
Algorithms and Data Structures

Ulf Leser

(Abstract) Data Types

Ulf Leser: Algorithms and Data Structures 2

Content of this Lecture

• Example
• Abstract Data Types
• Two important Examples: Stacks and Queues

Ulf Leser: Algorithms and Data Structures 3

Problem

• Suppose you are in the centre of Hamburg and are looking
for the next (i.e., closest) laptop repair shop

• Fortunately, your mobile knows your position and has a list
of laptop repair shops in Hamburg

• How does your mobile find the closest shop?

Ulf Leser: Algorithms and Data Structures 4

Classical Post Box Problem

• Suppose a city with n boxes located at arbitrary positions
• You wake up in the middle of the city with a letter in your

hand; the letter should be thrown in the closest post box
• How do you find the closest post box?

– You have a list with locations of all post boxes
• Looking at a map is not

the answer
• Devise an algorithm

S: set_of_coordinates;
c: coordinate (x,y)
…

Ulf Leser: Algorithms and Data Structures 5

Simple Solution

Input
S: set_of_coordinates;
c: coordinate (x,y); # your loc

t: coordinate; # closest box
m: real := MAXREAL; # smal. dist
for each c‘∈S do
if m > distance(c,c‘) then
m := distance(c,c‘);
t := c‘;

end if;
end for;
return t;

• How much work?

Ulf Leser: Algorithms and Data Structures 6

Simple Solution

• Clearly, we can save the
second call to “distance”

• Thus, we need to compute
|S| distances, make |S|
comparisons, and perform
at most 2*|S| assignments

• Together: We perform
O(|S|) operations, which
are either in O(1) or
distance computations

Input
S: set_of_coordinates;
c: coordinate (x,y); # your loc

t: coordinate; # closest box
m: real := MAXREAL; # smal. dist
for each c‘∈S do
if m > distance(c,c‘) then
m := distance(c,c‘);
t := c‘;

end if;
end for;
return t;

Ulf Leser: Algorithms and Data Structures 7

Simple Solution

• We compute |S| distances …
• Euclidian distance

– In 2D: 6 arithmetic ops

2
21

2
212211)()()),(),,((yyxxyxyxdist −+−=

Ulf Leser: Algorithms and Data Structures 8

Not the only Option

• We compute |S| distances
…

• Manhattan distance
– 5 basic operations

||||)),(),,((21212211 yyxxyxyxdist −+−=

Ulf Leser: Algorithms and Data Structures 9

Complexity

• We compute |S| distances
…

• Both cases: O(|S|*dim(S))
– dim(S): Number of dimen-

sions of points in S
– If dim(S)=k and considered a

constant: O(|S|)

Ulf Leser: Algorithms and Data Structures 10

Data Structure Point of View

• Data structures
– We need a set S of 2D-coordinates
– For NN-search, the algorithm must

iterate over the elements of this set in
any order

• Now assume we need to perform
such searches very often
– Can we represent S in another way (S’),

such that searching requires less work?
– Note: Time for computing S’ from S will

be ignored
• Perform before searching starts
• Assuming that S does not change

input
S: set_of_coordinates;
c: coordinate (x,y);

t: coordinate;
m: real := MAXREAL;
For each c‘∈S do
if m > dist(c,c‘) then
m := dist(c,c‘);
t := c‘;

end if;
end for;
return t;

Ulf Leser: Algorithms and Data Structures 11

Voronoi Diagrams

• Pre-processing: Compute for every point s∈S its Voronoi area, i.e., the
area in which all points have s as nearest point from S
– Can be achieved in O(|S|*log(|S|)) time (no details here)

• Nearest-neighbor search using Voronoi diagrams is O(log(|S|))
• Conclusion: Finding a proper data structure does pay off

Ulf Leser: Algorithms and Data Structures 12

Data Structures and Data Types

• A data structure is a computational representation of
elementary objects
– An array, a linked list, a matrix, a tree, a graph, ….

• A combination of data structure and operations on this
structure is called a data type
– “Operations”: Application programming interface (API)
– If we ignore implementation: Abstract data type

• Also called signature
• No complexity analysis, but correctness proofs

– With concrete implementation: Physical data type
• Software libraries

• ADT: Like a class in Java, i.e. variables and interface

Ulf Leser: Algorithms and Data Structures 13

Searching Shops

• We want a piece of software T that …
• T must store data

– Set of coordinates (data structure)
• T must support (at least) two operations

– T.init (S: set_of_coordinates)
– T.nearestNeighbor(c: coordinate): coordinate
– T apparently uses another data structure: “coordinate”

• T could have many more operations
– T.insert(c: coordinate)
– T.delete(c: coordinate)
– T.print()
– …

Ulf Leser: Algorithms and Data Structures 14

Content of this Lecture

• Example
• Abstract Data Types
• Two important Examples: Stacks and Queues

Ulf Leser: Algorithms and Data Structures 15

Abstract Data Types (ADT)

• An ADT defines a set of operations over a set of objects of
a certain (more basic) type
– Or over multiple sets of objects of different or same types

• An ADT is independent of an implementation
– Different physical means to represent the objects
– Different algorithms to implement the operations

• Typical requirement: Encapsulation
– Objects are accessed only through the operations

Ulf Leser: Algorithms and Data Structures 16

Example ADT

• ADT that we could use for our app for searching shops
• Defines two operations

– A way to insert shops (with their coordinates)
– A way to get the nearest shop with respect to a given coordinate

• Assumes a data type “coordinate” to be given
– We always assume basic data types to be given: Int, real, string,…

• Not the only way

type points
import
coordinate;

operators
add: points x coordinate → points;
n_neighbor: points x coordinate → coordinate;

Ulf Leser: Algorithms and Data Structures 17

Modeling More Details

• An ADT defines what is necessary and convenient
• Specifying an ADT is a design process

• Shop owner? Laptop models being repaired? Opening hours?
• Depends on requirements, ease-of-use, extensibility, personal

preferences, existing ADTs, …
• See lectures on Software Engineering

type shops
import
shop;

operators
add: shops x shop → shops;
n_neighborC: shops x coordinate → coordinate;
n_neighborN: shops x coordinate → string;
n_neighborS: shops x coordinate → shop;

type shop
import
coordinate;

operators
getName: shop → string;
getCoor: shop → coordinate;

Ulf Leser: Algorithms and Data Structures 18

Reusing Existing ADTs

• For implementing shops, it would be helpful to reuse
something that can manage a set of objects

• We need a set – an ADT in itself
– A parameterized ADT– a set of elements of arbitrary type T
– For our ADT points, T will manage objects of type coordinate

type set(T)
import
integer, bool;

operators
isEmpty: set → bool;
add: set x T → set;
delete: set x T → set;
contains: set x T → bool;
size: set → integer;

A data type – not a
variable

Ulf Leser: Algorithms and Data Structures 19

Reusing Existing ADTs

• For implementing shops, it would be helpful to reuse
something that can manage a set of objects

• We need a set – an ADT in itself
– A parameterized ADT– a set of elements of arbitrary type T
– For our ADT points, T will manage objects of type coordinate

type set(T)
import
integer, bool;

operators
isEmpty: set → bool;
add: set x T → set;
delete: set x T → set;
contains: set x T → bool;
size: set → integer;
…

Java interface SET
has ~20 operations

Ulf Leser: Algorithms and Data Structures 20

Axioms: What we know about an ADT

• We expect operations on sets to have a certain semantic
– Adding an element increases size by one
– If a set is empty, its length is 0
– …

• These can be encoded
as axioms: Conditions
that must always hold
– Defined as logical

formulas
– Also called invariants

type set(T)
import
operators
isEmpty: set → bool;
add: set x T → set;
contains: set x T → bool;
delete: set x T → set;
length: set → integer;

axioms: ∀ f: set, ∀ t: T
size(add(f,t)) = size(f) + 1;
size(f)=0  isEmpty(f);
…

Ulf Leser: Algorithms and Data Structures 21

Axioms: What we know about an ADT

• We expect operations on sets to have a certain semantic
– Adding an element increases size by one
– If a set is empty, its length is 0
– …

• These can be encoded
as axioms: Conditions
that must always hold
– Defined as logical

formulas
– Also called invariants

• But stop! Where is
the error!

type set(T)
import
operators
isEmpty: set → bool;
add: set x T → set;
contains: set x T → bool;
delete: set x T → set;
length: set → integer;

axioms: ∀ f: set, ∀ t: T
size(add(f,t)) = size(f) + 1;
size(f)=0  isEmpty(f);
…

Ulf Leser: Algorithms and Data Structures 22

Axioms: What we know about an ADT

• We expect operations on sets to have a certain semantic
– Adding an element increases size by one if not a duplicate
– If a set is empty, its length is 0
– …

• These can be encoded
as axioms: Conditions
that must always hold
– Defined as logical

formulas
– Also called invariants

type set(T)
import
operators
isEmpty: set → bool;
add: set x T → set;
contains: set x T → bool;
delete: set x T → set;
length: set → integer;

axioms: ∀ f: set, ∀ t: T
if contains(f,t) then
ERROR;

else
size(add(f,t)) = size(f) + 1;

size(f)=0  isEmpty(f);
…

Ulf Leser: Algorithms and Data Structures 23

Set versus Points

• points can build on a set, but must add further operations
• But there is a problem … which one?

– What happens if multiple x have the same distance to c?

type points
import
coordinate, set(coordinate);

Operators
add: points x coordinate → points;

Can be implemented as set.add
neighbor: points x coordinate → coordinate;

Not implemented in set!
axioms
neighbor(p,c) = {x| contains(p,x)∧ ∀x’: contains(p, x’)=>

distance(x,c) ≤ distance(x’,c)};

Ulf Leser: Algorithms and Data Structures 24

Set versus Points

type points
import
coordinate, set(coordinate);

Operators
add: points x coordinate → points;
neighbor: points x coordinate → points;

axioms
neighbor(p,c) = {x| contains(p,x) ∧ ∀x’: contains(p,x’):

distance(x,c) ≤ distance(x’,c)};

Ulf Leser: Algorithms and Data Structures 25

Content of this Lecture

• Data Structures Again
• Abstract Data Types
• Two important examples: Stacks and Queues

Ulf Leser: Algorithms and Data Structures 26

Sets and Lists

• We looked at data types (points, shops) which essentially
are sets
– Canonical operations: add, contains, delete, size, …
– And special operation: nearestNeighbor

• A related ADT is list
– In a list, elements are ordered (arbitrarily yet fixed)
– Canonical operations: addAt, contains, deleteAt, length, …
– Different behavior (axioms)

• Duplicates are no problem (same object at different positions)
• No insertion after list end
• …

Ulf Leser: Algorithms and Data Structures 27

One Take Home Message

• This lecture will be obsessed with lists and sets
• Why?

– There are things
– … and there a lists of things

• In CS, we need lists everywhere
– Basis of every non-trivial algorithm
– Investing effort in getting them efficient pays of in many many

applications

Ulf Leser: Algorithms and Data Structures 28

Stacks and Queues

• Two related ADTs are of exceptional importance in
computer science: Stacks and Queues
– Both support mostly two operations

• No contains, length, addAt, deleteAt, …
– These suffice for surprisingly many problems and applications
– Both ADTs can be implemented very efficiently

• More efficiently than sets or lists

Ulf Leser: Algorithms and Data Structures 29

Queues

IN OUT

• Two operations: Enqueue, dequeue
– No access to objects of the list except the “head”

• Special semantic: First in, first out (FIFO)
• Apps: Breadth-first traversal, shortest paths, BucketSort, …

Ulf Leser: Algorithms and Data Structures 30

Stacks

• Operations: push, pop
– No access to objects of the list except the “top”

• Special semantic: Last in, first out (LIFO)
• Apps: Call stacks, backtracking, “Kellerautomaten”, …

IN

OU
T

Ulf Leser: Algorithms and Data Structures 31

As Abstract Data Types

type stack(T)
import
operators
isEmpty: stack → bool;
push: stack x T → stack;
pop: stack → stack;
top: stack → T;

type queue(T)
import
operators
isEmpty: queue → bool;
enqueue: queue x T → queue;
dequeue: queue → queue;
head: queue → T;

• Where is the difference?

Ulf Leser: Algorithms and Data Structures 32

Signature does not Suffice

type a(T)
import
operators
isEmpty: a → bool;
add: a x T → a;
remove: a → a;
give: a → T;

type a(T)
import
operators
isEmpty: a → bool;
add: a x T → a;
remove: a → a;
give: a → T;

• Where is the difference?
• From the signature alone, there is no difference
• Yet – we expect a different behavior

Ulf Leser: Algorithms and Data Structures 33

Defining the Difference

type stack(T)
import
operators
isEmpty: stack → bool;
push: stack x T → stack;
pop: stack → stack;
top: stack → T;

axioms ∀ s:stack, ∀ t:T
top(push(s, t)) = t;
pop(push(s, t)) = s;

type queue(T)
import
operators
isEmpty: queue → bool;
enqueue: queue x T → queue;
dequeue: queue → queue;
head: queue → T;

axioms ∀ q:queue, ∀ t:T
head(enqueue(q, t)) =
if isEmpty(q): t
else head(q);

dequeue(enqueue(q, t)) =
if isEmpty(q): q
else enqueue(dequeue(q), t);

Ulf Leser: Algorithms and Data Structures 34

Sets, Lists, Stacks, Queues

• Compared to sets
– No contains
– No duplicate checks before insertion

• Much faster!
– Typically no size
– Additional behavior with push/pop

• Compared to lists
– No contains, no order, no positions

• Much faster!
– Typically no size
– Additional behavior with push/pop

Ulf Leser: Algorithms and Data Structures 35

Summary

• We very briefly sneaked into (abstract) data types
– Formal syntax for specification, semantics of axioms in physical

data types, concrete language for axioms, specialization
hierarchies, formal correctness proofs, …

– See module on “Methoden und Modelle des Systementwurfs“
• An old dream: Provide only precise specification and let all

code be generated automatically
– Provide so many axioms that all relevant behavior is covered
– Enables formal proofs of correctness
– Relevant especially for security-relevant domains

• E.g. embedded systems in cars, airplanes, …

• Practically: Very time consuming, error prone, and hard to
maintain

Ulf Leser: Algorithms and Data Structures 36

For this Lecture

• Algorithms take an input; input has a type; this type may
offer special operations
– Whose complexity depends on the physical implementation

• We rarely talk about the “data structure” aspect but about
implementation of operations
– Whose complexity also depend on complexity of operations on

basic types
• As basic types, we assume Int, real, string

– With operations add, multiply, compare, …
– We assume O(1) for all basic operations

Ulf Leser: Algorithms and Data Structures 37

Exemplary Questions

• What is an abstract data type, what is a physical data
type?

• What are typical operations of a list? Of a stack?
• Imagine a class storing rectangles in a plane. We want to

add and remove rectangles, test if there are any
rectangles, and find all rectangles intersection of given
one. Define the ADT. What could be possible axioms?

	Foliennummer 1
	Content of this Lecture
	Problem
	Classical Post Box Problem
	Simple Solution
	Simple Solution
	Simple Solution
	Not the only Option
	Complexity
	Data Structure Point of View
	Voronoi Diagrams
	Data Structures and Data Types
	Searching Shops
	Content of this Lecture
	Abstract Data Types (ADT)
	Example ADT
	Modeling More Details
	Reusing Existing ADTs
	Reusing Existing ADTs
	Axioms: What we know about an ADT
	Axioms: What we know about an ADT
	Axioms: What we know about an ADT
	Set versus Points
	Set versus Points
	Content of this Lecture
	Sets and Lists
	One Take Home Message
	Stacks and Queues
	Queues
	Stacks
	As Abstract Data Types
	Signature does not Suffice
	Defining the Difference
	Sets, Lists, Stacks, Queues
	Summary
	For this Lecture
	Exemplary Questions

