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Content of this Lecture

• Example
• Abstract Data Types
• Two important Examples: Stacks and Queues
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Problem

• Suppose you are in the centre of Hamburg and are looking 
for the next (i.e., closest) laptop repair shop

• Fortunately, your mobile knows your position and has a list 
of laptop repair shops in Hamburg

• How does your mobile find the closest shop?
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Classical Post Box Problem

• Suppose a city with n boxes located at arbitrary positions
• You wake up in the middle of the city with a letter in your 

hand; the letter should be thrown in the closest post box
• How do you find the closest post box?

– You have a list with locations of all post boxes
• Looking at a map is not 

the answer
• Devise an algorithm

S: set_of_coordinates;
c: coordinate (x,y) 
…
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Simple Solution

Input
S: set_of_coordinates;
c: coordinate (x,y);   # your loc

t: coordinate; # closest box
m: real := MAXREAL; # smal. dist
for each c‘∈S do
if m > distance(c,c‘) then
m := distance(c,c‘);
t := c‘;

end if;
end for;
return t;

• How much work?
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Simple Solution

• Clearly, we can save the 
second call to “distance”

• Thus, we need to compute 
|S| distances, make |S| 
comparisons, and perform 
at most 2*|S| assignments

• Together: We perform 
O(|S|) operations, which 
are either in O(1) or 
distance computations

Input
S: set_of_coordinates;
c: coordinate (x,y);   # your loc

t: coordinate; # closest box
m: real := MAXREAL; # smal. dist
for each c‘∈S do
if m > distance(c,c‘) then
m := distance(c,c‘);
t := c‘;

end if;
end for;
return t;
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Simple Solution

• We compute |S| distances …
• Euclidian distance

– In 2D: 6 arithmetic ops

2
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Not the only Option

• We compute |S| distances 
…

• Manhattan distance
– 5 basic operations

||||)),(),,(( 21212211 yyxxyxyxdist −+−=
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Complexity

• We compute |S| distances 
…

• Both cases: O(|S|*dim(S))
– dim(S): Number of dimen-

sions of points in S
– If dim(S)=k and considered a 

constant: O(|S|)
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Data Structure Point of View

• Data structures
– We need a set S of 2D-coordinates
– For NN-search, the algorithm must 

iterate over the elements of this set in 
any order

• Now assume we need to perform 
such searches very often
– Can we represent S in another way (S’), 

such that searching requires less work?
– Note: Time for computing S’ from S will 

be ignored 
• Perform before searching starts
• Assuming that S does not change

input
S: set_of_coordinates;
c: coordinate (x,y);

t: coordinate;
m: real := MAXREAL;
For each c‘∈S do
if m > dist(c,c‘) then
m := dist(c,c‘);
t := c‘;

end if;
end for;
return t;
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Voronoi Diagrams

• Pre-processing: Compute for every point s∈S its Voronoi area, i.e., the 
area in which all points have s as nearest point from S
– Can be achieved in O(|S|*log(|S|)) time (no details here)

• Nearest-neighbor search using Voronoi diagrams is O(log(|S|))
• Conclusion: Finding a proper data structure does pay off
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Data Structures and Data Types

• A data structure is a computational representation of 
elementary objects
– An array, a linked list, a matrix, a tree, a graph, ….

• A combination of data structure and operations on this 
structure is called a data type
– “Operations”: Application programming interface (API)
– If we ignore implementation: Abstract data type

• Also called signature 
• No complexity analysis, but correctness proofs

– With concrete implementation: Physical data type
• Software libraries

• ADT: Like a class in Java, i.e. variables and interface



Ulf Leser: Algorithms and Data Structures 13

Searching Shops

• We want a piece of software T that …
• T must store data

– Set of coordinates (data structure)
• T must support (at least) two operations

– T.init (S: set_of_coordinates)
– T.nearestNeighbor(c: coordinate): coordinate
– T apparently uses another data structure: “coordinate”

• T could have many more operations
– T.insert(c: coordinate)
– T.delete(c: coordinate)
– T.print()
– …
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Content of this Lecture

• Example
• Abstract Data Types
• Two important Examples: Stacks and Queues
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Abstract Data Types (ADT)

• An ADT defines a set of operations over a set of objects of 
a certain (more basic) type
– Or over multiple sets of objects of different or same types

• An ADT is independent of an implementation
– Different physical means to represent the objects
– Different algorithms to implement the operations

• Typical requirement: Encapsulation
– Objects are accessed only through the operations
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Example ADT

• ADT that we could use for our app for searching shops
• Defines two operations

– A way to insert shops (with their coordinates)
– A way to get the nearest shop with respect to a given coordinate

• Assumes a data type “coordinate” to be given
– We always assume basic data types to be given: Int, real, string,…

• Not the only way

type points
import
coordinate;

operators
add:      points x coordinate → points;
n_neighbor: points x coordinate → coordinate;
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Modeling More Details

• An ADT defines what is necessary and convenient
• Specifying an ADT is a design process

• Shop owner? Laptop models being repaired? Opening hours?
• Depends on requirements, ease-of-use, extensibility, personal 

preferences, existing ADTs, …
• See lectures on Software Engineering

type shops
import
shop;

operators
add:         shops x shop → shops;
n_neighborC: shops x coordinate → coordinate;
n_neighborN: shops x coordinate → string;
n_neighborS: shops x coordinate → shop;

type shop
import
coordinate;

operators
getName: shop → string;
getCoor: shop → coordinate;
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Reusing Existing ADTs

• For implementing shops, it would be helpful to reuse 
something that can manage a set of objects

• We need a set – an ADT in itself
– A parameterized ADT– a set of elements of arbitrary type T
– For our ADT points, T will manage objects of type coordinate

type set( T)
import
integer, bool;

operators
isEmpty:  set → bool;
add:      set x T → set;
delete:   set x T → set;
contains: set x T → bool;
size:     set → integer;

A data type – not a 
variable
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Reusing Existing ADTs

• For implementing shops, it would be helpful to reuse 
something that can manage a set of objects

• We need a set – an ADT in itself
– A parameterized ADT– a set of elements of arbitrary type T
– For our ADT points, T will manage objects of type coordinate

type set( T)
import
integer, bool;

operators
isEmpty:  set → bool;
add:      set x T → set;
delete:   set x T → set;
contains: set x T → bool;
size:     set → integer;
…

Java interface SET 
has ~20 operations
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Axioms: What we know about an ADT

• We expect operations on sets to have a certain semantic
– Adding an element increases size by one
– If a set is empty, its length is 0
– …

• These can be encoded
as axioms: Conditions
that must always hold
– Defined as logical

formulas
– Also called invariants

type set( T)
import
operators
isEmpty:  set → bool;
add:      set x T → set;
contains: set x T → bool; 
delete:   set x T → set;
length:   set → integer;

axioms: ∀ f: set, ∀ t: T
size(add(f,t)) = size(f) + 1;
size(f)=0  isEmpty(f);
…
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Axioms: What we know about an ADT

• We expect operations on sets to have a certain semantic
– Adding an element increases size by one
– If a set is empty, its length is 0
– …

• These can be encoded
as axioms: Conditions
that must always hold
– Defined as logical

formulas
– Also called invariants

• But stop! Where is 
the error!

type set( T)
import
operators
isEmpty:  set → bool;
add:      set x T → set;
contains: set x T → bool; 
delete:   set x T → set;
length:   set → integer;

axioms: ∀ f: set, ∀ t: T
size(add(f,t)) = size(f) + 1;
size(f)=0  isEmpty(f);
…
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Axioms: What we know about an ADT

• We expect operations on sets to have a certain semantic
– Adding an element increases size by one if not a duplicate
– If a set is empty, its length is 0
– …

• These can be encoded
as axioms: Conditions
that must always hold
– Defined as logical

formulas
– Also called invariants

type set( T)
import
operators
isEmpty:  set → bool;
add:      set x T → set;
contains: set x T → bool; 
delete:   set x T → set;
length:   set → integer;

axioms: ∀ f: set, ∀ t: T
if contains(f,t) then
ERROR;

else
size(add(f,t)) = size(f) + 1;

size(f)=0  isEmpty(f);
…
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Set versus Points

• points can build on a set, but must add further operations
• But there is a problem … which one?

– What happens if multiple x have the same distance to c?

type points
import
coordinate, set(coordinate);

Operators
add:      points x coordinate → points;

# Can be implemented as set.add
neighbor: points x coordinate → coordinate;

# Not implemented in set!
axioms
neighbor(p,c) = {x| contains(p,x)∧ ∀x’: contains(p, x’)=>

distance(x,c) ≤ distance(x’,c)};
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Set versus Points

type points
import
coordinate, set(coordinate);

Operators
add:      points x coordinate → points;
neighbor: points x coordinate → points;

axioms
neighbor(p,c) = {x| contains(p,x) ∧ ∀x’: contains(p,x’): 

distance(x,c) ≤ distance(x’,c)};
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Content of this Lecture

• Data Structures Again
• Abstract Data Types
• Two important examples: Stacks and Queues
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Sets and Lists

• We looked at data types (points, shops) which essentially 
are sets
– Canonical operations: add, contains, delete, size, …
– And special operation: nearestNeighbor

• A related ADT is list
– In a list, elements are ordered (arbitrarily yet fixed)
– Canonical operations: addAt, contains, deleteAt, length, …
– Different behavior (axioms)

• Duplicates are no problem (same object at different positions)
• No insertion after list end
• …
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One Take Home Message

• This lecture will be obsessed with lists and sets
• Why?

– There are things
– … and there a lists of things

• In CS, we need lists everywhere
– Basis of every non-trivial algorithm
– Investing effort in getting them efficient pays of in many many

applications
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Stacks and Queues

• Two related ADTs are of exceptional importance in 
computer science: Stacks and Queues
– Both support mostly two operations

• No contains, length, addAt, deleteAt, …
– These suffice for surprisingly many problems and applications
– Both ADTs can be implemented very efficiently

• More efficiently than sets or lists
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Queues

IN OUT

• Two operations: Enqueue, dequeue
– No access to objects of the list except the “head”

• Special semantic: First in, first out (FIFO)
• Apps: Breadth-first traversal, shortest paths, BucketSort, …
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Stacks

• Operations: push, pop
– No access to objects of the list except the “top”

• Special semantic: Last in, first out (LIFO)
• Apps: Call stacks, backtracking, “Kellerautomaten”, …

IN

OU
T
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As Abstract Data Types

type stack( T)
import
operators
isEmpty: stack → bool;
push:    stack x T → stack;
pop:     stack → stack;
top:     stack → T;

type queue( T)
import
operators
isEmpty: queue → bool;
enqueue: queue x T → queue;
dequeue: queue → queue;
head:    queue → T;

• Where is the difference?
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Signature does not Suffice

type a( T)
import
operators
isEmpty: a → bool;
add:     a x T → a;
remove:  a → a;
give:    a → T;

type a( T)
import
operators
isEmpty: a → bool;
add:     a x T → a;
remove:  a → a;
give:    a → T;

• Where is the difference?
• From the signature alone, there is no difference
• Yet – we expect a different behavior
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Defining the Difference

type stack( T)
import
operators
isEmpty: stack → bool;
push:    stack x T → stack;
pop:     stack → stack;
top:     stack → T;

axioms ∀ s:stack, ∀ t:T
top( push( s, t)) = t;
pop( push( s, t)) = s;

type queue( T)
import
operators
isEmpty: queue → bool;
enqueue: queue x T → queue;
dequeue: queue → queue;
head:    queue → T;

axioms ∀ q:queue, ∀ t:T
head( enqueue(q, t)) = 
if isEmpty( q): t
else head( q);

dequeue( enqueue( q, t)) =
if isEmpty( q): q
else enqueue( dequeue(q), t);
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Sets, Lists, Stacks, Queues

• Compared to sets
– No contains
– No duplicate checks before insertion

• Much faster!
– Typically no size
– Additional behavior with push/pop

• Compared to lists
– No contains, no order, no positions

• Much faster!
– Typically no size
– Additional behavior with push/pop
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Summary

• We very briefly sneaked into (abstract) data types
– Formal syntax for specification, semantics of axioms in physical 

data types, concrete language for axioms, specialization 
hierarchies, formal correctness proofs, …

– See module on “Methoden und Modelle des Systementwurfs“
• An old dream: Provide only precise specification and let all 

code be generated automatically
– Provide so many axioms that all relevant behavior is covered
– Enables formal proofs of correctness
– Relevant especially for security-relevant domains 

• E.g. embedded systems in cars, airplanes, …

• Practically: Very time consuming, error prone, and hard to 
maintain
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For this Lecture 

• Algorithms take an input; input has a type; this type may 
offer special operations
– Whose complexity depends on the physical implementation

• We rarely talk about the “data structure” aspect but about 
implementation of operations
– Whose complexity also depend on complexity of operations on 

basic types
• As basic types, we assume Int, real, string 

– With operations add, multiply, compare, …
– We assume O(1) for all basic operations
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Exemplary Questions

• What is an abstract data type, what is a physical data 
type?

• What are typical operations of a list? Of a stack?
• Imagine a class storing rectangles in a plane. We want to 

add and remove rectangles, test if there are any 
rectangles, and find all rectangles intersection of given 
one. Define the ADT. What could be possible axioms?
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