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Motivation
Methods for automatic information extraction from vast amounts of unstructured text

become  highly  necessary  due  to  the  rapid  growth  of  the  biomedical  literature

(Zhiyong, 2011) (Mura et al., 2018). It is essential to identify biomedical entities in text

documents to enable tasks like searching for specific entities,  extracting document

background information and linking similar documents (Rzhetsky et al., 2008).

This task is difficult because of the huge variability of names used for biomedical

entities  in  the  literature  (Erhardt  et  al,  2006).  For  instance  genes  have  multiple

spelling  conventions,  equivalent  abbreviations  or  synonyms  and  mostly  consist  of

many  words.   It  is  non-trivial  even  for  a  human  to  find  relevant  identifiers  for

biomedical named entities and inter-annotator agreement hardly exceeds 90% (Leser

and Hakenberg, 2005) (Morgan et al., 2008).  

The task of  identifying specific  entities  in  an unstructured text  is  called  named

entity normalization (NEN) which extends the named entity recognition (NER) task. In

NER the aim is to find entities and determine their general types (i.e. gene, chemical

or disease in the biomedical domain), whereas normalization aims at determining a

unique identifier from a dictionary for each specific entity. Typically, NER is performed

as the first step to find entities in a text which are then to be normalized.

Previous approaches for normalization focus on a single entity type (e.g. chemicals,

diseases or genes) and are based on sets of rules, large dictionaries, and pre-defined

features that are expected to capture the knowledge of experts. This not only takes a

lot of effort for transforming the knowledge into a machine-usable format but also

leads to highly specialised solutions for one specific entity type which are costly to

maintain and still cannot find all possible mentions of each entity. However, this is far

from perfect and on cross-species corpora the performance given as F-score hardly

exceeds 50% (Wei et al., 2015). For genes, the lack of naming conventions and the

large number of variants make it hard to map an ambiguous gene name to identifier.

Moreover, many names are attributed to multiple identifiers or are used for various

species. The Entrez Gene dictionary alone contains more than 22 million genes with

more than 4.5 million synonyms and is subject to continuous maintenance.

 An approach by (Habibi et al., 2017) for NER shows that generic methods based on

deep  learning  are  able  to  outperform  the  state-of-the-art  without  relying  on  any

external knowledge base. Since NER is an integral part of NEN, this sets the motivation

for this study project to create a generic approach to the task of entity normalization

and then compare its performance to established methods. Since the resources, e.g

annotated corpora and dictionaries, are most comprehensively available for genes, the

evaluation  is  performed  on  gene  names,  but  the  method  should  also  be  easily

applicable to other entity types. Although the implementation is completely generic,

the results will depend on how sophisticated the data is to learn from.
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Goals
The aim is developing a workflow for entity normalization independent of pre-defined

features which encode background knowledge on a particular entity type. Instead, the

input  will  consist  only  of  labeled  data  that  can  be  leveraged  to  learn  the  genes’

representations in texts,  as well  as a list  of  gene identifiers with their  names and

synonyms. In the scope of this study project, I will implement the proposed approach

and  apply  it  along  with  the  baseline  solutions  described  below  on  three  gene

normalization corpora to obtain comparable test results.

As described above, the entity extraction process consists of NER and NEN, and one

can  separate  the  second  step  again  in  two  subtasks,  candidate  generation  and

disambiguation (Hachey et al., 2013). These three steps build on one another but can

also be developed and evaluated in isolation. My approach will be based on the work

by (Habibi et al., 2017) on NER with deep learning, and will extend it to the whole

normalization process while remaining as generic as possible. The experiments will

only be performed on gene named entities, by comparing this generic method with

three baselines with the highest NER and NEN performances:  GNAT, GNormPlus  and

GeneTUKit.  A  fourth  tool,  TaggerOne,  will  be  included  in  the  comparison  since  it

follows a similar generic approach as the one described here, however, no results on

its performance on genes have been reported yet.

Previous Work
GNAT applies  background  knowledge  from  several  sources  with  a  mixture  of

dictionaries,  CRFs  (Conditional  Random  Fields)  and  pre-defined  features  to

disambiguate gene mentions. It includes an extra step to identify the correct species

with a set of rules based on the context of the mention (Hakenberg et al., 2008).

GNormPlus is an open source tool from 2015 which uses CRFs and implements

manually constructed features for different aspects as general linguistics as well as

semantic and case pattern features. For normalization, different matching strategies

were  implemented,  as  well  as  abbreviation  resolution  and  compose  mention

simplification (Wei et al., 2015).

GeneTUKit was developed for gene normalization in 2010. It utilises several tools

to make use of dictionary-based approaches as well as the local and global context of

a mention. It applies CRFs and dictionary look-ups to identify entity mentions, Lucene

to generate candidates, a ranking algorithm to disambiguate genes, and, lastly, a SVM

(Support Vector Machine) to generate confidence scores (Huang et al., 2011). 

TaggerOne was  the  first  machine  learning  approach  that  combines  NER  and

normalization in a joint model, meaning both training and prediction are done in a

single step. It defines scoring functions to assign a score to each text segment for

each NER class and each possible normalization entity with simple text features. Using

semi-Markov models, it aims to optimise the segmentation for a text so that the sum
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of scores given to each segment is optimal. TaggerOne can be trained for each entity

type and achieved state-of-the-art results for disease and chemical entities, but has

not yet been applied to genes  (Leaman et al., 2016).

(Habibi et al., 2017) implemented a generic method for recognising any entity type

which outperformed other state-of-the-art methods by about 2 to 3 percentage points,

depending  on  the  entity  type.  The  method  combines  word  embeddings  (vector

representations  of  a  word  by  taking  into  account  its  context),  long-short-term-

memory-networks  (to  learn  a  non-linear  combination  among  features)  and  CRFs

(sequential classifier considering a sequence of word labels for labelling a new word)

without  having  to  rely  on  the  typical  background  knowledge.  It  only  requires  an

annotated gold standard  and a large,  entity-independent  corpus in the considered

domain to compute word embeddings on.

So far, all of the approaches on gene normalization depend on features defined by

the developers.  In  contrast,  methods using word embeddings and neural  networks

were able to outperform previous approaches significantly, as shown e.g. by (Francis-

Landau et al.,  2016), (Sun et al.,  2015) and (Zhao et al.,  2018). By utilising word

embeddings, these approaches capture more subtle signals on the syntactic as well as

the semantic level of a word and its context. With such complex tasks as NER and

NEN, this is an essential property to be able to distinguish very similar entities and

entity types.

There  are  also  approaches  that  do  not  separate  entity  recognition  from

normalization, e.g. (Lou et al., 2017), (Leaman et al., 2016) and (Zhao et al., 2018).

Their advantage is that errors from NER are not propagated to the normalization step.

By using feedback from normalization for NER it is possible to make corrections to the

number of tokens that are combined to a mention because tokens could be falsely

attributed to it. A comparison between these approaches might be interesting, yet it is

outside the scope of this study project. 

Approach

Method
As mentioned above,  the normalization process  is  typically approached with these

three separate steps: a) named entity recognition, b) identifiers retrieval, and c) re-

ranking identifiers.

• Named entity recognition:  This step identifies entity mentions.  I  will  use the

implementation stated in (Habibi et al., 2017).

• Identifiers retrieval: In this step, the mentions are checked against the list of all

known entities (from the given dictionary) to find similar ones. The aim is to

reduce the number of candidates drastically in a cost-efficient manner so that

the remaining candidates can be ranked with a more complex analysis in the
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next step. Here, the open-source search framework Lucene will be used to find

syntactically similar names. It is fast and reliable and can be easily customised

with different preprocessing steps. An approach by (Sennrich et al, 2015) that

breaks up words into subunits based on byte pair encoding seems promising for

finding meaningful and suitable tokens as basis for this search. These might

otherwise be too short to capture meaningful patterns or too long to be valuable

for  generalisation.  Another  option  is  to  take  n-grams  of  different  lengths,

however, these are not calculated based on the contents of the text and might

be less expressive.

This  step  is  similar  to  how  other  tools  approach  normalization  (except  for

applying  byte  pair  encoding),  however,  here  it  is  only  used  to  filter  the

candidates for the next step.

• Re-ranking identifiers: In this third step, the most likely candidate is picked out

of the remaining candidates. Similar to the first step, word embeddings will be

used to calculate the likelihood of a match given the document context. The

idea behind this is to compare the typical context of a candidate entity (from

the  training  corpus)  with  the  context  of  the  found  mention,  based  on  the

assumption that it will be most similar for the right match. Word embeddings

are further explained in (Mikolov et al., 2013) and there are easily accessible

tools as word2vec or sent2vec for calculating these embeddings from a corpus.

The NCBI maintains a curated list of links between Entrez gene identifiers to

PubMed  document  ids  which  allows  calculating  embeddings  from  these

documents and associating these with the corresponding gene identifiers. The

list provides more than 11 million links between genes and articles (Maglott et

al., 2005).

Evaluation
Evaluation of NEN is complicated due to the scarcity of gold standard corpora, since it

requires a lot of effort creating them. Methods are rarely tested on more than one

corpus and usually without any cross-validation. This leads to a high risk of overfitting

to the training documents and overestimating performance scores.

For evaluation, three freely available gold standard corpora from BioCreative tasks

will be used. They were used for the second, third and fifth challenge respectively and

all contain gene annotations which link mentioned entities to gene identifiers (Morgan

et al., 2008) (Lu et al., 2011) (Pérez-Pérez et al., 2017). While the annotations for the

second and fifth challenge refer to specific mentions, the third challenge only provides

annotations on document-level. 

PubMed and PMC (PubMed Central, which contains full-text articles) corpora as well

as a collection of 4 million English Wikipedia articles are available for calculating word

embeddings, for which no annotations are necessary. However, the NCBI provides a

mapping  between  gene  identifiers  and  PubMed  documents  which  can  be  used  to
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calculate embeddings for specific identifiers. Although only covering a fraction of the

documents (see Table 3), it can help to prevent difficulties that otherwise come up

with homonyms.  Table 1 summarises the sizes and number of annotations of corpora

from the BioCreative tasks, and Table 2 lists the sizes of the unannotated corpora. 

With these test sets, the performance of the approach will be compared with the

baseline methods to assess the impact of word embeddings and deep learning on

normalization tasks. In addition, each of the three steps will be evaluated in isolation

to find error sources for misclassified entities. Comparing approaches for intermediate

results  is  more  difficult,  since  the  baseline  methods  only  return  the  normalized

identifiers.

Corpus Split Size Number of 
Annotations

BioCreative II Training 281 abstracts 640

BioCreative II Test 262 abstracts 785

BioCreative III Training 32 articles 607

BioCreative III Gold Test 50 articles 1,669

BioCreative III Silver Test 457 articles 7,709

BioCreative V GPRO Training 12,600 abstracts 2,483

BioCreative V GPRO Development 2,100 abstracts 515

BioCreative V GPRO Test 6,300 abstracts 1,177

Table 1: Overview of available corpora with annotations.

Corpus Size

PubMed 23,000,000 abstracts

PMC 700,000 articles

Wikipedia 4,000,000 articles

Table 2: Overview of unannotated corpora for calculating word embeddings.

Gene2pubmed Statistics

Number of unique genes 6,139,875 

Number of documents 1,176,142

Average number of documents per gene 1.82 

Average&median number of genes per document 9.50 & 1

Average number of species per document 1.15

Table 3: Overview of NCBI’s gene2pubmed mapping between gene identifiers and documents.
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