

∆pc, c1q :“
b

pr ´ r1q2 ` pg ´ g1q2 ` pb ´ b1q2

Given two sets D1 “ pc1, c2, . . . q, D2 “ pc1

1, c1

2, . . . q of color points, their total distance is defined

by:

∆pD1, D2q :“

d

ÿ

i

p∆pci, c1

iqq2 “

d

ÿ

i

`

pri ´ r1

iq
2 ` pgi ´ g1

iq
2 ` pbi ´ b1

iq
2
˘

The prototype implementation uses a variant of the BFGS algorithm, namely the fmin_l_bfgs_b

function from the scipy.optimize module.

Linking Parameters

To improve robustness, certain parameters can be linked together by defining them to be

equal. This is possible when it can be assured, that two or more pictures are shot using the

same camera response function or color transform, for example because the same camera

with identical settings where used. This reduces the number of parameters to be guess by

the optimizer and thus improves robustness while potentially increasing the error due to the

model becoming ‘simpler’.
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4 Practical Experiments and Results

4.1 Color Correction Experiments

4.1.1 Basic Setup

In this section the author wants to present the results of applying the caccrc.py software,

which implements the algorithms described earlier, to a series of photographs made with two

different cameras of him.

To verify if color correction works as expected, multiple shots were taken of a test scene illu-

minated using daylight. All used shots are shown in Figure 11 and Figure 12.

The cameras were a “Canon EOS 400D”, a small single lens reflex (SLR) camera, and a “Canon

PowerShot A650 IS”, an older compact camera.

Between the shots, white balance, color correction (only EOS 400D) and exposure compen-

sation settings were varied to simulate different cameras. Since the environment was not

controlled, the illumination might have varied a little as well, but that should impact the

results.

Additionally software was applied to a mixed set of shots from both cameras to see if the

calculation of the response function works out. The mixed set contains all shots except the

pure ‘+1 EV’ and ‘−1 EV’ shots for reasons of clarity.

Both Cameras were set to aperture priority mode (meaning fixed aperture, variable exposure

time) and the settings where varied according to Table 1 on the next page.
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Canon EOS 400D

Shot Settings (WB, CC, ExpComp)

IMG_5745 –
IMG_5746 “Tungsten”
IMG_5747 “Fluorescent”
IMG_5748 “Sunny”
IMG_5749 “Cloudy”
IMG_5750 “Shade”
IMG_5751 −1 EV
IMG_5752 +1 EV
IMG_5753 “Tungsten”, −1 EV
IMG_5754 “Sunny”, +1 EV
IMG_5755 CC: +3 Blue, +5 Green
IMG_5756 CC: +3 Amber, +5 Magenta

(a) Settings used for the shots of the EOS 400D series.

Canon PowerShot A650 IS

Shot Settings (WB, ExpComp)

IMG_0396 –
IMG_0397 “Tungsten”
IMG_0398 “Fluorescent”
IMG_0399 “Sunny”
IMG_0400 “Cloudy”
IMG_0401 −1 EV
IMG_0402 +1 EV
IMG_0403 “Tungsten”, −1 EV
IMG_0404 “Cloudy”, +1 EV

(b) Settings used for the PowerShot A650 series.

Table 1: Camera settings used while shooting the different images. Common settings, unless
stated otherwise, where: aperture priority mode with aperture set to 5.0, automatic
color balance and exposure time.
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(a) IMG_5745 (Auto) (b) IMG_5746 (“Tungsten”) (c) IMG_5747 (“Fluorescent”) (d) IMG_5748 (“Sunny”)

(e) IMG_5749 (“Cloudy”) (f) IMG_5750 (“Shade”) (g) IMG_5751 (−1 EV) (h) IMG_5752 (+1 EV)

(i) IMG_5753 (“Tungsten”, −1 EV) (j) IMG_5754 (“Sunny”, +1 EV) (k) IMG_5755 (CC: +3 Blue, +5 Green) (l) IMG_5756 (CC: +3 Amber, +5 Ma-
genta)

Figure 11: Shown are all images from the EOS 400D set with the used settings in parentheses.
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(a) IMG_0396 (Auto) (b) IMG_0397 (“Tungsten”) (c) IMG_0398 (“Fluorescent”)

(d) IMG_0399 (“Sunny”) (e) IMG_0400 (“Cloudy”) (f) IMG_0401 (−1 EV)

(g) IMG_0402 (+1 EV) (h) IMG_0403 (“Tungsten”, −1 EV) (i) IMG_0404 (“Cloudy”, +1 EV)

Figure 12: Shown are all images from the PowerShot A650 set with the used settings in parentheses.
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4.1.2 Single Camera Results

In the first Scenario an array of cameras of identical type but with slightly different color

reproduction behavior, due to normal variations of the material or due to errors in the setup

(for example different aperture settings), is simulated.

Canon EOS 400D Set

The results of applying the color correction software to the set of twelve shots made with

the Canon EOS 400D and the effect of using different color correction models is shown in

Figure 13 on the following page.

The attempt to match the reference color worked quite successful for the shots without ex-

posure compensation, which might work even be better, if the optimizer would not have to

match the colors of the shots with exposure compensation. But at least the artificially wrong

exposure is clearly visible in the color transformations matrices and can thus be detected and

manually corrected.

The color transformation matrices used in the linear+EMoR setup is shown in Figure 14 on

page 31 and the calculated camera response and the used EMoR parameters are shown in

Figure 15 on page 31.

Canon PowerShot A650 Set

The results for the PowerShot A650 set are shown in Figure 16 on page 32.

For the PowerShot set similar or even better results were achieved. For some reason the

exposure compensation shots do align better than the respective shots of the EOS 400D set.

The color transformation matrices used in the linear+EMoR setup is shon in Figure 17 on

page 33 and the calculated camera response and the used EMoR parameters are shown in

Figure 18 on page 33.
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Color Comparison for the EOS 400D Set

(a) Colors without correction.

(b) . . . with scale transform.

(c) . . . with linear transform.

(d) . . . with scale transform and EMoR.

(e) . . . with linear transform and EMoR.

Figure 13: Shown are the color samples extracted from the patches of the color chart as de-
picted in the different Canon EOS 400D shots with different settings for color cor-
rection. The top left field of each patch of the chart is extracted from the reference
image stays unchanged after color correction.
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Color Transform Parameters for the EOS 400D Set

— IMG_5745 — — IMG_5746 — — IMG_5747 —
(WB: “Auto”) (WB: “Tungsten”) (WB: “Fluorescent”)

—

¨

˝

`2.58 ´0.08 ´0.04
`0.11 `1.83 ´0.07
´0.14 `0.05 `1.48

˛

‚

¨

˝

`1.89 ´0.02 ´0.03
`0.03 `1.69 ´0.03
´0.08 `0.00 `1.45

˛

‚

— IMG_5748 — — IMG_5749 — — IMG_5750 —
(WB: “Sunny”) (WB: “Cloudy”) (WB: “Shade”)

¨

˝

`1.83 `0.02 ´0.02
´0.07 `1.96 `0.05
`0.07 ´0.12 `2.45

˛

‚

¨

˝

`1.66 `0.03 ´0.02
´0.08 `1.98 `0.10
`0.11 ´0.16 `2.76

˛

‚

¨

˝

`1.63 `0.04 ´0.01
´0.13 `2.12 `0.17
`0.20 ´0.20 `3.26

˛

‚

— IMG_5751 — — IMG_5752 — — IMG_5753 —
(−1 EV) (+1 EV) (WB: “Tungsten”, −1 EV)

¨

˝

`3.85 ´0.05 ´0.06
´0.25 `3.54 ´0.18
`0.05 `0.03 `3.85

˛

‚

¨

˝

`1.09 ´0.02 ´0.03
`0.02 `1.13 `0.01
´0.04 ´0.03 `1.08

˛

‚

¨

˝

`4.76 ´0.14 ´0.03
`0.08 `3.05 ´0.25
´0.23 `0.10 `2.47

˛

‚

— IMG_5754 — — IMG_5755 — — IMG_5756 —
(WB: “Sunny”, +1 EV) (CC: +3 Blue, +5 Green) (CC: +3 Amber, +5 Magenta)

¨

˝

`0.94 ´0.01 ´0.02
`0.01 `1.07 `0.04
´0.01 ´0.07 `1.23

˛

‚

¨

˝

`2.31 ´0.02 ´0.03
`0.02 `1.97 ´0.00
´0.04 ´0.05 `2.04

˛

‚

¨

˝

`1.83 `0.01 ´0.03
´0.07 `2.03 ´0.01
´0.01 ´0.04 `1.91

˛

‚

Figure 14: The parameters of the linear color transform used to correct the shots of the EOS
400D series to look like the reference shot.

Camera Response for the EOS 400D Set
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0

31

63

95

127

159

191

223

255

p1 “ `2.157

p2 “ ´0.485

p3 “ `0.453

p4 “ ´0.177

p5 “ `0.084

Figure 15: The calculated response curves for the EOS 400D series and the factors for the base
functions h1 to h5.
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Color Comparison for the PowerShot A650 Set

(a) Colors without correction.

(b) . . . with scale transform.

(c) . . . with linear transform.

(d) . . . with scale transform and EMoR.

(e) . . . with linear transform and EMoR.

Figure 16: Shown are the color samples extracted from the patches of the color chart as de-
picted in the different Canon PowerShot A650 shots with different settings for color
correction. The top left field of each patch of the chart is extracted from the refer-
ence image stays unchanged after color correction.
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Color Transform Parameters for the PowerShot A650 Set

— IMG_0396 — — IMG_0397 — — IMG_0398 —
(WB: “Auto”) (WB: “Tungsten”) (WB: “Flourescent”)

—

¨

˝

`2.18 ´0.01 ´0.02
´0.07 `1.80 ´0.16
`0.18 ´0.01 `1.17

˛

‚

¨

˝

`1.64 `0.01 `0.00
`0.01 `1.63 ´0.00
`0.01 `0.01 `1.67

˛

‚

— IMG_0399 — — IMG_0400 — — IMG_0401 —
(WB: “Sunny”) (WB: “Cloudy”) (−1 EV)

¨

˝

`1.31 `0.03 `0.02
`0.03 `1.44 `0.05
´0.04 ´0.01 `1.76

˛

‚

¨

˝

`0.96 `0.04 `0.02
`0.02 `1.25 `0.08
´0.07 ´0.02 `1.87

˛

‚

¨

˝

`2.17 ´0.04 `0.00
`0.02 `2.20 ´0.07
`0.03 `0.10 `2.39

˛

‚

— IMG_0402 — — IMG_0403 — — IMG_0404 —
(+1 EV) (WB: “Tungsten”, −1 EV) (WB: “Cloudy, +1 EV”)

¨

˝

`0.59 ´0.00 `0.01
`0.03 `0.60 ´0.04
´0.01 `0.02 `0.65

˛

‚

¨

˝

`2.42 ´0.01 ´0.02
´0.06 `2.19 ´0.11
`0.19 `0.02 `1.71

˛

‚

¨

˝

`0.72 `0.03 `0.01
`0.01 `0.84 `0.01
´0.04 ´0.02 `1.14

˛

‚

Figure 17: The parameters of the linear color transform used to correct the shots of the Pow-
erShot A650 series to look like the reference shot.

Camera Response for the PowerShot A650 Set

0 31 63 95 127 159 191 223 255
0

31

63

95

127

159

191

223

255

p1 “ `2.309

p2 “ ´0.340

p3 “ `0.257

p4 “ `0.021

p5 “ `0.030

Figure 18: The calculated response curves for the PowerShot A650 series and the factors for
the base functions h1 to h5.
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4.1.3 Multiple Camera Results

In a second scenario a camera array with cameras of two different types was simulated. So

the mixed set, used as the basis of the following results, consists of all but four shots of the

EOS 400D set and the PowerShot A650 set. The missing shots are the ones which only feature

a simple exposure compensation and are removed for reasons of clarity only.

The results of applying the color correction software onto this set, again with different models,

whereby the two subsets are always assigned two different camera responses of course, are

shown in Figure 20 on the following page.

The results are quite good but not as good as in the single camera scenario. Especially the

response curve differ quite heavily from the ones calculated in the single camera scenarios. It

seems, that either there is not enough information available to correctly fit the model or that

the model is not good enough or both.

Like before the color transform matrices of the linear+EMoR setup are shown in Figure 21

on page 36 and the calculated camera responses along with the used EMoR parameters are

shown in Figure 19.

Shots of a ‘Real’ Scene

As a final example, a set of four image from the pool of images used while working on this

topic has been fed into the caccrc.py program and the results are shown in Figure 22.

Camera Response for the Mixed Set
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0

31

63

95

127

159

191

223

255
p1 “ `0.500

p2 “ `0.643

p3 “ ´0.197

p4 “ `0.091

p5 “ `0.166

p1 “ `1.378

p2 “ ´0.267

p3 “ `0.389

p4 “ ´0.157

p5 “ `0.093

Figure 19: The calculated response curves for the mixed set and the factors for the base func-
tions h1 to h5. The dashed lines show the responses calculates in the single camera
scenarios.
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Color Comparison for the Mixed Set

(a) Color without correction.

(b) . . . with scale transform

(c) . . . with linear transform.

(d) . . . with scale transform and EMoR.

(e) . . . with linear transform and EMoR.

Figure 20: Shown are the color samples extracted from the patches of the color chart as de-
picted in the different shots of the mixed set with different settings for color cor-
rection. The top left field of each patch of the chart is extracted from the reference
image stays unchanged after color correction.
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Color Transform Parameters for the Mixed Set

— IMG_5745 — — IMG_5746 — — IMG_5747 —
(WB: “Auto”) (WB: “Tungsten”) (WB: “Fluorescent”)

—

¨

˝

`2.05 ´0.06 ´0.03
`0.09 `1.46 ´0.06
´0.11 `0.05 `1.20

˛

‚

¨

˝

`1.53 ´0.01 ´0.02
`0.02 `1.36 ´0.03
´0.06 `0.01 `1.18

˛

‚

— IMG_5748 — — IMG_5749 — — IMG_5750 —
(WB: “Sunny”) (WB: “Cloudy”) (WB: “Shade”)

¨

˝

`1.48 `0.02 ´0.01
´0.06 `1.56 `0.05
`0.06 ´0.08 `1.94

˛

‚

¨

˝

`1.35 `0.03 ´0.01
´0.07 `1.57 `0.09
`0.09 ´0.11 `2.17

˛

‚

¨

˝

`1.33 `0.04 `0.00
´0.11 `1.68 `0.14
`0.16 ´0.13 `2.57

˛

‚

— IMG_5753 — — IMG_5754 — — IMG_5755 —
(WB: “Tungsten”, −1 EV) (WB: “Sunny”, +1 EV) (CC: +3 Blue, +5 Green)

¨

˝

`3.70 ´0.08 ´0.00
`0.09 `2.38 ´0.20
´0.15 `0.11 `1.96

˛

‚

¨

˝

`0.78 ´0.01 ´0.02
`0.00 `0.88 `0.03
´0.01 ´0.06 `1.00

˛

‚

¨

˝

`1.84 ´0.01 ´0.02
`0.02 `1.57 `0.00
´0.02 ´0.03 `1.63

˛

‚

— IMG_5756 — — IMG_0396 — — IMG_0397 —
(CC: +3 Amber, +5 Magenta) (WB: “Auto”) (WB: “Tungsten”)

¨

˝

`1.48 `0.02 ´0.02
´0.05 `1.61 ´0.01
´0.01 ´0.02 `1.53

˛

‚

¨

˝

`1.51 `0.04 `0.01
´0.02 `1.41 `0.11
`0.02 ´0.01 `1.26

˛

‚

¨

˝

`1.85 `0.04 ´0.00
´0.08 `1.45 ´0.02
`0.17 ´0.02 `0.86

˛

‚

— IMG_0398 — — IMG_0399 — — IMG_0400 —
(WB: “Flourescent”) (WB: “Sunny”) (WB: “Cloudy”)

¨

˝

`1.42 `0.04 `0.02
´0.02 `1.33 `0.11
`0.02 ´0.02 `1.19

˛

‚

¨

˝

`1.14 `0.05 `0.03
´0.00 `1.17 `0.13
´0.03 ´0.04 `1.25

˛

‚

¨

˝

`0.84 `0.05 `0.02
´0.01 `1.02 `0.15
´0.06 ´0.06 `1.32

˛

‚

— IMG_0403 — — IMG_0404 —
(WB: “Tungsten”, −1 EV) (WB: “Cloudy, +1 EV”)

¨

˝

`2.04 `0.06 `0.01
´0.07 `1.73 `0.05
`0.20 `0.01 `1.22

˛

‚

¨

˝

`0.62 `0.03 `0.01
`0.00 `0.71 `0.06
´0.04 ´0.04 `0.82

˛

‚

Figure 21: The parameters of the linear color transform used to correct the shots of the mixed
set to look like the reference shot.
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(a) The reference image (“eos5_4”).

(b) The original shots (“eos5_1”, “eos5_3”, “iphone4”). . .

(c) . . . and the color corrected version.

Figure 22: Shown are several images (the originals provided by Prof. Eisert) and their color corrected version of them using the image
in Figure 22a as reference. For each shot a separate response curve was calculated.
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4.2 Optimal Processing Parameter Guessing

The Algorithms described in Section 2 “Chart Discovery Algorithm” depend on various pa-

rameters, which have to be determined somehow. The obvious method would be to experi-

ment with the values until the results are satisfactory, but this requires a way to measure the

quality of the result.

The result of the chart discovery process is primarily a coordinate system for the chart as it

is depicted in that shot. Thus first the quality of that coordinate system should be measured

to begin with. For that a reference coordinate system is needed, which the author created

by hand-drawing ‘reference pictures’ for some of the shots10. In them the region (connected

set of pixel) for each patch are marked. All images with their reference image are shown in

Figure 23 on the next page.

These reference images are similar to the images of “flat” pixels used in the chart discovery

process, but here the patch belonging to each regions is already encoded. So its possible to

jump right to the coordinate system creation by calculating the centers of mass and use them

as the patch locations in the picture.

Then the positions of the patches according to the reference image can be compared to the

positions of the patches according to the coordinate system obtained from the chart discovery

process applied to the same shot. The error is calculated in image space with normalized

image size and the mean Euclidean distance is used as the error measure.

Unfortunately, since the process currently is not robust, the chart discovery may fail com-

pletely, for example because not enough regions (complete row or columns missing) or erro-

neous regions, not associated with a patch but some other object, were found, so the failures

of that process are counted as well and used as a second measure.

Now one parameter is varied at a time leaving the others at their default setting to see, if this

changes the quality of the result. The optimal setting should primarily minimize the failure

rate. After that has been achieved, the improvement of the accuracy of the grid is the second

objective.

The results are shown in Figures 24, 25 and 26 on the following pages.

10Some of the shots were provided by the Prof. Eisert
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Figure 23: Shown are all images used in the evaluation with their respective reference image
next to them. The inner of the white quadrilaterals shows the computed area used
for color extraction.
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Mean Position Error Failure Rate
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(a) The “gradient_sigma” parameter controls amount of high fre-
quency filtering and is used as a factor in calculating the standard
deviation of the Gaussian kernel used for filtering. More filter-
ing reduces the influence of noise but weakens edges and degrades
shapes.
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(b) The “gradient_threshold” parameter controls which pixels are
considered flat and thus part of a region. Larger values cause more
and larger regions with regions fusing eventually.
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(c) For performance reasons not the full resolution image is processed,
but a down-scaled version. The “processing_image_size_bounds”
parameter sets this smaller size. Smaller values improve perfor-
mance but reduce the precision of the calculated coordinate systems
and cause more errors.

Figure 24: Shown are the failure rate and the mean position error relative to variations of
certain parameters. The default value is indicated by a dashed line.

40



Mean Position Error Failure Rate
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(a) The “maximum_relative_patch_area” and “minimum_relative_patch_area” parameters control, how large a region must be or may be to be
considered. To large and to small regions are ignored.
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(b) The “border_distance_threshold” parameter controls how far a

region must be from the border of the image. Regions near the bor-
der are ignored.
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(c) The “mask_coverage_tolerance” parameters controls, to which
fraction the region may deviate from the rasterized region mask. If
their shapes, counted pixel by pixel, differ to much, the region is
discarded.

Figure 25: Shown are the failure rate and the mean position error relative to variations of certain parameters. The default value is
indicated by a dashed line.
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Mean Position Error Failure Rate
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(a) The “parallelism_tolerance” parameter controls how ‘parallel’ the
opposite edges of the region masks must be for the region to be con-
sidered.
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(b) The “aspect_ratio_tolerance” parameter controls who far the as-
pect ratio of the region mask may deviate from 1 (square).
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(c) The “side_length_tolerance” parameter how far the side lengths
of all preselected region masks may deviate for the region to be se-
lected.

Figure 26: Shown are the failure rate and the mean position error relative to variations of
certain parameters. The default value is indicated by a dashed line.
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5 Conclusion

In the thesis the author presented an experimental method of finding a color chart within an

image using a bottom-up constructive method based on finding regions with homogeneous

texture and combining them into a chart.

Further, a model for camera color processing and, based on that, a model for color correction

has been proposed, using the EMoR model for camera responses.

Although the algorithms, in their current implementation, have some robustness issues, their

is plenty room for improvement and some possible way to do that were already indicated in

the text.

Finally, a reference implementation of the presented algorithms was applied to a series of

images to test and show the capabilities of the proposed approach, as well as test the influence

of different processing parameters on the quality of the result.
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