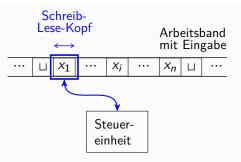
Einführung in die Theoretische Informatik

Johannes Köbler

Institut für Informatik Humboldt-Universität zu Berlin

WS 2011/12

Die Turingmaschine



- Eine Turingmaschine erhält ihre Eingabe auf einem nach links und rechts unbegrenzten Band.
- Während ihrer Rechnung kann sie den Schreib-Lese-Kopf auf dem Band in beide Richtungen bewegen und dabei die besuchten Bandfelder lesen sowie die gelesenen Zeichen gegebenenfalls überschreiben.

Entscheidbare und semi-entscheidbare Sprachen

Definition

- Eine NTM M hält bei Eingabe x, falls alle Rechnungen von M(x) eine endliche Länge haben.
- Eine NTM M entscheidet eine Eingabe x, falls M(x) hält oder eine Konfiguration mit einem Endzustand erreichen kann.
- Eine Sprache $L \subseteq \Sigma^*$ heißt entscheidbar, falls eine DTM M mit L(M) = L existiert, die jede Eingabe $x \in \Sigma^*$ entscheidet.
- Jede von einer DTM *M* erkannte Sprache heißt semi-entscheidbar.

Bemerkung

- Die von M akzeptierte Sprache L(M) heißt semi-entscheidbar, da M zwar alle Eingaben $x \in L$ entscheidet (aber eventuell nicht alle $x \in \overline{L}$).
- Später werden wir sehen, dass genau die Typ-0 Sprachen semi-entscheidbar sind.

Berechnung von Funktionen

Definition

• Eine $k ext{-DTM } M = (Z, \Sigma, \Gamma, \delta, q_0, E)$ berechnet eine Funktion $f: \Sigma^* \to \Gamma^*$, falls M bei jeder Eingabe $x \in \Sigma^*$ in einer Konfiguration

$$K = (q, u_1, a_1, v_1, \dots, u_k, a_k, v_k) \in Z \times (\Gamma^* \times \Gamma \times \Gamma^*)^k$$

hält (d.h. $K_x \vdash^* K$ und K hat keine Folgekonfiguration) mit $u_k = f(x)$.

- Hierfür sagen wir auch, M gibt bei Eingabe x das Wort f(x) aus und schreiben M(x) = f(x).
- f heißt Turing-berechenbar (oder einfach berechenbar), falls es eine k-DTM M mit M(x) = f(x) für alle $x \in \Sigma^*$ gibt.
- Aus historischen Gründen werden berechenbare Funktionen auch rekursiv genannt.

Berechenbarkeit von partiellen Funktionen

Definition

- Eine partielle Funktion hat die Form $f: \Sigma^* \to \Gamma^* \cup \{\uparrow\}$.
- Für $f(x) = \uparrow$ sagen wir auch f(x) ist undefiniert.
- Der Definitionsbereich (engl. *domain*) von f ist $dom(f) = \{x \in \Sigma^* \mid f(x) \neq \uparrow\}.$
- \bullet Das Bild (engl. *image*) von f ist

$$img(f) = \{f(x) \mid x \in dom(f)\}.$$

- f heißt total, falls $f(x) \neq \uparrow$ für alle $x \in \Sigma^*$ ist.
- Eine k-DTM $M = (Z, \Sigma, \Gamma, \delta, q_0, E)$ berechnet f, falls M(x) für alle $x \in dom(f)$ das Wort f(x) ausgibt und für alle $x \notin dom(f)$ keine Ausgabe berechnet (d.h. M(x) darf im Fall $x \notin dom(f)$ nicht halten).

Berechen- und Entscheidbarkeit

Wir fassen die entscheidbaren Sprachen und die (partiellen) berechenbaren Funktionen in folgenden Klassen zusammen:

```
REC = \{L(M) \mid M \text{ ist eine DTM, die jede Eingabe entscheidet}\},

FREC = \{f \mid f \text{ ist eine berechenbare (totale) Funktion}\},

FREC<sub>p</sub> = \{f \mid f \text{ ist eine berechenbare partielle Funktion}\}.
```

Dann gilt:

- FREC
 ⊊ FREC_p und
- REG $\not\subseteq$ DCFL $\not\subseteq$ CFL $\not\subseteq$ DCSL \subseteq CSL $\not\subseteq$ REC $\not\subseteq$ RE.

Berechenbarkeit von partiellen Funktionen

Beispiel

- Bezeichne x^+ den lexikografischen Nachfolger von $x \in \Sigma^*$.
- Für $\Sigma = \{0,1\}$ ergeben sich beispielsweise folgende Werte:

ullet Betrachte die auf Σ^* definierten partiellen Funktionen f_1, f_2, f_3, f_4 mit

$$f_1(x) = 0,$$

 $f_2(x) = x,$ und $f_4(x) = \begin{cases} \uparrow, & x = \varepsilon, \\ y, & x = y^+. \end{cases}$

• Da f_1, f_2, f_3, f_4 berechenbar sind, gehören die totalen Funktionen f_1, f_2, f_3 zu FREC und die partielle Funktion f_4 zu FREC $_p$.

Berechenbarkeit von charakteristischen Funktionen

Satz

 Eine Sprache A ⊆ Σ* ist genau dann entscheidbar, wenn ihre charakteristische Funktion χ_A: Σ* → {0,1} berechenbar ist:

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A. \end{cases}$$

• Eine Sprache $A \subseteq \Sigma^*$ ist genau dann semi-entscheidbar, falls ihre partielle charakteristische Funktion $\hat{\chi}_A : \Sigma^* \to \{0,1,\uparrow\}$ berechenbar ist:

$$\hat{\chi}_{A}(x) = \begin{cases} 1, & x \in A, \\ \uparrow, & x \notin A. \end{cases}$$

Beweis

Siehe Übungen.

Charakterisierung der rekursiv aufzählbaren Sprachen

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt rekursiv aufzählbar, falls $A = \emptyset$ oder das Bild img(f) einer berechenbaren Funktion $f : \Gamma^* \to \Sigma^*$ ist.

Satz

Folgende Eigenschaften sind äquivalent:

- **1** A ist semi-entscheidbar (d.h. A wird von einer DTM akzeptiert),
- A wird von einer 1-DTM akzeptiert,
- A wird von einer 1-NTM akzeptiert,
- A ist vom Typ 0,A wird von einer NTM akzeptiert.
 - A WII'd VOII EIIIEI IN I WI akzeptiert
- A ist rekursiv aufzählbar.

Beweis

Die Implikation $2 \Rightarrow 3$ ist klar. Die Implikationen $3 \Rightarrow 3 \Rightarrow 3$ werden in den Übungen gezeigt. Hier zeigen wir $1 \Rightarrow 2$ und $1 \Rightarrow 3 \Rightarrow 3$ werden.

Simulation einer k-DTM durch eine 1-DTM

Beweis von $\bullet \Rightarrow \bullet$: $\{L(M)|M \text{ ist eine DTM}\}\subseteq \{L(M)|M \text{ ist eine 1-DTM}\}$

- Sei $M = (Z, \Sigma, \Gamma, \delta, q_0, E)$ eine k-DTM mit L(M) = A.
- Wir konstruieren eine 1-DTM $M' = (Z', \Sigma, \Gamma', \delta', z_0, E)$ für A.
- ullet M' simuliert M, indem sie jede Konfiguration K von M der Form

$$\begin{array}{c|c|c|c} \cdots & a & b & c & d & \cdots \\ \hline & \vdots & \uparrow & \\ \hline \cdots & e & f & g & h & \cdots \\ \hline & \uparrow & & & \\ \end{array}$$

durch eine Konfiguration K' folgender Form nachbildet:

$$\dots \left| \begin{pmatrix} a \\ \vdots \\ \hat{e} \end{pmatrix} \right| \left| \begin{pmatrix} b \\ \vdots \\ f \end{pmatrix} \right| \left| \begin{pmatrix} \hat{c} \\ \vdots \\ g \end{pmatrix} \right| \left| \begin{pmatrix} d \\ \vdots \\ h \end{pmatrix} \right| \dots$$

Simulation einer k-DTM durch eine 1-DTM

Beweis von $\bullet \Rightarrow \bullet$: $\{L(M)|M$ ist eine DTM $\}\subseteq \{L(M)|M$ ist eine 1-DTM $\}$

Das heißt, M' arbeitet mit dem Alphabet

$$\Gamma' = \Gamma \cup (\Gamma \cup \{\hat{a} \mid a \in \Gamma\})^k$$

• und erzeugt bei Eingabe $x = x_1 \dots x_n \in \Sigma^*$ zuerst die der Startkonfiguration

$$\mathcal{K}_{x} = \left(q_{0}, \varepsilon, x_{1}, x_{2} \ldots x_{n}, \varepsilon, \sqcup, \varepsilon, \ldots, \varepsilon, \sqcup, \varepsilon\right)$$

von M bei Eingabe x entsprechende Konfiguration

$$\mathcal{K}'_{x} = q'_{0} \begin{pmatrix} \hat{x}_{1} \\ \hat{\square} \\ \vdots \\ \hat{\square} \end{pmatrix} \begin{pmatrix} x_{2} \\ \square \\ \vdots \\ \square \end{pmatrix} \cdots \begin{pmatrix} x_{n} \\ \square \\ \vdots \\ \square \end{pmatrix}.$$

Simulation einer k-DTM durch eine 1-DTM

Beweis von $\bullet \Rightarrow \bullet$: $\{L(M)|M \text{ ist eine DTM}\}\subseteq \{L(M)|M \text{ ist eine 1-DTM}\}$

- Dann simuliert M' jeweils einen Schritt von M durch folgende Sequenz von Rechenschritten:
 - Zuerst geht M' solange nach rechts, bis sie alle mit ^ markierten Zeichen (z.B. $\hat{a}_1, \ldots, \hat{a}_k$) gefunden hat.
 - Diese Zeichen speichert M' in ihrem Zustand.
 - Anschließend geht M' wieder nach links und realisiert dabei die durch $\delta(q, a_1, \ldots, a_k)$ vorgegebene Anweisung von M.
 - Den aktuellen Zustand q von M speichert M' ebenfalls in ihrem Zustand.
- Sobald M in einen Endzustand übergeht, wechselt M' ebenfalls in einen Endzustand und hält.
- Nun ist leicht zu sehen, dass L(M') = L(M) ist.

Charakterisierung der rekursiv aufzählbaren Sprachen

Beweis von $\mathfrak{S} \Rightarrow \mathfrak{O} \colon \{L(M) \mid M \text{ ist eine NTM}\} \subseteq \{L \mid L \text{ ist rek. aufzählbar}\}$

- Sei $M = (Z, \Sigma, \Gamma, \delta, q_0, E)$ eine k-NTM und sei $A = L(M) \neq \emptyset$.
- Sei $\tilde{\Gamma}$ das Alphabet $Z \cup \Gamma \cup \{\#\}$.
- Wir kodieren eine Konfiguration $K = (q, u_1, a_1, v_1, \dots, u_k, a_k, v_k)$ durch das Wort

$$code(K) = \#q\#u_1\#a_1\#v_1\#\dots\#u_k\#a_k\#v_k\#$$

und eine Rechnung $K_0 \vdash \cdots \vdash K_t$ durch $code(K_0) \ldots code(K_t)$.

• Dann lassen sich die Wörter von A durch folgende Funktion $f: \tilde{\Gamma}^* \to \Sigma^*$ aufzählen (dabei ist x_0 ein beliebiges Wort in A):

$$f(x) = \begin{cases} y, & x \text{ kodiert eine Rechnung } K_0 \vdash \cdots \vdash K_t \text{ von } M \text{ mit} \\ K_0 = K_y \text{ und } K_t \in E \times (\Gamma^* \times \Gamma \times \Gamma^*)^k \\ x_0, & \text{sonst.} \end{cases}$$

• Da f berechenbar ist, ist A = img(f) rekursiv aufzählbar.

Charakterisierung der rekursiv aufzählbaren Sprachen

Beweis von $\bullet \Rightarrow \bullet$: $\{L|L \text{ ist rek. aufz\"{a}hlbar}\} \subseteq \{L(M)|M \text{ ist eine DTM}\}$

- Sei $f: \Gamma^* \to \Sigma^*$ eine Funktion mit A = img(f) und sei M eine k-DTM, die f berechnet.
- Betrachte folgende (k+1)-DTM M', die bei Eingabe x
 - auf dem 2. Band der Reihe nach alle Wörter y in Γ^* erzeugt,
 - für jedes y den Wert f(y) durch Simulation von M(y) berechnet, und
 - ihre Eingabe x akzeptiert, sobald f(y) = x ist.

Charakterisierung der entscheidbaren Sprachen

Satz

A ist genau dann entscheidbar, wenn A und \bar{A} semi-entscheidbar sind, d.h. REC = RE \cap co-RE.

Beweis.

- Falls A entscheidbar ist, ist auch \bar{A} entscheidbar, d.h. A und \bar{A} sind dann auch semi-entscheidbar.
- Für die Rückrichtung seien $f_1, f_2 : \Gamma^* \to \Sigma^*$ Turing-berechenbare Funktionen mit $img(f_1) = A$ und $img(f_2) = \bar{A}$.
- Wir betrachten folgende DTM M, die bei Eingabe x für jedes $y \in \Gamma^*$ die beiden Werte $f_1(y)$ und $f_2(y)$ bestimmt und im Fall
 - $f_1(y) = x$ in einem Endzustand hält,
 - $f_2(y) = x$ in einem Nichtendzustand hält.
- Da jede Eingabe x entweder in $img(f_1) = A$ oder in $img(f_2) = \bar{A}$ enthalten ist, hält M bei allen Eingaben.

Kodierung (Gödelisierung) von Turingmaschinen

- Sei $M = (Z, \Sigma, \Gamma, \delta, q_0, E)$ eine 1-DTM mit
 - Zustandsmenge $Z = \{q_0, \dots, q_m\}$ (o.B.d.A. sei $E = \{q_m\}$),
 - Eingabealphabet $\Sigma = \{0, 1, \#\}$ und
 - Arbeitsalphabet $\Gamma = \{a_0, \dots, a_l\}$, wobei wir o.B.d.A. $a_0 = \sqcup$, $a_1 = 0$, $a_2 = 1$ und $a_3 = \#$ annehmen.
- Dann können wir jede Anweisung der Form $q_i a_j \rightarrow q_{i'} a_{j'} D$ durch das Wort

$$\#bin(i)\#bin(j)\#bin(i')\#bin(j')\#b_D\#$$

kodieren.

• Dabei ist bin(n) die Binärdarstellung von n und

$$b_D = \begin{cases} 0, & D = N, \\ 1, & D = L, \\ 10, & D = R. \end{cases}$$

Kodierung von Turingmaschinen

- M lässt sich nun als ein Wort über dem Alphabet $\{0,1,\#\}$ kodieren, indem wir die Anweisungen von M in kodierter Form auflisten.
- Kodieren wir die Zeichen 0, 1, # binär (z.B. $0 \mapsto 00, 1 \mapsto 11, \# \mapsto 10$), so gelangen wir zu einer Binärkodierung w_M von M.
- Die Binärzahl w_M wird auch die Gödel-Nummer von M genannt.
- M_w ist durch Angabe von w bis auf die Benennung ihrer Zustände und Arbeitszeichen eindeutig bestimmt.
- Ganz analog lassen sich auch DTMs mit einer beliebigen Anzahl von Bändern (sowie NTMs, Konfigurationen oder Rechnungen von TMs) binär kodieren.
- Umgekehrt können wir jedem Binärstring $w \in \{0,1\}^*$ eine DTM M_w wie folgt zuordnen:

$$M_w = \begin{cases} M, & \text{falls eine DTM } M \text{ mit } w_M = w \text{ existiert,} \\ M_0, & \text{sonst (dabei sei } M_0 \text{ eine beliebige DTM).} \end{cases}$$

Unentscheidbarkeit des Halteproblems

Definition

• Das Halteproblem ist die Sprache

$$H = \left\{ w \# x \middle| \begin{array}{l} w, x \in \{0, 1\}^* \text{ und } \\ \text{die DTM } M_w \text{ h\"{a}lt} \\ \text{bei Eingabe } x \end{array} \right\}$$

• Das spezielle Halteproblem ist

$$K = \left\{ w \in \{0, 1\}^* \middle| \begin{array}{c} \text{die DTM } M_w \\ \text{hält bei Eingabe } w \end{array} \right\}$$

χн	x ₁	<i>x</i> ₂	<i>X</i> 3	•••
w_1	0	1	0	
W_2	0	1	1	
W ₃	1	1	0	
÷	:	:	:	·

χκ				
w_1	0			
w_1 w_2		1		
w ₃			0	
:				٠.

Satz

K ∈ RE \ REC.

Semi-Entscheidbarkeit des speziellen Halteproblems

Beweis von $K \in RE$

• Sei w_0 die Kodierung einer DTM, die bei jeder Eingabe (sofort) hält und betrachte die Funktion

$$f(x) = \begin{cases} w, & x \text{ ist Kodierung einer haltenden Rechnung einer} \\ & \text{DTM } M_w \text{ bei Eingabe } w, \\ w_0, & \text{sonst.} \end{cases}$$

• Da f berechenbar und img(f) = K ist, folgt $K \in RE$.

Bemerkung

Ganz ähnlich lässt sich $H \in RE$ zeigen.

Unentscheidbarkeit des speziellen Halteproblems

Beweisidee

- Da $K \in RE$ ist, gibt es in der Matrixdarstellung von χ_H eine Zeile (sprich DTM M_w), die mit der Diagonalen der Matrix übereinstimmt.
- Beispielsweise können wir für M_w eine DTM wählen, die die partielle charakteristische Funktion $\hat{\chi}_K$ von K berechnet.
- Wäre K entscheidbar, so könnten wir eine DTM $M_{\hat{w}}$ konstruieren, so dass die zugehörige Zeile in der Matrix invers zur Zeile von M_w und damit zur Diagonalen ist.
- Da eine solche Matrix nicht existieren kann, führt dies auf den gewünschten Widerspruch.

Unentscheidbarkeit des speziellen Halteproblems

Beweis von *K* ∉ REC

Angenommen, die Sprache

$$K = \{ w \mid M_w(w) \text{ hält} \}$$
 (*)

wäre durch eine DTM M_K entscheidbar.

• Betrachte die DTM \hat{M} , die bei Eingabe $w \in \{0,1\}^*$ die DTM $M_K(w)$ simuliert und genau dann hält, wenn $M_K(w)$ verwirft:

$$\hat{M}(w)$$
 hält $\Leftrightarrow w \notin K$ (**)

0 1

1

• Für die Kodierung \hat{w} von \hat{M} folgt dann aber

$$\hat{w} \in K \iff M_{\hat{w}}(\hat{w}) \text{ hält } \iff \hat{w} \notin K \notin \text{ (Widerspruch!)}$$

Unentscheidbarkeit des speziellen Halteproblems

Korollar

- REC ⊊ RE,
- $K \in RE \setminus co\text{-RE}$ (d.h. $RE \neq co\text{-RE}$),
- $\bar{K} \in \text{co-RE} \setminus \text{RE}$.

Beweis

- REC \subseteq RE: klar, da $K \in RE REC$.
- *K* ¢ co-RE: Aus der Annahme *K* ∈ co-RE würde wegen *K* ∈ RE folgen, dass *K* entscheidbar ist (Widerspruch).
- $\bar{K} \in \text{co-RE} \setminus \text{RE}$: klar, da $K \in \text{RE} \setminus \text{co-RE}$.

Der Reduktionsbegriff

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt auf $B \subseteq \Gamma^*$ reduzierbar (kurz: $A \le B$), falls eine berechenbare Funktion $f: \Sigma^* \to \Gamma^*$ ex., so dass gilt:

$$\forall x \in \Sigma^* : x \in A \Leftrightarrow f(x) \in B.$$

Beispiel

Es gilt $K \le H$ mittels $f: w \mapsto w \# w$, da für alle $w \in \{0,1\}^*$ gilt:

$$w \in K \iff M_w$$
 ist eine DTM, die bei Eingabe w hält

$$\Leftrightarrow$$
 $w \# w \in H$.

Abschluss von REC unter ≤

Definition

• Eine Sprachklasse C heißt unter \leq abgeschlossen, wenn für alle Sprachen A, B gilt:

$$A \leq B \wedge B \in \mathcal{C} \Rightarrow A \in \mathcal{C}$$
.

Satz

Die Klassen REC und RE sind unter \leq abgeschlossen.

Beweis

- Gelte $A \le B$ mittels f und sei $B \in REC$.
- Dann ex. eine DTM M, die χ_B berechnet.
- Betrachte folgende DTM M':
 - M' berechnet bei Eingabe x zuerst den Wert f(x) und
 - simuliert dann M bei Eingabe f(x).

Abschluss von REC und RE unter ≤

Satz

Die Klasse REC ist unter ≤ abgeschlossen.

Beweis.

- Gelte $A \leq B$ mittels f und sei $B \in REC$.
- Dann ex. eine DTM M, die χ_B berechnet.
- Betrachte folgende DTM M':
 - M' berechnet bei Eingabe x zuerst den Wert f(x) und
 - simuliert dann M bei Eingabe f(x).
- Wegen $x \in A \Leftrightarrow f(x) \in B$ ist $\chi_A(x) = \chi_B(f(x))$ und daher folgt $M'(x) = M(f(x)) = \chi_B(f(x)) = \chi_A(x)$.
- Also berechnet M' die Funktion χ_A , d.h. $A \in REC$.

Bemerkung

Der Abschluss von RE unter ≤ folgt analog (siehe Übungen).

Der Vollständigkeitsbegriff

Definition

 Eine Sprache A heißt hart für eine Sprachklasse C (kurz: C-hart oder C-schwer), falls jede Sprache L ∈ C auf A reduzierbar ist:

$$\forall L \in C : L \leq A$$
.

• Eine C-harte Sprache A, die zu C gehört, heißt C-vollständig.

Beispiel

Das Halteproblem H ist RE-vollständig. Es gilt nämlich

- *H* ∈ RE und
- $\forall L \in RE : L \leq H$

mittels der Reduktionsfunktion $x \mapsto w \# x$, wobei w die Kodierung einer DTM M_w ist, die $\hat{\chi}_I$ berechnet.

Bemerkung

Auch das spezielle Halteproblem K ist RE-vollständig (siehe Übungen).

H ist nicht entscheidbar

Korollar

- $A \le B \land A \notin REC \Rightarrow B \notin REC$.
- $A \le B \land A \notin RE \Rightarrow B \notin RE$.

Beweis

Aus der Annahme, dass B entscheidbar (bzw. semi-entscheidbar) ist, folgt wegen $A \le B$, dass dies auch auf A zutrifft (Widerspruch).

Bemerkung

Wegen $K \leq H$ überträgt sich somit die Unentscheidbarkeit von K auf H.

Korollar

H ∉ REC.

Das Halteproblem bei leerem Band

Definition

Das Halteproblem bei leerem Band ist die Sprache

$$H_0 = \left\{ w \in \{0, 1\}^* \middle| \begin{array}{l} \text{die DTM } M_w \\ \text{hält bei Eingabe } \varepsilon \end{array} \right\}$$

χн	x ₁	<i>x</i> ₂	<i>X</i> 3	
w_1	0	1	0	
W_2	0	1	1	
W ₃	1	1	0	
÷	:	:	:	٠.

Satz

 H_0 ist RE-vollständig.

Beweis

• $H_0 \in RE$ folgt wegen $H_0 \le H \in RE$ mittels der Reduktionsfunktion $w \mapsto w \# \varepsilon$.

χ_{H_0}	<i>x</i> ₁	(= ε)
w_1	0	
W_2	0	
W_3	1	
÷	:	

H_0 ist RE-vollständig

Beweis

- $H_0 \in RE$ folgt wegen $H_0 \le H \in RE$ mittels der Reduktionsfunktion $w \mapsto w \# \varepsilon$.
- Sei $A \in RE$ und sei w die Kodierung einer DTM, die $\hat{\chi}_A$ berechnet. Um A auf H_0 zu reduzieren, transformieren wir $x \in \{0,1\}^*$ auf die Kodierung einer DTM M_{w_x} , die zunächst ihre Eingabe durch x ersetzt und dann $M_w(x)$ simuliert. Dann gilt

$$x \in A \iff w_x \in H_0$$

und somit $A \le H_0$ mittels der Reduktionsfunktion $x \mapsto w_x$.

Korollar

 $H_0 \notin REC$.

Frage

- Kann man einer beliebig vorgegebenen DTM ansehen, ob die von ihr berechnete Funktion eine gewisse Eigenschaft hat?
- Kann man beispielsweise entscheiden, ob eine gegebene DTM eine totale Funktion berechnet?

Antwort

Nein (es sei denn, die fragliche Eigenschaft ist trivial, d.h. keine oder jede DTM berechnet eine Funktion mit dieser Eigenschaft).

Definition

ullet Zu einer Klasse ${\mathcal F}$ von Funktionen definieren wir die Sprache

$$L_{\mathcal{F}} = \left\{ w \in \{0,1\}^* \; \middle| \; \text{ die DTM } M_w \text{ berechnet eine Funktion in } \mathcal{F} \right\}.$$

• Die Eigenschaft \mathcal{F} heißt trivial, wenn $L_{\mathcal{F}} = \emptyset$ oder $L_{\mathcal{F}} = \{0,1\}^*$ ist.

Der Satz von Rice besagt, dass $L_{\mathcal{F}}$ nur für triviale Eigenschaften entscheidbar ist.

Satz (Satz von Rice)

Für jede nicht triviale Eigenschaft $\mathcal F$ ist $L_{\mathcal F}$ unentscheidbar.

Beispiel

Die Sprache

$$L = \{ w \in \{0,1\}^* \mid M_w(0^n) = 0^{n+1} \text{ für alle } n \ge 0 \}$$

ist unentscheidbar.

• Dies folgt aus dem Satz von Rice, da die Eigenschaft

$$\mathcal{F} = \left\{ f \mid \left\{ 0 \right\}^* \subseteq dom(f) \land f(0^n) = 0^{n+1} \text{ für alle } n \geq 0 \right\}$$

nicht trivial und $L = L_{\mathcal{F}}$ ist.

ullet ist nicht trivial, da z.B. die berechenbare partielle Funktion

$$f(x) = \begin{cases} 0^{n+1}, & x = 0^n \text{ für ein } n \ge 0\\ \uparrow, & \text{sonst} \end{cases}$$

in \mathcal{F} und die konstante Funktion g(x) = 0 nicht in \mathcal{F} enthalten ist.

Satz (Satz von Rice)

Für jede nicht triviale Eigenschaft \mathcal{F} ist die Sprache $L_{\mathcal{F}}$ unentscheidbar.

Beweis

- Die Idee besteht darin, H_0 (oder \overline{H}_0) auf $L_{\mathcal{F}}$ zu reduzieren, indem wir für eine gegebene DTM M_w eine DTM $M_{w'}$ konstruieren mit
- $w \in H_0 \Leftrightarrow M_{w'}$ berechnet (k)eine Funktion in \mathcal{F} .
- Hierzu lassen wir M_{w'} bei Eingabe x zunächst einmal die DTM M_w bei Eingabe ε simulieren.
 Falls w ∉ H₀ ist, berechnet M_{w'} also die überall undefinierte Funktion u
- Falls $w \notin H_0$ ist, berechnet $M_{w'}$ also die überall undefinierte Funktion ι mit $u(x) = \uparrow$ für alle $x \in \{0, 1, \#\}^*$.
- Damit die Reduktion gelingt, müssen wir nur noch dafür sorgen, dass $M_{w'}$ im Fall $w \in H_0$ eine Funktion f berechnet, die genau dann die Eigenschaft \mathcal{F} hat, wenn u sie nicht hat.
- Da ${\mathcal F}$ nicht trivial ist, gibt es eine DTM M, die eine solche Funktion f berechnet.

Beweis (Schluss)

- Da \mathcal{F} nicht trivial ist, gibt es eine DTM M, die eine solche Funktion f berechnet.
- Betrachte die Reduktionsfunktion

$$h(w) = w'$$
, wobei w' die Kodierung einer DTM ist, die bei Eingabe x zunächst die DTM $M_w(\varepsilon)$ simuliert und im Fall, dass $M_w(\varepsilon)$ hält, mit der Simulation von $M(x)$ fortfährt.

• Dann ist $h: w \mapsto w'$ eine totale berechenbare Funktion und es gilt

$$w \in H_0 \Rightarrow M_{w'}$$
 berechnet f
 $w \notin H_0 \Rightarrow M_{w'}$ berechnet u .

• Dies zeigt, dass h das Problem H_0 (oder \overline{H}_0) auf $L_{\mathcal{F}}$ reduziert, und da H_0 und \overline{H}_0 unentscheidbar sind, muss auch $L_{\mathcal{F}}$ unentscheidbar sein.

Der Satz von Rice für Akzeptoren

Der Satz von Rice gilt auch für Eigenschaften, die das Akzeptanzverhalten einer gegebenen Turingmaschine betreffen.

Satz (Satz von Rice für Spracheigenschaften)

Für eine beliebige Sprachklasse ${\mathcal S}$ sei

$$L_{S} = \{ w \in \{0,1\}^{*} \mid L(M_{w}) \in S \}.$$

Dann ist L_S unentscheidbar, außer wenn $L_S \in \{\emptyset, \{0,1\}^*\}$ ist.

Beweis

Siehe Übungen.

Das Postsche Korrespondenzproblem (PCP)

Definition

- Sei Σ ein beliebiges Alphabet mit $\# \notin \Sigma$.
- Das Postsche Korrespondenzproblem über Σ (kurz PCP $_{\Sigma}$) ist: gegeben: k Paare $(x_1, y_1), \ldots, (x_k, y_k)$ von Wörtern über Σ . gefragt: Gibt es eine Folge $\alpha = (i_1, \ldots, i_n), n \ge 1$, von Indizes

$$i_j \in \{1, \ldots, k\} \text{ mit } x_{i_1} \ldots x_{i_n} = y_{i_1} \ldots y_{i_n}?$$

- Das modifizierte PCP über Σ (kurz MPCP $_{\Sigma}$) fragt nach einer Lösung $\alpha = (i_1, \dots, i_n)$ mit $i_1 = 1$.
- Wir notieren eine PCP-Instanz meist in Form einer Matrix $\binom{x_1...x_k}{y_1...y_k}$ und kodieren sie durch das Wort $x_1 \# y_1 \# \dots \# x_k \# y_k$.

Beispiel

Die Instanz $I = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = \begin{pmatrix} a & ab & caa \\ aca & bc & aa \end{pmatrix}$ besitzt wegen

$$x_1x_3x_2x_3 = acaaabcaa$$

 $y_1y_3y_2y_3 = acaaabcaa$

die PCP-Lösung $\alpha = (1, 3, 2, 3)$, die auch eine MPCP-Lösung ist.

Lemma

Für jedes Alphabet Σ gilt $PCP_{\Sigma} \leq PCP_{\{a,b\}}$.

Beweis

- Sei $\Sigma = \{a_1, \dots, a_m\}$. Für ein Zeichen $a_i \in \Sigma$ sei $\hat{a}_i = ab^{i-1}$ und für ein Wort $w = w_1 \dots w_n \in \Sigma^*$ mit $w_i \in \Sigma$ sei $\hat{w} = \hat{w}_1 \dots \hat{w}_n$.
- Dann folgt $\operatorname{PCP}_{\Sigma} \leq \operatorname{PCP}_{\{a,b\}}$ mittels der Reduktionsfunktion

$$f: \begin{pmatrix} x_1 \dots x_k \\ y_1 \dots y_k \end{pmatrix} \mapsto \begin{pmatrix} \hat{x}_1 \dots \hat{x}_k \\ \hat{y}_1 \dots \hat{y}_k \end{pmatrix}.$$

Beispiel

Sei $\Sigma = \{0, 1, 2\}$. Dann ist $\hat{0} = a$, $\hat{1} = ab$ und $\hat{2} = abb$. Somit ist

$$f\begin{pmatrix} 0 & 01 & 200 \\ 020 & 12 & 00 \end{pmatrix} = \begin{pmatrix} a & aab & abbaa \\ aabba & ababb & aa \end{pmatrix}.$$

Im Folgenden lassen wir im Fall $\Sigma = \{a, b\}$ den Index weg und schreiben einfach PCP (bzw. MPCP).

Satz

 $MPCP \leq PCP$.

Beweis

- Wir zeigen MPCP \leq PCP $_{\Sigma}$ für $\Sigma = \{a, b, \langle, |, \rangle\}$.
- Für ein Wort $w = w_1 \dots w_n$ sei

$\overset{\longleftarrow}{W}$	₩ W	w	\overrightarrow{w}
$\langle w_1 \ldots w_n $	$\langle w_1 \ldots w_n$	$ w_1 \dots w_n$	$w_1 \ldots w_n $

Beweis von $MPCP \leq PCP$

- Wir zeigen MPCP \leq PCP $_{\Sigma}$ für $\Sigma = \{a, b, \langle , |, \rangle \}$.
- Für ein Wort $w = w_1 \dots w_n$ sei

• Wir reduzieren MPCP mittels folgender Funktion f auf PCP_{Σ} :

$$f: \begin{pmatrix} x_1 & \dots & x_k \\ y_1 & \dots & y_k \end{pmatrix} \mapsto \begin{pmatrix} \overleftarrow{x_1} & \overrightarrow{x_1} & \dots & \overrightarrow{x_k} & \rangle \\ \overleftarrow{y_1} & \overleftarrow{y_1} & \dots & \overleftarrow{y_k} & | \rangle \end{pmatrix}$$

Beispiel

$$f: \begin{pmatrix} aa & b & bab & bb \\ aab & bb & a & b \end{pmatrix} \mapsto \begin{pmatrix} \langle a|a| & a|a| & b| & b|a|b| & b|b| & \rangle \\ \langle a|a|b & |a|a|b & |b|b & |a & |b| \end{pmatrix}$$

Beweis von $MPCP \leq PCP$

- Wir zeigen MPCP \leq PCP $_{\Sigma}$ für $\Sigma = \{a, b, \langle, |, \rangle\}$.
- Für ein Wort $w = w_1 \dots w_n$ sei

₩ W	\overline{w}	← W	W
$\langle w_1 \ldots w_n $	$w_1 \ldots w_n $	$\langle w_1 \ldots w_n$	$ w_1 \dots w_n$

• Wir reduzieren MPCP mittels folgender Funktion f auf PCP $_{\Sigma}$:

$$f: \begin{pmatrix} x_1 & \dots & x_k \\ y_1 & \dots & y_k \end{pmatrix} \mapsto \begin{pmatrix} \overleftarrow{x_1} & \overrightarrow{x_1} & \dots & \overrightarrow{x_k} & \rangle \\ \overleftarrow{y_1} & \overleftarrow{y_1} & \dots & \overleftarrow{y_k} & | \rangle \end{pmatrix}$$

• Da jede MPCP-Lösung $\alpha = (1, i_2, \dots, i_n)$ für I auf eine PCP-Lösung $\alpha' = (1, i_2 + 1, \dots, i_n + 1, k + 2)$ für f(I) führt, folgt $I \in \mathrm{MPCP} \Rightarrow f(I) \in \mathrm{PCP}_{\Sigma}$.

Beweis von $MPCP \leq PCP$

ullet Für die umgekehrte Implikation sei $lpha'=(i_1,\ldots,i_n)$ eine PCP-Lösung für

$$f(I) = \begin{pmatrix} \overleftarrow{x_1} & \overrightarrow{x_1} & \dots & \overrightarrow{x_k} & \rangle \\ \overleftarrow{y_1} & \overleftarrow{y_1} & \dots & \overleftarrow{y_k} & | \rangle \\ \end{pmatrix}.$$

- Dann muss $i_1 = 1$ sein, da $(\stackrel{\leftarrow}{x_1}, \stackrel{\leftarrow}{y_1})$ das einzige Paar in f(I) ist, bei dem beide Komponenten mit demselben Buchstaben anfangen.
- Zudem muss $i_n = k + 2$ sein, da nur das Paar $(\rangle, |\rangle)$ mit demselben Buchstaben aufhört.
- Wählen wir α' von minimaler Länge, so ist $i_j \in \{2, ..., k+1\}$ für j = 2, ..., n-1.
- Dann ist aber

$$\alpha = (i_1, i_2 - 1, \dots, i_{n-1} - 1)$$

eine MPCP-Lösung für 1.

Satz

PCP ist RE-vollständig und damit unentscheidbar.

Beweis.

- Es ist leicht zu sehen, dass $PCP \in RE$ ist.
- Sei $A \in RE$ und sei $M = (Z, \Sigma, \Gamma, \delta, z_0, E)$ eine 1-DTM für A.
- Wir zeigen $A \leq \mathrm{MPCP}_{\Sigma'}$ für $\Sigma' = \Gamma \cup Z \cup \{\langle,|,\rangle\}$.
- Wegen $MPCP_{\Sigma'} \leq PCP$ folgt hieraus $A \leq PCP$.

Beweisidee für die Reduktion $A \leq MPCP_{\Sigma'}$:

Transformiere eine Eingabe $w \in \Sigma^*$ in eine Instanz $f(w) = \binom{x_1...x_k}{y_1...y_k}$, so dass $\alpha = (i_1, \ldots, i_n)$ genau dann eine MPCP-Lösung für f(w) ist, wenn das zugehörige Lösungswort $x_{i_1} \ldots x_{i_n} = y_{i_1} \ldots y_{i_n}$ eine akzeptierende Rechnung von M(w) kodiert. Dann gilt $w \in A \Leftrightarrow f(w) \in \mathrm{MPCP}_{\Sigma'}$.

Beweis von $A \leq MPCP_{\Sigma'}$

Wir bilden f(w) aus folgenden Wortpaaren:

- ② für alle $a \in \Gamma \cup \{|\}: (a, a),$
- **3** für alle $a, a', b \in \Gamma$, $z, z' \in Z$:

```
(za, a'z'), falls \delta(z, a) = (z', a', R), (bza, z'ba'), falls \delta(z, a) = (z', a', L), (|za, |z' \sqcup a'), falls \delta(z, a) = (z', a', L),
```

(za, z'a'), falls $\delta(z, a) = (z', a', N)$,

(z|,z'a'|), falls $\delta(z,\sqcup)=(z',a',N),$ (z|,a'z'|), falls $\delta(z,\sqcup)=(z',a',R),$

(bz|, z'ba'|), falls $\delta(z, \sqcup) = (z', a', L)$,

- für alle $e \in E$, $a \in \Gamma$: (ae, e), (ea, e),
- **5** sowie für alle $e \in E$: (e|),).

"Startregel"

"Kopierregeln"

"Überführungsregeln"

"Löschregeln" "Abschlussregeln"

Beispiel

• Betrachte die 1-DTM $M = (Z, \Sigma, \Gamma, \delta, q_0, E)$ mit $Z = \{q_0, \dots q_4\}, \Sigma = \{a, b\}, \Gamma = \{a, b, A, B, \sqcup\}, E = \{q_4\}$ und den Anweisungen

$$δ: q_0 a \rightarrow q_1 AR$$
 (1) $q_1 a \rightarrow q_1 aR$ (2) $q_1 B \rightarrow q_1 BR$ (3) $q_1 b \rightarrow q_2 BL$ (4) $q_2 a \rightarrow q_2 aL$ (5) $q_2 B \rightarrow q_2 BL$ (6) $q_2 A \rightarrow q_0 AR$ (7) $q_0 B \rightarrow q_3 BR$ (8) $q_3 B \rightarrow q_3 BR$ (9) $q_3 \sqcup \rightarrow q_4 \sqcup N$ (10)

• M akzeptiert die Eingabe ab wie folgt:

$$q_0ab \underset{(1)}{\vdash} Aq_1b \underset{(4)}{\vdash} q_2AB \underset{(7)}{\vdash} Aq_0B \underset{(8)}{\vdash} ABq_3 \!\!\! \perp \underset{(10)}{\vdash} ABq_4 \!\!\! \perp$$

• Die MPCP-Instanz f(ab) enthält für $u \in \Gamma$ die Wortpaare

Startregel	Kopierregeln	Löschregeln	Abschlussregel
$(\langle,\langle z_0ab)$	(u,u), $(,)$	$(q_4u, q_4), (uq_4, q_4)$	$(q_4 \rangle,\rangle)$

sowie folgende Überführungsregeln:

Beispiel

Anweisung		zugehörige Überführungsregeln
$q_0 a \rightarrow q_1 A R$	(1)	(q_0a,Aq_1)
$q_1a \rightarrow q_1aR$	(2)	(q_1a,aq_1)
$q_1B \rightarrow q_1BR$	(3)	(q_1B, Bq_1)
$q_1b \rightarrow q_2BL$	(4)	$(uq_1b, q_2uB), (q_1b, q_2\sqcup B)$
$q_2a \rightarrow q_2aL$	(5)	$(uq_2a, q_2ua), (q_2a, q_2\sqcup a)$
$q_2B \rightarrow q_2BL$	(6)	$(uq_2B, q_2uB), (q_2B, q_2 \sqcup B)$
$q_2A \rightarrow q_0AR$	(7)	(q_2A,Aq_0)
$q_0B \rightarrow q_3BR$	(8)	(q_0B, Bq_3)
$q_3B \rightarrow q_3BR$	(9)	(q_3B, Bq_3)
$q_3 \sqcup \to q_4 \sqcup N$	(10)	$(q_3\sqcup,q_4\sqcup),\ (q_3 ,q_4\sqcup)$

• Die MPCP-Instanz f(ab) enthält für $u \in \Gamma$ die Wortpaare

Startrege	I Kopierregeln	Löschregeln	Abschlussregel
$(\langle,\langle z_0$ ab	(u,u),(,)	$(q_4u, q_4), (uq_4, q_4)$	$(q_4 \rangle, \rangle)$

sowie u.a. folgende Überführungsregeln:

$$q_0 a \rightarrow q_1 AR$$
 (1) $(q_0 a, Aq_1)$
 $q_1 b \rightarrow q_2 BL$ (4) $(uq_1 b, q_2 uB), (|q_1 b, |q_2 \sqcup B)$
 $q_2 A \rightarrow q_0 AR$ (7) $(q_2 A, Aq_0)$
 $q_0 B \rightarrow q_3 BR$ (8) $(q_0 B, Bq_3)$
 $q_3 \sqcup \rightarrow q_4 \sqcup N$ (10) $(q_3 \sqcup, q_4 \sqcup), (q_3 |, q_4 \sqcup)$

Der akzeptierenden Rechnung

$$q_0ab \vdash Aq_1b \vdash q_2AB \vdash Aq_0B \vdash ABq_3 \sqcup \vdash ABq_4 \sqcup (10)$$

von M(ab) entspricht dann das MPCP-Lösungswort

$$\langle |q_0ab|Aq_1b|q_2AB|Aq_0B|ABq_3|ABq_4\sqcup |Aq_4\sqcup |q_4\sqcup |q_4| \rangle$$

 $\langle |q_0ab|Aq_1b|q_2AB|Aq_0B|ABq_3|ABq_4\sqcup |Aq_4\sqcup |q_4\sqcup |q_4| \rangle$

Beweis von $A \leq MPCP_{\Sigma'}$

• Nun lässt sich leicht aus einer akzeptierenden Rechnung

$$K_0 = z_0 w \vdash K_1 \vdash \cdots \vdash K_t = uev$$

mit $e \in E$ und $u, v \in \Gamma^*$ eine MPCP-Lösung mit einem Lösungswort der Form

$$\langle | K_0 | K_1 | \dots | K_t | K_{t+1} | \dots | K_{t+|K_t|-1} | \rangle$$

angeben, wobei K_{t+i} aus K_t durch Löschen von i Zeichen in der Nachbarschaft von e entsteht.

ullet Umgekehrt lässt sich aus jeder MPCP-Lösung auch eine akzeptierende Rechnung von M bei Eingabe w gewinnen, womit

$$w \in L(M) \Leftrightarrow f(w) \in \mathrm{MPCP}_{\Sigma'}$$

gezeigt ist.

Das Schnittproblem für CFL ist unentscheidbar

Das Schnittproblem für kontextfreie Grammatiken

Gegeben: Zwei kontextfreie Grammatiken G_1 und G_2 .

Gefragt: Ist $L(G_1) \cap L(G_2) \neq \emptyset$?

Satz

Das Schnittproblem für kontextfreie Grammatiken ist RE-vollständig.

Beweis

- Es ist leicht zu sehen, dass das Problem semi-entscheidbar ist.
- Wir reduzieren eine PCP-Instanz $I = \begin{pmatrix} x_1 \dots x_k \\ y_1 \dots y_k \end{pmatrix}$ auf ein Grammatikpaar (G_1, G_2) , so dass gilt: $I \in PCP \Leftrightarrow L(G_1) \cap L(G_2) \neq \emptyset$.
- Für i = 1, 2 sei $G_i = (\{S\}, \{a, b, 1, \dots, k\}, P_i, S)$ mit

$$P_1: S \rightarrow 1Sx_1, \dots, kSx_k, 1x_1, \dots, kx_k,$$

 $P_2: S \rightarrow 1Sv_1, \dots, kSv_k, 1v_1, \dots, kv_k,$

Das Schnittproblem für CFL ist unentscheidbar

Beispiel

Die PCP-Instanz

$$I = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = \begin{pmatrix} a & aab & abbaa \\ aabba & ababb & aa \end{pmatrix}$$

wird auf das Grammatikpaar $(\mathit{G}_1, \mathit{G}_2)$ mit folgenden Regeln reduziert:

$$P_1: S_1 \rightarrow 1Sa, 2Saab, 3Sabbaa,$$

 $1a, 2aab, 3abbaa,$

$$P_2: S_2 \rightarrow 1Saabba, 2Sababb, 3Saa,$$

1aabba, 2ababb, 3aa.

• Der PCP-Lösung $\alpha = (1, 3, 2, 3)$ entspricht dann das Wort

$$3231x_1x_3x_2x_3 = 3231aabbaaaababbaa = 3231y_1y_3y_2y_3$$

im Schnitt $L(G_1) \cap L(G_2)$.

Das Schnittproblem für CFL ist unentscheidbar

Reduktion von PCP auf das Schnittproblem für CFL

- Für i = 1, 2 sei $G_i = (\{S\}, \{a, b, 1, \dots, k\}, P_i, S)$ mit
 - $P_1: S \to 1Sx_1, \ldots, kSx_k, 1x_1, \ldots, kx_k,$
 - $P_2: S \to 1Sy_1, \ldots, kSy_k, 1y_1, \ldots, ky_k.$
- Dann gilt

$$L(G_1) = \{i_n \dots i_1 x_{i_1} \dots x_{i_n} \mid 1 \le n, \ 1 \le i_1, \dots, i_n \le k\},$$

$$L(G_2) = \{i_n \dots i_1 y_{i_1} \dots y_{i_n} \mid 1 \le n, \ 1 \le i_1, \dots, i_n \le k\}.$$

• Somit ist $L(G_1) \cap L(G_2)$ die Sprache

$$\{i_n \ldots i_1 x_{i_1} \ldots x_{i_n} \mid 1 \leq n, x_{i_1} \ldots x_{i_n} = y_{i_1} \ldots y_{i_n} \}.$$

- Folglich ist $\alpha = (i_1, \dots, i_n)$ genau dann eine Lösung für I, wenn $i_n \dots i_1 x_i \dots x_{i_n} \in L(G_1) \cap L(G_2)$ ist.
- Also vermittelt $f: I \mapsto (G_1, G_2)$ eine Reduktion von PCP auf das Schnittproblem für CFL.

Das Schnitt- und das Inklusionsproblem für DCFL sind unentscheidbar

Korollar

- Das Schnittproblem für DPDAs ist RE-vollständig.
- 2 Das Inklusionsproblem für DPDAs ist co-RE-vollständig.

Beweis.

- Die kontextfreien Grammatiken G_1 und G_2 in obigem Beweis lassen sich leicht in äquivalente DPDAs M_1 und M_2 verwandeln (siehe Übungen).
- Wir reduzieren das Komplement des Schnittproblems für DPDAs auf das Inklusionsproblem für DPDAs. Wegen

$$L_1 \cap L_2 = \emptyset \Leftrightarrow L_1 \subseteq \overline{L_2}$$
.

berechnet die Funktion $f:(M_1,M_2)\mapsto (M_1,\overline{M}_2)$ die gewünschte Reduktion.

Weitere Unentscheidbarkeitsresultate für CFL

Korollar

Für kontextfreie Grammatiken sind folgende Probleme unentscheidbar:

• Ist
$$L(G) = \Sigma^*$$
? (Ausschöpfungsproblem)

- ② Ist $L(G_1) = L(G_2)$? (Äquivalenzproblem) ③ Ist G mehrdeutig? (Mehrdeutigkeitsproblem)
- Das Ausschöpfungsproblem für kf. Grammatiken ist co-RE-vollständig

 Artick auf Grammatiken ist co-RE-vollständig

 To-RE-vollständig

 Artick auf Grammatiken ist co-RE-vollständig

 To-RE-vollständig

 To-RE-

Wir reduzieren das Komplement des Schnittproblems für DPDAs auf das Ausschöpfungsproblem für kontextfreie Grammatiken. Es gilt

$$L_1 \cap L_2 = \emptyset \Leftrightarrow \overline{L_1} \cup \overline{L_2} = \Sigma^*$$
.

Daher vermittelt die Funktion $f:(M_1,M_2)\mapsto G$, wobei G eine kontextfreie Grammatik mit

$$L(G) = \overline{L(M_1)} \cup \overline{L(M_2)}$$

ist, die gewünschte Reduktion.

Weitere Unentscheidbarkeitsresultate für CFL

Korollar

Für kontextfreie Grammatiken sind folgende Probleme unentscheidbar:

- Ist $L(G) = \Sigma^*$? (Ausschöpfungsproblem)
- ② Ist $L(G_1) = L(G_2)$? (Äquivalenzproblem)
- $oldsymbol{3}$ Ist G mehrdeutig? (Mehrdeutigkeitsproblem)

Wir reduzieren das Ausschöpfungsproblem für CFL auf das Äquivalenzproblem für CFL.

Dies leistet beispielsweise die Reduktionsfunktion

$$f: G \mapsto (G, G_{all}),$$

wobei G_{all} eine kontextfreie Grammatik mit $L(G_{all}) = \Sigma^*$ ist.

Weitere Unentscheidbarkeitsresultate für CFL

3 Das Mehrdeutigkeitsproblem ist RE-vollständig

- Wir reduzieren PCP auf das Mehrdeutigkeitsproblem.
- Betrachte die Reduktionsfunktion $f: \begin{pmatrix} x_1...x_k \\ y_1...y_k \end{pmatrix} \mapsto G$ mit

$$G = (\{S, A, B\}, \{a, b, 1, \dots, k\}, P_1 \cup P_2 \cup \{S \to A, S \to B\}, S)$$

und den Regeln

$$P_1: A \to 1Ax_1, \dots, kAx_k, 1x_1, \dots, kx_k,$$

$$P_2: B \to 1By_1, \dots, kBy_k, 1y_1, \dots, ky_k.$$

• Da alle von A oder B ausgehenden Ableitungen eindeutig sind, ist G genau dann mehrdeutig, wenn es ein Wort $w \in L(G)$ gibt mit

$$S \Rightarrow A \Rightarrow^* w \text{ und } S \Rightarrow B \Rightarrow^* w.$$

 Wie wir im Beweis der Unentscheidbarkeit des Schnittproblems für CFL gesehen haben, ist dies genau dann der Fall, wenn die PCP-Instanz $I = \begin{pmatrix} x_1 \dots x_k \\ y_k & y_k \end{pmatrix}$ eine PCP-Lösung hat.

Ein Unentscheidbarkeitsresultat für DCSL

Das Leerheitsproblem für DLBAs

Gegeben: Ein DLBA M. Gefragt: Ist $L(M) = \emptyset$?

Satz

Das Leerheitsproblem für DLBAs ist co-RE-vollständig.

Beweis.

- Wir reduzieren das Ausschöpfungsproblem für CFL auf das Leerheitsproblem für DLBAs.
- Eine kontextfreie Grammatik G lässt sich wie folgt in einen DLBA M mit $L(M) = \overline{L(G)}$ überführen (siehe Übungen):
 - Bestimme zunächst einen DLBA M mit L(M) = L(G).
 - Konstruiere daraus einen DLBA \overline{M} mit $L(\overline{M}) = \overline{L(M)}$.
- Dann gilt $L(G) = \Sigma^* \Leftrightarrow L(M) = \emptyset$, d.h. die Funktion $f : G \mapsto \overline{M}$ berechnet die gewünschte Reduktion.

Entscheidbare Probleme

Dagegen ist es nicht schwer,

- ullet für eine kontextfreie Grammatik G zu entscheiden, ob mindestens ein Wort in G ableitbar ist (Leerheitsproblem für CFL), und
- für eine kontextsensitive Grammatik G und ein Wort x zu entscheiden, ob x in G ableitbar ist (Wortproblem für CSL).

Satz

- Das Leerheitsproblem für CFL ist entscheidbar.
- Das Wortproblem für CSL ist entscheidbar.

Beweis.

Siehe Übungen.

Überblick der gezeigten (Un-)Entscheidbarkeitsresultate

In folgender Tabelle fassen wir nochmals zusammen, wie schwierig die betrachteten Entscheidungsprobleme für die verschiedenen Stufen der Chomsky-Hierarchie sind.

	problem	problem	schöpfung	Äquivalenz- problem $L_1 = L_2$?	problem	problem
REG	ja	ja	ja	ja	ja	ja
DCFL	ja	ja	ja	ja ^a	nein	nein
CFL	ja	ja	nein	nein	nein	nein
DCSL	ja	nein	nein	nein	nein	nein
CSL	ja	nein	nein	nein	nein	nein
RE	nein	nein	nein	nein	nein	nein

^aBewiesen in 1997 von Géraud Sénizergues (Univ. Bordeaux).

Frage

Wie kann man den Grad der Unentscheidbarkeit von unentscheidbaren Problemen messen?

Definition

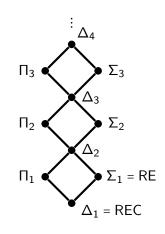
• Sei $A \subseteq \Sigma^*$ eine Sprache und $\mathcal K$ eine Sprachklasse. Dann ist

$$\exists A = \{x \in \Sigma^* \mid \exists y \in \{0,1\}^* : x \# y \in A\}$$

und

$$\exists \mathcal{K} = \mathcal{K} \cup \{\exists A \mid A \in \mathcal{K}\}.$$

- Weiter sei Σ_0 = REC, sowie Π_i = $\operatorname{co-}\Sigma_i$, $\Delta_i = \Sigma_i \cap \Pi_i$ und $\Sigma_{i+1} = \exists \Pi_i$ für $i \ge 0$.
- Die Sprachklassen Σ_i , Π_i , Δ_i , $i \ge 0$, bilden die Stufen der arithmetischen Hierarchie.



Proposition

- $\Sigma_1 = RE$, $\Pi_1 = co-RE$.
- $\Delta_0 = \Sigma_0 = \Pi_0 = \Delta_1 = REC$.
- $\Sigma_i \cup \Pi_i \subseteq \Delta_{i+1}$ für $i \ge 0$.

Bemerkung

Mittels Diagonalisierung kann man zeigen, dass $\Sigma_i \neq \Pi_i$ für alle $i \geq 1$ gilt. Dies impliziert, dass die Inklusionen $\Sigma_i \subseteq \Delta_{i+1} \subseteq \Sigma_{i+1}$ und $\Pi_i \subseteq \Delta_{i+1} \subseteq \Pi_{i+1}$ für alle $i \geq 1$ echt sind.

Beweis von $\Sigma_1 \subseteq RE$

Sei $A \in \Sigma_1$ und sei $A = \exists B$ für eine Sprache $B \in REC$. Dann wird A von einer DTM akzeptiert, die bei Eingabe x systematisch nach einem String $y \in \{0,1\}^*$ mit $x \# y \in B$ sucht. Folglich ist $A \in RE$.

Beweis von RE $\subseteq \Sigma_1$

C: 4 = 5* : C

Sei $A \subseteq \Sigma^*$ eine Sprache in RE und sei A = L(M) für eine DTM M. Dann ist $A = \exists B$ für die Sprache

 $B = \{x \# y \mid x \in \Sigma^* \text{ und } y \text{ kodiert eine akz. Rechnung von } M(x)\}.$

Da B entscheidbar ist, folgt $A \in \exists REC$.

Beweis von $\Pi_1 = \text{co-RE}$

Folgt wegen $\Pi_1 = \text{co-}\Sigma_1$ direkt aus $\Sigma_1 = \text{RE}$.

Beweis von
$$\Delta_0 = \Sigma_0 = \Pi_0 = \Delta_1 = REC$$

Klar, da REC = co-REC und REC = $RE \cap co$ -RE.

Beweis von $\Sigma_i \subseteq \Pi_{i+1}$

Klar, da
$$\Sigma_i \subseteq \exists \Sigma_i = \Pi_{i+1}$$
.

Beweis von $\Sigma_i \subseteq \Sigma_{i+1}$

Dies zeigen wir induktiv.

$$i = 0$$
: Es gilt $\Sigma_0 = REC \subseteq RE = \Sigma_1$.

$$i-1 \Rightarrow i$$
: Nach IV gilt $\Sigma_{i-1} \subseteq \Sigma_i$. Folglich ist $\Pi_{i-1} \subseteq \Pi_i$. Dies wiederum impliziert $\exists \Pi_{i-1} \subseteq \exists \Pi_i$, also $\Sigma_i \subseteq \Sigma_{i+1}$.

Beweis von $\Sigma_i \subseteq \Delta_{i+1}$

Klar, da
$$\Delta_{i+1} = \Sigma_{i+1} \cap \Pi_{i+1}$$
.

Beweis von
$$\Pi_i \subseteq \Delta_{i+1}$$

Klar, da
$$\Pi_i = \text{co-}\Sigma_i \subseteq \text{co-}\Delta_{i+1} = \Delta_{i+1}$$
.

Überblick der gezeigten (Un-)Entscheidbarkeitsresultate

Die betrachteten Entscheidungsprobleme für die verschiedenen Stufen der Chomsky-Hierarchie lassen sich nun wie folgt in die arithmetische Hierarchie einordnen.

	Wort-	Leerheits-	Aus-	Äquivalenz-	Inklusions-	Schnitt-
	problem	problem	schöpfung	problem	problem	problem
	<i>x</i> ∈ <i>L</i> ?	$L=\emptyset$?	$L=\Sigma^*$?	$L_1 = L_2$?	$L_1 \subseteq L_2$	$L_1 \cap L_2 \neq \emptyset$?
REG	REC	REC	REC	REC	REC	REC
DCFL	REC	REC	REC	REC	co-RE	RE
CFL	REC	REC	co-RE	co-RE	co-RE	RE
DCSL	REC	co-RE	co-RE	co-RE	co-RE	RE
CSL	REC	co-RE	co-RE	co-RE	co-RE	RE
RE	RE	co-RE	Π_2	Π_2	Π_2	RE

Tatsächlich sind alle betrachteten Entscheidungsprobleme sogar vollständig für die angegebenen Sprachklassen.