Einführung in die Theoretische Informatik

Johannes Köbler

Institut für Informatik Humboldt-Universität zu Berlin

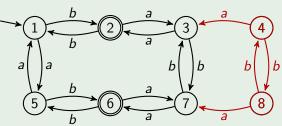
WS 2011/12

Frage

Wie können wir feststellen, ob ein DFA $M=(Z,\Sigma,\delta,q_0,E)$ eine minimale Anzahl von Zuständen besitzt (und Z evtl. verkleinern)?

Beispiel

Betrachte den DFA M



 Zunächst können alle vom Startzustand aus unerreichbaren Zustände entfernt werden.

Frage

Wie können wir feststellen, ob ein DFA $M=(Z,\Sigma,\delta,q_0,E)$ eine minimale Anzahl von Zuständen besitzt (und Z evtl. verkleinern)?

Antwort

entfernt werden.

• Zudem lassen sich zwei Zustände p und q verschmelzen, wenn M von p

Zunächst können alle vom Startzustand aus unerreichbaren Zustände

- ullet Zudem lassen sich zwei Zustände p und q verschmelzen, wenn M von p und q aus jeweils dieselben Wörter akzeptiert.
- Für $z \in Z$ sei

$$M_z = (Z, \Sigma, \delta, z, E)$$
 und $L_z = L(M_z)$.

- Dann können wir p und q verschmelzen (in Zeichen: $p \sim q$), wenn $L_p = L_q$ ist.
- Offensichtlich ist \sim eine Äquivalenzrelation auf Z.

Idee

Verschmelze jeden Zustand z mit allen äquivalenten Zuständen $z' \sim z$ zu einem neuen Zustand.

Notation

• Für die durch z repräsentierte Äquivalenzklasse

$$[z]_{\sim} = \{z' \in Z \mid z' \sim z\} = \{z' \in Z \mid L_{z'} = L_z\}$$

schreiben wir auch einfach [z] oder \tilde{z} .

• Für eine Teilmenge $Q \subseteq Z$ bezeichne

$$ilde{Q} = \{ ilde{a} \mid a \in Q\}$$

die Menge aller Äquivalenzklassen $ilde{q}$, die mind. ein $q \in Q$ enthalten.

• Dann führt obige Idee auf folgenden DFA:

$$\tilde{M} = (\tilde{Z}, \Sigma, \tilde{\delta}, \tilde{q}_0, \tilde{E}) \ \ ext{mit} \ \ \widetilde{\delta}(\tilde{q}, a) = \widetilde{\delta(q, a)}.$$

Wie können wir \tilde{M} aus M konstruieren?

Hierzu genügt es, herauszufinden, ob zwei Zustände p und q von M äquivalent sind oder nicht?

- Sei $A\Delta B = (A \setminus B) \cup (B \setminus A)$ die symmetrische Differenz von A und B.
- ullet Die Inäquivalenz $p \not\sim q$ ist also gleichbedeutend mit $L_p \Delta L_q
 eq \emptyset$.
- Wir nennen ein Wort $x \in L_p \Delta L_q$ Unterscheider zwischen p und q.
- Offenbar unterscheidet ε Zustände $p \in E$ von Zuständen $q \in Z \setminus E$.
- Falls x die Zustände $\delta(p,a)$ und $\delta(q,a)$ unterscheidet, so unterscheidet ax die Zustände p und q, d.h. $x \in L_{\delta(p,a)}\Delta L_{\delta(q,a)} \Rightarrow ax \in L_p\Delta L_q$.

Satz

Sei $M = (Z, \Sigma, \delta, q_0, E)$ ein DFA ohne unerreichbare Zustände. Dann ist

$$\tilde{M} = (\tilde{Z}, \Sigma, \tilde{\delta}, \tilde{q}_0, \tilde{E}) \text{ mit } \tilde{\delta}(\tilde{q}, a) = \widetilde{\delta(q, a)}$$

ein DFA für L(M) mit einer minimalen Anzahl von Zuständen.

Beweis

- Zuerst müssen wir zeigen, dass $\tilde{\delta}$ wohldefiniert ist, also $\tilde{\delta}(\tilde{q},a)$ nicht von der Wahl des Repräsentanten q für die Äquivalenzklasse \tilde{q} abhängt.
- Hierzu zeigen wir die Implikation $p \sim q \Rightarrow \delta(p, a) \sim \delta(q, a)$:

$$\begin{array}{lll} L_q = L_p & \Leftrightarrow & \forall x \in \Sigma^* : x \in L_q \leftrightarrow x \in L_p \\ & \Rightarrow & \forall x \in \Sigma^* : ax \in L_q \leftrightarrow ax \in L_p \\ & \Leftrightarrow & \forall x \in \Sigma^* : x \in L_{\delta(q,a)} \leftrightarrow x \in L_{\delta(p,a)} \\ & \Leftrightarrow & L_{\delta(q,a)} = L_{\delta(p,a)}. \end{array}$$

Satz

Sei $M=(Z,\Sigma,\delta,q_0,E)$ ein DFA ohne unerreichbare Zustände. Dann ist $\tilde{M}=(\tilde{Z},\Sigma,\tilde{\delta},\tilde{q}_0,\tilde{E})$ mit $\tilde{\delta}(\tilde{q},a)=\widetilde{\delta(q,a)}$

ein DFA für L(M) mit einer minimalen Anzahl von Zuständen.

Beweis (Fortsetzung)

- Als nächstes zeigen wir, dass $L(\tilde{M}) = L(M)$ ist.
- Sei $x = x_1 \cdots x_n \in \Sigma^*$ und seien q_0, q_1, \cdots, q_n die von M bei Eingabe x durchlaufenen Zustände, d.h. es gilt $\delta(q_{i-1}, x_i) = q_i$ für $i = 1, \ldots, n$.
- Nach Definition von $\tilde{\delta}$ folgt daher $\tilde{\delta}(\tilde{q}_{i-1}, x_i) = \tilde{q}_i$ für $i = 1, \ldots, n$, d.h. \tilde{M} durchläuft bei Eingabe x die Zustände $\tilde{q}_0, \tilde{q}_1, \cdots, \tilde{q}_n$.
- Da aber \tilde{q}_n entweder nur End- oder nur Nicht-Endzustände enthält, gehört q_n genau dann zu E, wenn $\tilde{q}_n \in \tilde{E}$, d.h. es gilt

$$x \in L(M) \Leftrightarrow x \in L(\tilde{M}).$$

Beweis (Schluss)

- Noch z.z.: \tilde{M} hat eine minimale Anzahl von Zuständen.
- Da \tilde{M} nicht mehr Zustände hat als M, ist \tilde{M} sicher dann minimal, wenn M bereits minimal ist.
- Es reicht also zu zeigen, dass die Anzahl $k = \|\tilde{Z}\| = \|\{L_q \mid q \in Z\}\|$ der Zustände von \tilde{M} nicht von M, sondern nur von L = L(M) abhängt.
- Für $x \in \Sigma^*$ sei

$$L_x = \{ y \in \Sigma^* \mid xy \in L \}.$$

- Dann gilt $\{L_x \mid x \in \Sigma^*\} = \{L_q \mid q \in Z\}$:
 - \subseteq : Klar, da $L_x = L_q$ für $q = \hat{\delta}(q_0, x)$ ist.
 - \supseteq : Auch klar, da jedes $q \in Z$ über ein $x \in \Sigma^*$ erreichbar ist.
- Also hängt $k = ||\{L_q \mid q \in Z\}|| = ||\{L_x \mid x \in \Sigma^*\}||$ nur von L ab.

Wie können wir \tilde{M} aus M konstruieren?

Hierzu genügt es, herauszufinden, ob zwei Zustände p und q von M äquivalent sind oder nicht?

- Offenbar unterscheidet ε Zustände $p \in E$ von Zuständen $q \in Z \setminus E$.
- Falls x die Zustände $\delta(p,a)$ und $\delta(q,a)$ unterscheidet, so unterscheidet ax die Zustände p und q, d.h. $x \in L_{\delta(p,a)}\Delta L_{\delta(q,a)} \Rightarrow ax \in L_p\Delta L_q$.
- ullet Wenn also D nur inäquivalente Zustandspaare enthält, so trifft dies auch auf die Menge

$$D' = \{\{p,q\} \mid \exists a \in \Sigma : \{\delta(p,a), \delta(q,a)\} \in D\}$$

zu.

Algorithmische Konstruktion von $ilde{M}$

Idee

• Berechne ausgehend von $D_0 = \{\{p,q\} \mid p \in E, q \notin E\}$ mittels

$$D_{i+1}=D_i\cup\{\{p,q\}\mid\exists a\in\Sigma:\{\delta(p,a),\delta(q,a)\}\in D_i\}$$
 eine Folge $D_0\subseteq D_1\subseteq D_2\subseteq\cdots$ von Mengen mit inäquivalenten Zustandspaaren.

- Da es nur endlich viele Zustandspaare gibt, muss es ein j geben mit $D_{j+1} = D_j$.
- Für dieses j gilt dann

$$p \not\sim q \Leftrightarrow \{p,q\} \in \mathcal{D}_j$$
 (siehe Übungen).

Folglich ist

$$\tilde{z} = \{z\} \cup \{z' \in Z \mid \{z, z'\} \not\in D_j\}.$$

Algorithmus zur Berechnung eines minimalen DFA

```
Algorithmus min-DFA(M)

1 Input: DFA M = (Z, \Sigma, \delta, q_0, E)

2 entferne alle nicht erreichbaren Zustände

3 D' := \{\{z, z'\} \mid z \in E, z' \notin E\}

4 repeat

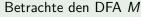
5 D := D'

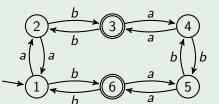
6 D' := D \cup \{\{p, q\} \mid \exists a \in \Sigma : \{\delta(p, a), \delta(q, a)\} \in D\}
```

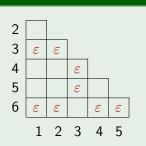
Output: $\tilde{M} = (\tilde{Z}, \Sigma, \tilde{\delta}, \tilde{q}_0, \tilde{E})$, wobei für jeden Zustand

 $z \in Z$ gilt: $\tilde{z} = \{z\} \cup \{z' \in Z \mid \{z, z'\} \notin D\}$

until D' = D





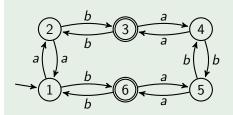


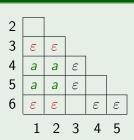
Dann enthält D_0 die Paare

 $\{1,3\},\{1,6\},\{2,3\},\{2,6\},\{3,4\},\{3,5\},\{4,6\},\{5,6\}.$

Beispiel

Betrachte den DFA M



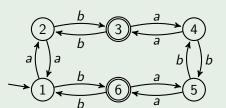


Wegen

enthält D_1 zusätzlich die Paare $\{1,4\}$, $\{1,5\}$, $\{2,4\}$, $\{2,5\}$.

Beispiel

Betrachte den DFA M



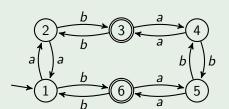
Da nun jedoch die verbliebenen Paare $\{1,2\},~\{3,6\},~\{4,5\}$ wegen

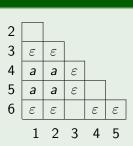
$$\begin{cases} \{p,q\} \\ \{\delta(p,a),\delta(q,a)\} \end{cases} \begin{cases} \{1,2\} \\ \{4,5\} \end{cases} \begin{cases} \{4,5\} \\ \{4,5\} \end{cases} \begin{cases} \{0,b\},\delta(q,b)\} \end{cases} \begin{cases} \{1,2\} \\ \{1,2\} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \begin{cases} \{1,2\} \end{cases} \begin{cases} \{1,2\} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \begin{cases} \{1,2\} \end{cases} \begin{cases} \{1,2\} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \begin{cases} \{1,2\} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \begin{cases} \{1,2\} \end{cases} \end{cases}$$

nicht zu D_1 hinzugefügt werden können, ist $D_2 = D_1$.

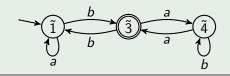
Beispiel

Betrachte den DFA M





Da die Paare $\{1,2\}$, $\{3,6\}$ und $\{4,5\}$ nicht in D_1 enthalten sind, können die Zustände 1 und 2, 3 und 6, sowie 4 und 5 verschmolzen werden. Demnach hat \tilde{M} die Zustände $\tilde{1}=\{1,2\},\ \tilde{3}=\{3,6\}$ und $\tilde{4}=\{4,5\}$:



Direkte Konstruktion eines Minimal-DFA aus L

Bemerkung

• \tilde{M} erreicht nach Lesen von x den Zustand $\hat{\delta}(q_0,x)$. Wegen

$$\widehat{\hat{\delta}(q_0,x)} = \widehat{\hat{\delta}(q_0,y)} \Leftrightarrow \widehat{\delta}(q_0,x) \sim \widehat{\delta}(q_0,y) \\ \Leftrightarrow L_{\widehat{\delta}(q_0,x)} = L_{\widehat{\delta}(q_0,y)} \Leftrightarrow L_x = L_y$$

können die Zustände $\hat{\delta}(q_0,x)$ von \tilde{M} auch mit L_x bezeichnet werden.

• Dies führt auf den zu M isomorphen DFA $M_L = (Z_L, \Sigma, \delta_L, L_\varepsilon, E_L)$ mit

$$Z_L = \{L_x \mid x \in \Sigma^*\}, \ E_L = \{L_x \mid x \in L\} \text{ und } \delta_L(L_x, a) = L_{xa},$$

der sich auch direkt aus der Sprache L gewinnen lässt.

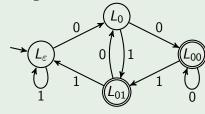
Direkte Konstruktion eines Minimal-DFA aus L

Beispiel

- Betrachte die Sprache $L = \{x_1 \cdots x_n \in \{0, 1\}^* \mid x_{n-1} = 0\}.$
- Dann hat M_L die folgenden Sprachen als Zustände:

$$L_{x} = \begin{cases} L, & x \in \{\varepsilon, 1\} \text{ oder } x \text{ endet mit } 11, \\ L \cup \{0, 1\}, & x = 0 \text{ oder } x \text{ endet mit } 10, \\ L \cup \{\varepsilon, 0, 1\}, & x \text{ endet mit } 00, \\ L \cup \{\varepsilon\}, & x \text{ endet mit } 01. \end{cases}$$

• Graphische Darstellung von M_L :



Der Satz von Myhill und Nerode

- Notwendig und hinreichend für die Existenz von M_L ist, dass die Menge $Z_L = \{L_x \mid x \in \Sigma^*\}$ endlich ist.
- L ist also genau dann regulär, wenn der Index der durch

$$x R_L y \Leftrightarrow L_x = L_y$$

auf Σ^* definierten Äquivalenzrelation R_L endlich ist.

- Ist M ein DFA mit einer minimalen Anzahl von Zuständen, so haben die Zustände von \tilde{M} die Form $\tilde{q}=\{q\}$, d.h. M ist isomorph zu \tilde{M} .
- Da \tilde{M} wiederum isomorph zu M_L ist, ist jeder minimale DFA M mit L(M) = L isomorph zu M_L , d.h. für jede reguläre Sprache L gibt es bis auf Isomorphie nur einen Minimal-DFA.

Der Satz von Myhill und Nerode

Satz (Myhill und Nerode)

Für eine Sprache $L\subseteq \Sigma^*$ sei

$$R_L = \{(x, y) \in \Sigma^* \times \Sigma^* \mid L_x = L_y\}$$

= \{(x, y) \in \Sigma^* \times \Sigma^* \operatorname \Sigma^* : xz \in L \infty yz \in L\}

und sei $index(R_L)$ der Index von R_L . Dann gilt:

- **1** REG = {*L* | *index*(R_L) < ∞}.
- ② Für jede reguläre Sprache L gibt es bis auf Isomorphie genau einen Minimal-DFA. Dieser hat $index(R_L)$ Zustände.

Der Äquivalenzklassen-DFA M_{R_L} für L

- Zwei Eingaben x und y überführen den DFA M_L genau dann in denselben Zustand, wenn $L_x = L_y$ ist (also xR_Ly gilt).
- Die Zustände von M_L können daher anstelle von L_x auch mit den Äquivalenzklassen [x] von R_L (bzw. mit geeigneten Repräsentanten) benannt werden.
- Der resultierende Minimal-DFA M_{R_L} wird auch als Äquivalenzklassenautomat bezeichnet:

$$\mathit{M}_{\mathit{R}_{\mathit{L}}} = (\mathit{Z}, \Sigma, \delta, [\varepsilon], \mathit{E}) \text{ mit } \mathit{Z} = \{[x] \mid x \in \Sigma^*\} \text{ und } \mathit{E} = \{[x] \mid x \in \mathit{L}\}.$$

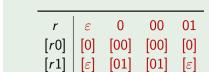
- Für die Konstruktion von δ genügt es, ausgehend von $r_1 = \varepsilon$ eine Folge von Wörtern r_1, \ldots, r_k mit $[r_i] \neq [r_j]$ zu bestimmen, so dass zu jedem r_i und jedem Zeichen $a \in \Sigma$ ein r_j existiert mit $r_i a \in [r_j]$.
- In diesem Fall ist dann $\delta([r_i], a) = [r_i a] = [r_i]$.
- Die Konstruktion von M_{R_L} erfordert meist weniger Aufwand als die von M_L , da die Bestimmung der Sprachen L_x entfällt.

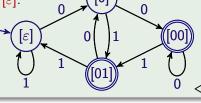
Direkte Konstruktion des Äquivalenzklassen-DFA M_{R_I} aus L

Beispiel

Für die Sprache $L = \{x_1 \cdots x_n \in \{0,1\}^* \mid x_{n-1} = 0\}$ lässt sich M_{R_i} ausgehend von $r_1 = \varepsilon$ wie folgt konstruieren:

- Wegen $r_10 = 0 \notin [\varepsilon]$ ist $r_2 = 0$ und $\delta([\varepsilon], 0) = [0]$.
- Wegen $r_1 1 = 1 \in [\varepsilon]$ ist $\delta([\varepsilon], 1) = [\varepsilon]$.
- **3** Wegen $r_2 0 = 00 \notin [\varepsilon] \cup [0]$ ist $r_3 = 00$ und $\delta([0], 0) = [00]$.
- **●** Wegen $r_2 1 = 01 \notin [ε] \cup [0] \cup [00]$ ist $r_4 = 01$ und δ([0], 1) = [01].
- **6** Wegen $r_30 = 000 \in [00]$ ist $\delta([00], 0) = [00]$.
- **6** Wegen $r_3 1 = 001 \in [01]$ ist $\delta([00], 1) = [01]$.
- Wegen $r_40 = 010 \in [0]$ ist $\delta([01], 0) = [0]$.
- Wegen $r_4 1 = 011 \in [\varepsilon]$ ist $\delta([01], 1) = [\varepsilon]$.





Charakterisierungen der Klasse REG

Korollar

Sei L eine Sprache. Dann sind folgende Aussagen äquivalent:

- L ist regulär,
- es gibt einen DFA M mit L = L(M),
- es gibt einen NFA N mit L = L(N),
- es gibt einen regulären Ausdruck γ mit $L = L(\gamma)$,
- die Äguivalenzrelation R_I hat endlichen Index.

Wir können also beweisen, dass eine Sprache L nicht regulär ist, indem wir unendlich viele Wörter finden, die paarweise inäquivalent bzgl. R_L sind.

Nachweis von $L \notin REG$ mittels Myhill und Nerode

Satz

Die Sprache $L = \{a^nb^n \mid n \ge 0\}$ ist nicht regulär.

Beweis

Die Wörter a^i , $i \ge 0$, sind bzgl. R_L paarweise inäquivalent.

Für
$$i \neq j$$
 gilt nämlich $\neg a^i R_L a^j$, da

$$b^i \in L_{a^i} \Delta L_{a^j}$$

enthalten ist.

Frage

Wie lässt sich möglichst einfach zeigen, dass eine Sprache nicht regulär ist?

Antwort

Oft führt die Kontraposition folgender Aussage zum Ziel.

Satz (Pumping-Lemma für reguläre Sprachen)

Zu jeder regulären Sprache L gibt es eine Zahl $l \ge 0$, so dass sich alle

Wörter $x \in L$ mit $|x| \ge I$ in x = uvw zerlegen lassen mit

- $v \neq \varepsilon,$
- $|uv| \leq l \text{ und}$
- $uv^iw \in L$ für alle $i \ge 0$.

Das kleinste solche / wird auch die Pumping-Zahl von L genannt.

Beispiel

Die Sprache

$$L = \{x \in \{a, b\}^* \mid \#_a(x) - \#_b(x) \equiv_3 1\}$$

lässt sich "pumpen" (mit Pumping-Zahl l=3).

- Sei $x \in L$ beliebig mit $|x| \ge 3$.
 - 1. Fall: x hat das Präfix \underline{ab} . Zerlege x = uvw mit $u = \varepsilon$ und v = ab.
 - 2. Fall: x hat das Präfix aab. Zerlege x = uvw mit u = a und v = ab.
 - 3. Fall: x hat das Präfix <u>aaa</u>. Zerlege x = uvw mit $u = \varepsilon$ und v = aaa.
 - Restliche Fälle (Präfixe <u>ba</u>, b<u>ba</u> und <u>bbb</u>): analog.

Beispiel

- Eine endliche Sprache L lässt sich wie folgt "pumpen".
- Sei

$$I = \begin{cases} 0, & L = \emptyset, \\ 1 + \max_{x \in L} |x|, & \text{sonst.} \end{cases}$$

- Dann lässt sich jedes Wort $x \in L$ der Länge $|x| \ge l$ "pumpen" (da solche Wörter gar nicht existieren).
- Zudem gibt es im Fall l > 0 ein Wort $x \in L$ der Länge l 1, das sich nicht "pumpen" lässt.
- Also hat L die Pumping-Zahl I.

Satz (Pumping-Lemma für reguläre Sprachen)

Zu jeder regulären Sprache L gibt es eine Zahl I, so dass sich alle Wörter $x \in L$ mit $|x| \ge I$ in x = uvw zerlegen lassen mit

- $\mathbf{0} \quad \mathbf{v} \neq \mathbf{\varepsilon},$
- $|uv| \leq l$ und
- $uv^iw \in L$ für alle $i \ge 0$.

Das kleinste solche / wird auch die Pumping-Zahl von L genannt.

Beweis

- Sei $M = (Z, \Sigma, \delta, q_0, E)$ ein DFA mit I Zuständen und sei $x = x_1 \cdots x_n \in L$ mit $n = |x| \ge I$.
- Dann muss M(x) nach spätestens I Schritten einen Zustand zum zweiten Mal annehmen, d.h. es ex. $0 \le j < k \le I$ und $z \in Z$ mit

$$\hat{\delta}(q_0, x_1 \cdots x_j) = \mathbf{z} \text{ und}$$

$$\hat{\delta}(q_0, x_1 \cdots x_j x_{j+1} \cdots x_k) = \mathbf{z}.$$

- Setze $u = x_1 \cdots x_j$, $v = x_{j+1} \cdots x_k$ und $w = x_{k+1} \cdots x_n$.
- Dann gilt $|\mathbf{v}| = k j \ge 1$ (d.h. $\mathbf{v} \ne \varepsilon$), $k = |\mathbf{u}\mathbf{v}| \le l$.
- Zudem gehört für alle $i \ge 0$ das Wort $uv^i w$ zu L, da wegen $\hat{\delta}(z, v) = z$

$$\hat{\delta}(q_0, uv^i w) = \hat{\delta}(\hat{\delta}(\underbrace{\hat{\delta}(q_0, u)}_{z}, v^i), w) = \hat{\delta}(\underbrace{\hat{\delta}(z, v^i)}_{z}, w) = \hat{\delta}(q_0, x)$$

in *E* ist.

Kontraposition des Pumping-Lemmas

Um also $L \notin REG$ zu zeigen, genügt es,

- für jede Zahl $l \ge 0$ ein Wort $x \in L$ der Länge $|x| \ge l$ zu finden, so dass
- für jede Zerlegung
 x = uvw mindestens
 eine der folgenden drei
 Bedingungen verletzt
 ist:
 - $\mathbf{0} \quad \mathbf{v} \neq \varepsilon$
 - $|uv| \leq l$ oder
 - $uv^iw \in L$ für alle i > 0.

Beispiel

Die Sprache

$$L = \{a^n b^n \mid n \ge 0\}$$

ist nicht regulär:

- Für jede Zahl $l \ge 0$ enthält L das Wort $x = a^l b^l$ mit $|x| = 2l \ge l$.
- Für jede Zerlegung x = uvw von $x = a^l b^l$ mit
 - $\mathbf{0} \quad \mathbf{v} \neq \varepsilon$

ist die Bedingung

 $uv^iw \in L$

für alle i > 2 verletzt.

Kontraposition des Pumping-Lemmas

Um also $L \notin REG$ zu zeigen, genügt es,

- für jede Zahl $l \ge 0$ ein Wort $x \in L$ der Länge $|x| \ge l$ zu finden, so dass
- für jede Zerlegung
 x = uvw mindestens
 eine der folgenden drei
 Bedingungen verletzt
 ist:
 - $v \neq \varepsilon$,
 - $|uv| \leq l$ oder
 - $uv^iw \in L$ für alle i > 0.

Beispiel $(L = \{a^{n^2} \mid n \ge 0\} \not\in \mathsf{REG})$

- Für jede Zahl $l \ge 0$ enthält L ein Wort x mit $|x| = l^2 \ge l$.
- Für jede Zerlegung x = uvw mit |u| = r, |v| = s, |w| = t und
 - $v \neq \varepsilon$ (d.h. $s \ge 1$) sowie
 - $|uv| \le l \text{ (d.h. } r + s \le l)$

ist die Bedingung

 $uv^2w \in L$

verletzt, da $r + 2s + t = l^2 + s$ keine Quadratzahl ist:

$$I^2 < I^2 + s < I^2 + I + 1 \le (I+1)^2$$
.

Kontraposition des Pumping-Lemmas

Um also $L \notin REG$ zu zeigen, genügt es,

- für jede Zahl $l \ge 0$ ein Wort $x \in L$ der Länge $|x| \ge l$ zu finden, so dass
- für jede Zerlegung
 x = uvw mindestens
 eine der folgenden drei
 Bedingungen verletzt
 ist:
 - $\mathbf{0} \quad \mathbf{v} \neq \varepsilon$
 - $|uv| \leq l$ oder
 - $uv^iw \in L$ für alle i > 0.

Beispiel ($L = \{a^p \mid p \text{ prim }\} \not\in \mathsf{REG}$)

- Für jede Zahl $I \ge 0$ enthält L ein Wort x mit $|x| = p \ge I$.
- Für jede Zerlegung x = uvw mit |v| = s und
 - $v \neq \varepsilon$ (d.h. $s \geq 1$)

ist die Bedingung

 $uv^iw \in L$

wegen

$$|uv^iw|=p+(i-1)s$$

für i = p + 1 verletzt, da dann

$$|uv^iw| = p + ps = p(s+1)$$

ist.

Grenzen des Pumping-Lemmas

Bemerkung

- Mit dem Pumping-Lemma können nicht alle Sprachen $L \notin REG$ als nicht regulär nachgewiesen werden, da seine Umkehrung falsch ist.
- Betrachte die Sprache

$$L = \{a^i b^j c^k \mid i = 0 \text{ oder } j = k\}.$$

- Da jedes Wort $x \in L$ mit Ausnahme von ε "gepumpt" werden kann, hat L die Pumping-Zahl 1.
- Allerdings ist *L* nicht regulär (siehe Übungen).

Erzeugung der regulären Ausdrücke mit einer Grammatik

Eine elegante Methode, Sprachen zu beschreiben, sind Grammatiken. Implizit haben wir hiervon bei der Definition der regulären Ausdrücke schon Gebrauch gemacht.

Beispiel

Die Sprache RA aller regulären Ausdrücke über einem Alphabet

 $\Sigma = \{a_1, \dots, a_k\}$ lässt sich aus dem Symbol R unter Anwendung folgender Regeln erzeugen:

$$egin{aligned} R &
ightarrow \emptyset, & R &
ightarrow RR, \ R &
ightarrow \epsilon, & R &
ightarrow (R|R), \ R &
ightarrow a_i, \ i = 1, \ldots, k, & R &
ightarrow (R)^*. \end{aligned}$$

Definition einer Grammatik

Definition

Eine Grammatik ist ein 4-Tupel $G = (V, \Sigma, P, S)$, wobei

- *V* eine endliche Menge von Variablen (auch Nichtterminalsymbole genannt),
- \bullet Σ das Terminalalphabet,
- $P \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^*$ eine endliche Menge von Regeln (oder Produktionen) und
- $S \in V$ die Startvariable ist.

Bemerkung

Für $(u, v) \in P$ schreiben wir auch kurz $u \to_G v$ bzw. $u \to v$, wenn die benutzte Grammatik aus dem Kontext ersichtlich ist.

Die von einer Grammatik erzeugte Sprache

• Ein Wort $\beta \in (V \cup \Sigma)^*$ ist aus einem Wort $\alpha \in (V \cup \Sigma)^+$ in einem Schritt ableitbar (kurz: $\alpha \Rightarrow_G \beta$), falls eine Regel $u \rightarrow_G v$ und Wörter $l, r \in (V \cup \Sigma)^*$ existieren mit

$$\alpha = lur \text{ und } \beta = lvr.$$

Hierfür schreiben wir auch $l\underline{u}r \Rightarrow_G lvr$.

- Eine Folge $\sigma = (l_0, u_0, r_0), \dots, (l_m, u_m, r_m)$ von Tripeln (l_i, u_i, r_i) heißt Ableitung von β aus α , falls gilt:
 - $I_0 u_0 r_0 = \alpha$, $I_m u_m r_m = \beta$ und
 - $l_i u_i r_i \Rightarrow l_{i+1} u_{i+1} r_{i+1}$ für i = 0, ..., m-1.

Die Länge der Ableitung σ ist m und wir notieren σ auch in der Form

$$l_0u_0r_0 \Rightarrow l_1u_1r_1 \Rightarrow \cdots \Rightarrow l_{m-1}u_{m-1}r_{m-1} \Rightarrow l_mu_mr_m.$$

- Die durch G erzeugte Sprache ist $L(G) = \{x \in \Sigma^* \mid S \Rightarrow_G^* x\}$.
- Ein Wort $\alpha \in (V \cup \Sigma)^*$ mit $S \Rightarrow_G^* \alpha$ heißt Satzform von G.

Ableitungen in einer Grammatik

Zur Erinnerung:

- \Rightarrow^* bezeichnet die reflexive, transitive Hülle der Relation \Rightarrow , d.h. $\alpha \Rightarrow^* \beta$ bedeutet, dass es ein $n \ge 0$ gibt mit $\alpha \Rightarrow^n \beta$.
 - Hierzu sagen wir auch, β ist aus α (in n Schritten) ableitbar.
- \Rightarrow^n bezeichnet das *n*-fache Produkt der Relation \Rightarrow , d.h. es gilt $\alpha \Rightarrow^n \beta$, falls Wörter $\alpha_0, \ldots, \alpha_n$ existieren mit
 - $\alpha_0 = \alpha$, $\alpha_n = \beta$ und
 - $\alpha_i \Rightarrow \alpha_{i+1}$ für $i = 0, \ldots, n-1$.

Ableitung eines Wortes

Beispiel

• Wir betrachten nochmals die Grammatik

$$G = (\{R\}, \Sigma \cup \{\emptyset, \epsilon, (,), |, {}^*\}, P, R)$$

für die Sprache aller regulären Ausdrücke über Σ mit den Regeln

$$P: R \to \emptyset, \epsilon, a, a \in \Sigma$$

 $R \to RR, (R|R), (R)^*.$

• Der reguläre Ausdruck $(01)^*(\epsilon|\emptyset)$ über $\Sigma = \{0,1\}$ lässt sich in G aus dem Startsymbol R wie folgt ableiten:

$$\underline{R} \Rightarrow \underline{RR} \Rightarrow (\underline{R})^* R \Rightarrow (\underline{RR})^* \underline{R} \Rightarrow (\underline{RR})^* (\underline{R}|\underline{R})
\Rightarrow (\underline{0R})^* (R|R) \Rightarrow (\underline{01})^* (\underline{R}|R) \Rightarrow (\underline{01})^* (\underline{\epsilon}|\underline{R}) \Rightarrow (\underline{01})^* (\underline{\epsilon}|\underline{\emptyset})$$

Man unterscheidet vier Typen von Grammatiken $G = (V, \Sigma, P, S)$.

Definition

1 G heißt vom Typ 3 oder regulär, falls für alle Regeln $u \rightarrow v$ gilt:

$$u \in V$$
 und $v \in \Sigma V \cup \Sigma \cup \{\varepsilon\}$,
(d.h. alle Regeln haben die Form $A \to aB$, $A \to a$ oder $A \to \varepsilon$).

② G heißt vom Typ 2 oder kontextfrei, falls für alle Regeln $u \rightarrow v$ gilt:

$$u \in V,$$
 (d.h. alle Regeln haben die Form $A \to \alpha$).

- **3** G heißt vom Typ 1 oder kontextsensitiv, falls für alle Regeln $u \to v$ gilt: $|v| \ge |u|$, (mit Ausnahme der ε -Sonderregel, s. unten).
- Jede Grammatik ist automatisch vom Typ 0.

Die ε -Sonderregel

In einer kontextsensitiven Grammatik ist auch die Regel $S \to \varepsilon$ zulässig. Aber nur, wenn das Startsymbol S in keiner Regel rechts vorkommt.

Beispiel

• Wir betrachten nochmals die Grammatik

$$G = (\{R\}, \Sigma \cup \{\emptyset, \epsilon, (,), |, {}^*\}, P, R)$$

für die Sprache aller regulären Ausdrücke über Σ mit den Regeln

$$P: R \to \emptyset, \epsilon, a, a \in \Sigma$$

 $R \to RR, (R|R), (R)^*.$

- Da auf der linken Seite jeder Regel eine einzelne Variable steht, ist *G* kontextfrei.
- Offenbar ist G aber keine reguläre Grammatik, da zwar die $\|\Sigma\| + 2$ Regeln $R \to \emptyset, \epsilon, a, a \in \Sigma$, die geforderte Form haben, nicht jedoch die drei Regeln $R \to RR$, (R|R), $(R)^*$.

- Eine Sprache heißt vom Typ i bzw. regulär, kontextfrei oder kontextsensitiv, falls sie von einer entsprechenden Grammatik erzeugt wird.
- Damit erhalten wir die neuen Sprachklassen

```
\mathsf{CFL} = \{ \mathit{L}(\mathit{G}) \mid \mathit{G} \text{ ist eine kontextfreie Grammatik} \} und  (\mathit{context free languages})
```

```
CSL = \{L(G) \mid G \text{ ist eine kontextsensitive Grammatik}\}
(context sensitive languages).
```

 Da die Klasse der Typ 0 Sprachen mit der Klasse der rekursiv aufzählbaren Sprachen übereinstimmt, bezeichnen wir diese Sprachklasse mit

$$RE = \{L(G) \mid G \text{ ist eine Grammatik}\}\$$

(recursively enumerable languages).

• Wir werden bald beweisen, dass die Sprachklassen

$$REG \subset CFL \subset CSL \subset RE$$

- eine Hierarchie bilden (d.h. die Inklusionen sind echt), die so genannte Chomsky-Hierarchie.
- Zunächst rechtfertigen wir jedoch die Bezeichnung regulär für die regulären Grammatiken und für die von ihnen erzeugten Sprachen.

Satz

 $REG = \{L(G) \mid G \text{ ist eine reguläre Grammatik}\}.$

Beweis von REG $\subseteq \{L(G) \mid G \text{ ist eine reguläre Grammatik}\}$

- Sei $M = (Z, \Sigma, \delta, q_0, E)$ ein DFA.
- Wir konstruieren eine reguläre Grammatik G mit L(G) = L(M).
- ullet Betrachte die Grammatik $G=(V,\Sigma,P,S)$ mit V=Z, $S=q_0$ und

$$P = \{q \rightarrow ap \mid \delta(q, a) = p\} \cup \{q \rightarrow \varepsilon \mid q \in E\}.$$

Beweis von REG $\subseteq \{L(G) \mid G \text{ ist eine reguläre Grammatik}\}$

ullet Betrachte die Grammatik $G=(V,\Sigma,P,S)$ mit V=Z, $S=q_0$ und

$$P = \{q \rightarrow ap \mid \delta(q, a) = p\} \cup \{q \rightarrow \varepsilon \mid q \in E\}.$$

• Dann gilt für alle Wörter $x = x_1 \cdots x_n \in \Sigma^*$:

$$x \in L(M) \Leftrightarrow \exists q_1, \dots, q_{n-1} \in Z \ \exists q_n \in E :$$

$$\delta(q_{i-1}, x_i) = q_i \text{ für } i = 1, \dots, n$$

$$\Leftrightarrow \exists q_1, \dots, q_n \in V :$$

$$q_{i-1} \to x_i q_i \text{ für } i = 1, \dots, n \text{ und } q_n \to \varepsilon$$

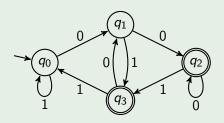
$$\Leftrightarrow \exists q_1, \dots, q_n \in V :$$

$$q_0 \Rightarrow^i x_1 \cdots x_i q_i \text{ für } i = 1, \dots, n \text{ und } q_n \to \varepsilon$$

$$\Leftrightarrow x \in L(G)$$

Beispiel

Für den DFA



erhalten wir die Grammatik $G = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, P, q_0)$ mit

$$egin{aligned} P: & q_0
ightarrow 1q_0, \, 0q_1, \ q_1
ightarrow 0q_2, \, 1q_3, \ q_2
ightarrow 0q_2, \, 1q_3, \, arepsilon, \ q_3
ightarrow 0q_1, \, 1q_0, \, arepsilon. \end{aligned}$$

- Offensichtlich lässt sich obige Konstruktion einer Grammatik G aus einem DFA M umdrehen, falls G keine Regeln der Form $A \rightarrow a$ enthält.
- Für den Beweis der Rückrichtung genügt es daher, alle Regeln dieser Form zu eliminieren.

Lemma

Zu jeder regulären Grammatik $G = (V, \Sigma, P, S)$ gibt es eine äquivalente reguläre Grammatik G', die keine Regeln der Form $A \rightarrow a$ hat.

Beweis

Betrachte die Grammatik $G' = (V', \Sigma, P', S)$ mit

$$V' = V \cup \{X_{neu}\}$$
 und

$$P' = \{A \to aX_{neu} \mid A \to_G a\} \cup \{X_{neu} \to \varepsilon\} \cup P \setminus (V \times \Sigma).$$

Beispiel

• Betrachte die Grammatik $G = (\{A, B, C\}, \{a, b\}, P, A)$ mit

$$P: A \rightarrow aB, bC, \varepsilon, \\ B \rightarrow aC, bA, b, \\ C \rightarrow aA, bB, a.$$

- Wir ersetzen die Regeln $B \to b$ und $C \to a$ durch die Regeln $B \to bD$ und $C \to aD$ und fügen die Regel $D \to \varepsilon$ hinzu.
- Damit erhalten wir die Grammatik $G' = (\{A, B, C, D\}, \{a, b\}, P', A)$ mit

$$P': A \rightarrow aB, bC, \varepsilon,$$

 $B \rightarrow aC, bA, bD,$
 $C \rightarrow aA, bB, aD,$
 $D \rightarrow \varepsilon.$

Beweis von $\{L(G) \mid G \text{ ist eine reguläre Grammatik}\} \subseteq REG$

- Sei $G = (V, \Sigma, P, S)$ eine reguläre Grammatik, die keine Regeln der Form $A \to a$ enthält.
- Drehen wir obige Konstruktion einer Grammatik aus einem DFA um, so erhalten wir den NFA

$$M = (Z, \Sigma, \delta, \{S\}, E)$$

mit
$$Z = V$$
, $\delta(A, a) = \{B \mid A \rightarrow_G aB\}$ und $E = \{A \mid A \rightarrow_G \epsilon\}$.

• Genau wie oben folgt dann L(M) = L(G).

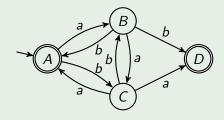
Beispiel (Fortsetzung)

Die Grammatik $G' = (\{A, B, C, D\}, \{a, b\}, P', A)$ mit

$$P': A \rightarrow aB, bC, \varepsilon,$$

 $B \rightarrow aC, bA, bD,$
 $C \rightarrow aA, bB, aD,$
 $D \rightarrow \varepsilon.$

führt auf den NFA



Charakterisierungen der Klasse REG

Korollar

Sei L eine Sprache. Dann sind folgende Aussagen äquivalent:

- L ist regulär,
- es gibt einen DFA M mit L = L(M),
- es gibt einen NFA N mit L = L(N),
- es gibt einen regulären Ausdruck γ mit $L = L(\gamma)$,
- \bullet die Äquivalenzrelation R_L hat endlichen Index,
- es gibt eine reguläre Grammatik G mit L = L(G).