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Abstract: .GeneView is a semantic search engine for the Life Sciences. Unlike 
traditional search engines, GeneView searches indexed documents not only at the 
textual (syntactic) level, but analyzes texts upon import to recognize and properly 
handle biomedical entities, relationships between those entities, and the structure 
of documents. This allows for a number of advanced features required to work 
effectively with scientific texts, such as precise search despite large numbers of 
synonyms and homonyms, entity disambiguation, ranking of documents by entity 
content, linking to structured knowledge about entities, user-friendly highlighting 
of recognized entities etc. As of now, GeneView indexes approximately ~21,4 
million abstracts and ~358.000 full texts with more than 200 Million entities of 11 
different types and more than 100,000 relationships of three different types. In this 
paper, we describe the architecture underlying the system with a focus on the 
complex pipeline of advanced NLP and information extraction tools necessary for 
achieving the above functionality. We also discuss open challenges in developing 
and maintaining a semantic search engine over a large (though not web-scale) 
corpus. 

1. Introduction 

The vast majority of novel findings in Life Science research are first presented in the 
scientific literature. Over the years, the amount of texts in this domain has grown 
enormously and has reached a point where finding specific information becomes 
troublesome. In 2011 alone, MEDLINE archived more than 800,000 new articles, which 
corresponds to an increase of more than one article per minute. Besides the rapidly 
growing sheer number of articles, also the length of available texts is growing, as more 
and more articles become freely available as full text.  

Simple and fast access to the scientific literature is enormously important for researchers 
to keep up-to-date with their field. In the life sciences, researchers typically (but not 
always) search for information about some specific biomedical entity, like genes, 



diseases, mutations etc. Such a search is very difficult for a number of reasons, which we 
explain using genes as an example. Firstly, genes usually have many synonyms: on 
average, Entrez gene gives 2.2 synonyms for each human gene, with a maximum of 31 
synonyms for the gene OR4H6P (Entrez gene Id 26322). In addition to synonyms, 
morphological variations are very frequent in scientific articles (e.g. BRCA1 or BRCA-
1).Secondly, gene names are highly ambiguous, both with other genes or other biological 
entities (like diseases), and with common English words. For instance, many genes are 
named after the phenotype they are associated with, leading to names such as „white“ or 
„hedgehog“. On the other hand, evolutionary related genes in different species often 
have the same name although they should be considered as different entities in most 
applications. Thirdly, single genes are studied from very different viewpoints, often 
leading to the invention of slight variations of names (like the mRNA created from a 
gene being named slightly different than the gene itself). Which of these variations are 
relevant for a given search is difficult to express. And finally, gene names follow no 
regular structure but can appear as anything from a three letter acronym to a multi-token 
complex name, which makes spotting a gene name in a search result very hard. Similar 
problems also exist for many other biologically relevant entity types, such as diseases 
(whose names often contain ordinary persons’ names, like „Wilsons disease“), or 
medical symptoms (whose names can be used in many different contexts not related to 
diseases, e.g. “shiver” or “cold”). The situation becomes worse when not only 
information about a single entity is searched, but about relations between entities, like 
genes associated to a disease or mutations associated with metabolization rates of a drug. 
Finding all genes that are targeted by a given drug X is simply impossible with 
conventional technology, as one cannot express a query like „X and any gene“.  

As a result, searches often lead to unsatisfactory results. For instance, [DMNL09] 
reported that over one third of all 58 Million PubMed queries collected for March 2008 
result in hundreds or even thousands of results. It also directly impedes research: 
[OW04] pointed out that ambiguous nomenclature led to multiple discoveries of the 
same mutation. Consequently, there is a growing body of research trying to provide 
improved search for scientific texts [Lu11]. Researchers need to be able to search for 
entities instead of keywords; they must be allowed to use any of the existing names for 
an entity; systems should automatically disambiguate homonyms and link entity names 
to structured information in external databases; search engines should be able to rank 
search results using different metrics, including consideration of the entities present in a 
match, etc.  

A pre-requisite for such features is the high-quality recognition of entities (also called 
named entity recognition, NER [LH05]) and relationships between entities in a given 
text (also called relationship extraction, RE [Sar08]). This area has seen intensive 
research over the last decade [ZDF+08]. In contrast to other domains, where especially 



NER seems to be considered as an essentially solved problem [Bal12], in biomedicine 
both problems are far from having been solved in a satisfying manner. For instance, the 
best gene recognition systems to-date achieve an F-measure of roughly 85% [KMS+08]; 
the best chemical taggers reach less than 70% F-Measure [RWL12]; the best tools for 
recognizing disease names reach around 80% F-measure [CL10]. The situation is worse 
when it comes to RE. The currently best systems for recognizing drug-drug interactions 
reach an F-Measure of roughly 65% [TNS+11]; recognition of protein-protein-
interactions, despite that literally hundreds of papers have been devoted to this topic, still 
cannot be performed with more than ~60% F-measure [BKS10]. Clearly, problems in 
RE are highly correlated to problems in NER. For instance, if a protein recognition tool 
reaches an accuracy of 80%, recognition of relationships between two proteins can 
hardly be performed any better than at 64% accuracy (assuming that difficulties in 
recognizing a protein’s name and difficulties in recognizing whether this and another 
protein interact are not correlated).  

Tools that are state-of-the-art in such tasks usually are the result of long-term research 
and encompass considerable amounts of experience, effort, and time. Many of them are 
freely available. However, implementations differ in terms of programming language, 
required libraries, dependencies from other tools, configuration etc. Especially the 
dependency of NER and RE methods on textual preprocessing with specific NLP tools 
sometimes makes it necessary to process the same text multiple times with essentially 
the same goal (like POS tagging), but using different tools. Building a high-quality entity 
search engine thus requires bundling the best available algorithms into complex 
pipelines of different algorithms processing the same text with a different purpose. Each 
algorithm produces specific annotations, which often need to be transformed into 
different formats to be read by the next algorithms.  

In this paper, we describe GeneView, a full-fledged entity search engine for biomedical 
publications. It currently identifies and normalizes ten different entity types (chemicals, 
cell-types, diseases, drugs, enzymes, genes, histone modifications, single nucleotide 
polymorphisms (SNP), species, and tissues) and three relationship types (protein-
protein-interactions, regulatory relationships, and drug-drug-interactions1) and indexes 
app. 21.4 million abstracts and almost 360.000 full texts. The amount of structured 
information it generates and makes available to its users is vast; altogether, we extracted 
more than 210 million entity mentions and more than 8,3 Million relationships 
[TSV+12]. Compared to other entity search engines in the field, it is either more 
complete in terms of coverage of entities/relationships or provides information of higher 
quality (and in most cases both). For instance, our previous system Alibaba had a similar 
coverage, but performed NER using dictionaries and RE using co-occurrence, both of 
                                                           

1 Note that not all recognized relationships are displayed at the web interface yet. 



which achieve suboptimal results. The system probably most similar to GeneView from 
an IE point-of-view is BioContext [GSBN12], which indexes only three different entity 
types. Furthermore, it only performs the IE and is not integrated into a search engine. 
GeneView has a number of features, which to our knowledge are not available in any 
other (biomedical) search engine. For instance, we support ranking of search results by 
entity counts. A user interested in mutations of a specific gene may search for this gene 
and then ranks the (probably many) results by the number of mutations they describe. 
Another unique feature is personalized ranking; therein, users may define their own gene 
lists and use the number of occurrences of genes from this list as ranking criterion for 
search results. 

A general overview of GeneView including an intensive discussion of biological 
applications has been published elsewhere [TSV+12]. In this paper, we focus on the 
engineering challenges one faces trying to build a search engine of the coverage, quality, 
and depth of GeneView. We believe that these challenges are similar also in other 
domains and thus hope that sharing our experiences might prove useful for many other 
researchers. A specific intention of this paper is to re-emphasize the complexity of high-
quality information extraction in many domains, in contrast to many recent works which 
essentially consider IE problems (in their domain) to be solved and focus on merging, 
using, or querying extracted information. The remainder of this paper is structured as 
follows. In the next chapter, we describe the user interface of GeneView and sketch 
some applications. Chapter 3 explains the architecture behind GeneView and will 
especially focus on the IE pipeline used to drive it. In Chapter 4, we focus on how 
extracted results are used for ranking and display during search. Chapter 5 concludes the 
paper and summarizes a number of lessons learned from building the system. 

2. User Interface  

GeneView provides a user-friendly web-interface to make the extracted entity data 
searchable and accessible (see Fig. 1). GeneViews search bar, which is provided at the 
top of every page, allows users to issue keyword queries on all available text documents. 
This includes entity-specific search for recognized entities using standard identifiers, 
e.g., Entrez gene ids for gene identification. The search bar offers an auto-completion 
function to make it easier to find specific identifiers. For instance, typing BRCA1 into 
the search bar will bring up suggestions for several, species-dependent Entrez gene 
identifiers this short gene name corresponds to. To provide this functionality, GeneView 
uses a dictionary containing all entity mentions found in PubMed, each associated with 
their corresponding identifier. Additionally, the search form provides various options for 
result ranking and filtering. For instance, the user can choose to only include 
publications in the search result, which have been found to include certain types of 



entities (e.g., genes, SNPs, or chemicals). Figure 1 shows the result listing for a search 
for publications containing two specific genes identified by their Entrez gene id. The 
result is sorted by date of publication and has been filtered to only contain articles that 
also contain at least one SNP.  

 
Figure 1: Result of a search for texts mentioning two specific genes, filtered for SNP 

content, sorted by date of publication. 

 
Figure 2: GeneViews single article view of PubMed ID abstract 21344391. Inline entity 

highlighting is complemented by an overview of entities found in the text (left-hand bar). 
Highlighted entities provide pop-ups with additional information from external databases. 



Clicking on a search result shows the selected article together with all annotations (see 
Fig. 2). Recognized entities are visualized by type-specific color highlighting. All 
entities are clickable to provide additional information such as link-outs to external 
reference databases. These pop-ups also provide links to search for content related to the 
selected entity. GeneView also provides an overview of all entities found in the article 
(Fig. 2, left-hand bar). This is particularly helpful when dealing with full text papers 
containing multiple mentions for various entity types. 

 
Figure 3. Number of citations mentioning one of the eight most frequently occurring genes 

over the last 40 years. 

The above example of SNP-filtered searching for specific genes demonstrates one 
important use case of GeneView: The ability to use information about several types of 
biological entities in a single query both for ranking and for defining what constitutes the 
primary search result. With the given example, a user can easily retrieve all publications, 
which mention a mutation in the context of the given gene of interest. GeneView makes 
such complex cross-entity searches a convenience. While GeneView extracts 
information about several types of entities to enable this type of multi-entity search, it 
does have special support for genes/proteins. The on-click information available for 
genes is currently the most comprehensive one, containing links to several external 
reference databases and providing information on pathways and protein-protein 
interactions the gene/protein participates in. The pop-up also provides the option to 
search GeneView for articles describing PPIs in which the given gene/protein is found.  

Besides the user interface, the information backing GeneView enables many interesting 
types of analysis in its own right. These include searching for trends in appearance of 
entities, as displayed in Figure 3 showing the citation counts over the last 40 years for 
the 8 most often recognized genes. The temporal information for a mention is taken from 



the publication data of the article containing it. This functionality will, in the future, also 
be available for sets of genes, in particular pathways, and will be presented in the form 
of movies showing how information on complex pathways has grown over time.  

3. Architecture and Pipeline 

GeneView indexes all available articles from PubMed and PubMed Centrals open access 
set. Together with each articles text we store metadata such as authors, journal, MeSH 
terms, and figure/table captions that can be extracted by XML parsing from the original 
NCBI files. All texts are imported into Lucene2, serving as storage, query, and ranking 
engine. Metadata and information about all recognized entities, especially type and Id of 
the entity and the exact position in the text, are stored in a relational database to allow 
structured retrieval (see Figure 4). Upon import, texts are processed by a custom text-
mining pipeline that incorporates a multitude of tools for pre- and post-processing and 
for the entity-specific steps of NER, NEN and RE (see below). We decided not to use 
frameworks like UIMA, as most of our incorporated tools are not provided as UIMA 
components and would have required developing a proper wrapper. Furthermore, testing 
components inside of UIMA is, in our experience, extremely difficult. 

Physically, the Lucene index, the web-server, and the database are located on three 
different machines. The web-server communicates with the Lucene index using an 
XML-RPC interface. User defined queries are sent to this index together with pagination 
and ranking preferences, where requests are processed and results are filtered and 
ranked. Values of user-selected check boxes (like “show only results with SNPs”) are 
converted to appropriate Lucene query options and appended to the query. We explain 
details of this process in the rest of this chapter. 

 
Figure 4. Architecture of GeneView. 

                                                           

2 See http://lucene.apache.org/core/ 



Document preprocessing 

All texts are downloaded from the National Library of Medicine (NLM) as XML. 
Available full text articles are converted into HTML for display in the GeneView web 
interface using XSLT scripts provided by NLM3. This transformation generates HTML 
representations resembling the PubMed Central visualization and thus enables a similar 
user experience. During this conversion, HTML specific characters like “&amp” are 
replaced with the corresponding UTF-8 symbol. HTML elements (e.g. </p> or <body>) 
are ignored and references at the end of the document are removed. Similarly, HTML 
tables are ignored. This conversion is necessary, as all text-mining steps require such 
clean text; in effect, we need to store each text twice, once for web display, and once for 
internal processing. This duplication seems to be inevitable, but generates additional 
problems when it comes to exactly addressing text snippets for syntax highlighting. 
Essentially, we need to maintain an exhaustive mapping from the cleansed text back to 
the HTML file. For articles without full text, i.e., usually PubMed abstracts, HTML is 
generated on the fly from the information stored in the Lucene index. Before starting the 
core information extraction pipeline, we detect sentence boundaries, section names, and 
abbreviations/long form mappings using the algorithm from [SH03]. Section names are 
identified using an approximate dictionary covering the 200 most often occurring section 
names4. This allows us to recognize 99.7% of all occurring section headings. We use this 
information for weighting search terms differently depending on the section of a 
document they appear in, a method which has proven highly effective in several works 
[DWH10; HRL05]. 

Named Entity Recognition and PPI extraction  

The pre-processed texts are piped through a series of NER and RE tools (see Figure 5). 
These tools were selected using a best-of-breed strategy; some of them were developed 
in house, some are external. We do not discuss those tools in detail here but refer to the 
original publications. The most important ones are (1) GNAT for gene and protein 
names [HGH+11], (2) MutationFinder for detecting SNPs [CBR+07], ChemSpot for 
chemicals [RWL12], and (4) Linnaeus for species names [GNB10]. Most of these tools 
use mixtures of machine learning algorithms (mostly Conditional Random Fields) 
trained on gold standard corpora and exhaustive dictionaries of the respective entity 
type.  

The next step in the pipeline is relationship extraction. For this purpose, we use the 
freely available framework by Tikk et al. [TTP+10] which combines necessary NLP 

                                                           

3 ftp://ftp.ncbi.nih.gov/pub/archive_dtd/archiving/ 
4Note that section names in biomedical papers, in contrast to computer science, are highly standardized. 



tools and a set of 14 different kernel-based RE methods. Of those, we use the two best 
performing algorithms (according to [TTP+10]), i.e., APG [APB+08] and SL [GLR06]. 
SL uses a SVM for classifying pairs of entities found in a sentence based on large bag-
of-word-style feature vectors of the text surrounding the entities. APG applies a similar 
method, but uses a far larger vector including features derived from the dependency 
parse trees of the sentences. Therefore, sentences have to be parsed prior to the 
application of APG.  

 
Figure 5. Pipeline of information extraction and NLP tools for creating the GeneView 

index. 

A persistent problem with using tools developed independently is that they require 
different input. Tools may require tokenized text, or may depend on unprocessed text 
because they perform their own tokenization. Similarly, some tools require text to be 
tagged with part-of-speech tags (POS), while others perform POS tagging themselves. 
Relationship extraction depends on results from sentence boundary detection, gene name 
recognition, part of speech recognition, and possibly constituent tree parsing and 
dependency parsing. Also, simple steps like abbreviation detection depend on 
preprocessing steps like sentence detection. On the other hand, tools also create different 
types of output which all need to be parsed and transformed into a uniform 
representation. For instance, some NER tools create inline annotations, i.e., they output a 
new version of the input text with tags assigned to tokens, while others only create lists 
of detected entities with references into the text. These references may count tokens or 
characters; and may refer to different tokenizations and different treatment of special 
characters, which often requires a complicated re-mapping of detected entities. Upon 
building the system, such problems take much more time than the simple wrapping of 
code into an IE pipeline. 



Another problem in the application of text mining tools to large collections is their 
instability in terms of achieved performance. NER (and RE) tools typically are evaluated 
on small gold standard corpora (GSC) only, which are also used to train the systems. 
Accordingly, the obtained measures are only valid for these GSC. However, if a GSC 
has properties deviating substantially from the texts a tool is applied to, very different 
accuracies may be observed [VCL+12]. When building a system like GeneView which 
annotates millions of texts, one immediately runs into this problem when inspecting 
some of the results. For instance, RE algorithms often are developed with GSC that 
contain a substantially higher fraction of true relationships than ordinary texts; this 
creates a tendency in classification-based methods to overestimate the a-priori 
probability of observing a relationship when judging an entity pair, which in turn leads 
to many false positives [CJK04]. We experimented with simply increasing the 
confidence threshold for PPI to reduce this problem, but yet did not find a satisfying 
solution. 

In NER, this problem appears in two flavors. First, GSC often contain sets of sentences 
stemming from different abstracts. Second, most GSC draw their sentences only from 
abstracts and not from full text. As a consequence, effects of abbreviations are not 
properly represented (abbreviations are usually defined only once in a text and then used 
consistently), and the “one-sense-per-discourse” rule is not implemented in NER tools 
(meaning that a given, generally ambiguous, name usually is used in only one of its 
senses in a given text). We counteract this effect by two measures. First, when a NER 
tool tags a long (short) form of an abbreviation and we have detected the abbreviation 
itself, we also tag the respective short (long) form. Notably, this simple method adds 2,1 
million additional gene terms. Second, when a NER tool tags a given token (or set of 
tokens) and we detect this token again in the same text, we also tag it. The effect of this 
trick is even more pronounced, as it adds 16,7 million additional gene annotations. These 
two post-processing steps together are responsible for 50.7% of all visualized gene 
mentions and have an enormous effect on the user-perceived recall and subsequent 
relationship extraction – yet a negligible effect when applied to an evaluation on GSC. 
However, the propagation again is not as simple as it appears, as one has to carefully 
decide when a subsequent match in a text is “good enough” for receiving an annotation. 
This is non-trivial, as, on one hand, names for the same gene may differ slightly (e.g. 
ABC-2 and ABC2 (Entrez Id 20) or TGD and TgD (Entrez Id 19)), while, on the other 
hand, slight variations in gene names may be decisive (e.g. Fas (Entrez Id 355) and Fas-
L (Entrez Id 356)). 

Unique concept identifiers, like Entrez gene or dbSNP, are useful to disambiguate 
entities. However, a user often does not know the identifier associated with the concept 
she is looking for. We therefore generate a lookup table consisting of all recognized 
entities including detected synonyms inside of the relational database for all entity types. 



For user queries, GeneView proposes the most likely concept by performing a database 
query and sorting results by the number of articles the entity is found in.  

Another problem of large-scale text mining is that some errors are only observed on a 
small subset of articles, which makes detecting them very hard. Examples are the 
following. (1) Our abbreviation detection algorithm has problems with different 
character encodings within the same article, a situation occurring extremely infrequently 
in PubMed. (2) Some of the NER tools occasionally tag trailing spaces, leading to 
inconsistencies in visualization. The XML format of PubMed is continuously modified, 
leading to unexpected parser break-downs (which are spotted immediately) or scrambled 
visualization (which we cannot detect automatically). (3) For full texts, we keep the 
XML provided by the publishers to support a journal-specific visualization, leading to 
diversity in, for instance, the way formulas are represented: Some journals integrate 
formulas as figures, whereas others enforce the use of MathML, which is removed by 
our parser in the cleansing step. (4) For dependency parsing, we apply the Charniak 
Lease parser [LC05] using the McClowsky reranking model [McCH06] which is unable 
to parse 14,618 out of the total number of 8,131,441 sentences. The reasons for its 
problems are not clear, yet; it is, however, noteworthy that the large majority (14,546) of 
problematic sentences came from full-text articles, although the majority of sentences 
are from abstracts. Again, the original parser is trained on sentences derived from 
abstracts, which are known to be different from full-text sentences [CJV+10]. This 
problem required changes in the source code, as the parser stopped after seeing a 
problematic sentence and did not continue parsing. (5) Additionally, Charniak Lease 
parser replaces some tokens in the original text by other tokens, further complicating the 
mapping from parsed text to original text (for instance, tokens like <“> are replaced by 
<'>).  

Computational Requirements 

GeneView is regularly updated using a server with 24 cores at 2.6 GHz and 256 GB 
main memory. Time intensive tasks, especially XML parsing, NER, syntactic parsing, 
and PPI extraction, are performed in parallel on chunks of the corpus. The computational 
requirements it takes to rebuild GeneView on a single core are shown in Table 1. 
Overall, running the entire pipeline in this mode would require an estimated time of 120 
days. The by far most time intensive task is syntactic and dependency parsing, although 
we actually only parse those sentences which mention at least two genes. Of all our NER 
tools, gene NER is the most time intensive due to its sophisticated disambiguation 
strategy responsible for mapping a gene mention to its correct database identifier 
(especially to the correct species). Overall disc space requirement is about 77GB for the 
Lucene index and 63GB for the metadata and result database.  



Processing step Time [Min] Size [MB] 
Text indexing 1,211 77,855 
HTML conversion 528 24,576 
Sentence detection 280 9,869 
Gene NER 24,012 5,266 
SNP NER 14,745 1,986 
Histone modification NER 8,090 1,437 
AliBaba dictionaries 1,380 5,946 
Chemical NER 1,272 16,539 
Species NER 1,170 4,927 
Abbreviations 727 2,986 
Parsing 100,437 44,521 
RE detection 11,520 29,483 
DB import 3,858 - 
Lookup information 1,849 53 
Enrich Lucene index 453 - 

Table 1. Time (single core) and space requirements to create the complete GeneView 
index. 

4. Indexing Text and Entities 

GeneView uses different technologies to store and index its content and to process 
queries: Lucene is used as a keyword search index and ranking engine; a relational 
database stores the structured annotation produced by the information extraction 
pipeline; and a web application interfaces the stored content to the user using the 
Catalyst MVC framework5. While much of the functionality required for GeneView is 
provided off-the-shelve by the underlying system (for instance, ranking by publication 
date, PMID, or classical document relevance given a keyword query are directly 
supported by Lucene), some features of our system require special attention. These are 
discussed in the following.  

Document indexing and ranking 

Ranking and filtering functions generally are implemented using Lucene. However, 
Lucene in the first place is not aware of the counts of detected entities and relationships 
within a document. Furthermore, ranking by entity-content is not a native feature of 
Lucene. To achieve this functionality, aggregated text-mining results for each article 
have to be propagated into the Lucene index and represented properly to integrate them 
into the customizable ranking mechanism. This encompasses the number of recognized 
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distinct entities for each type as well as identifiers of recognized entities for each article 
section. The number of distinct entities of a specific type is used to filter articles without 
any entity of interest and to rank results by the number of distinct entities. The 
information about identifiers found in a specific article enables users to search for 
articles containing specifically this entity of interest (regardless of homonyms, synonyms 
etc.).  

For gene queries, the query relevance ranking is modified and a section specific ranking 
is applied. Optimal section weights have been determined using PubMed’s 
gene2pubmed as described in [TSJ+10]. Gene2pubmed provides manually curated links 
between PubMed articles and the genes contained in them. Using this data, we set 
weights as Lucene boost parameters such that a query for a curated gene in 
gene2pubmed ranks the corresponding articles in gene2pubmed highest. This strategy 
allows us to estimate the average ranking quality for gene queries and considerably 
improved the mean average precision of gene queries. The automatically derived section 
weights meet general expectations in that, for instance, sections like Title are highly 
ranked, while Materials and Methods receive low weights. Technically, it would also be 
possible to extend this functionality to other types of entities; however, we currently see 
no sensible method to obtain rational weights for entities other than genes. Furthermore, 
the corresponding boosts would either interfere with each others, possibly blurring the 
intended improvements, or be provided separately at the user interface, which again 
would make it more complicated. 

To allow users to focus on their particular set of genes, GeneView allows the definition 
of individual gene lists which later can be used to filter/rank articles of any query. In 
such cases, the query is expanded with the members of the gene set; implementing this 
feature therefore only requires functionality for storing and managing personalized gene 
lists, while their integration into the ranking can be achieved with standard Lucene 
methods. Note that achieving this functionality manually would be hard, as such gene 
lists often contain dozens or even hundreds of genes (in case of genetically complex 
diseases such as cancer or diabetes). It would be conceptually straight-forward to expand 
this feature to types of entities other than genes, but therein one carefully has to balance 
functionality and simplicity of the user interface. Currently, most users we talked to have 
a strong focus on genes. 

Another feature of GeneView important for users is “rank by entity count”. To this end, 
we extract aggregated counts from the database and store them as additional metadata in 
a proper Lucene field attached to each document. At query time, one can tell Lucene to 
use the information in this field for ranking and/or filtering. This solution works equally 
well for all types of counts; however, for usability reasons we currently expose this 
functionality only for SNPs and genes at the web interface.  



Annotation indexing  

All entities and relationships extracted by the extraction pipeline are stored in a 
relational database. Information stored for each entity mention includes the article id, 
normalized entity id, concrete annotated text span, start character position in the cleansed 
text, and end character position in the cleansed text. The article Id, which is the PubMed 
article identifier (PMID), links each mention to the corresponding document in the 
Lucene index. The normalized entity Id links a mention to additional information in 
external, type-specific data sources (e.g., Entrez-Gene-Id for genes or Chebi-Id for 
chemicals). The annotated text span and the start and end positions precisely define the 
actual occurrence of the entity in the inspected document. This information is used for 
entity highlighting when visualizing single articles, which requires an additional step of 
mapping character positions as stored in the database to the HTML representation of the 
text created from the original XML files. Due to the multiple text manipulations that take 
place in-between, those mappings cannot be computed automatically; instead, we have 
to retain a positional mapping table for each inspected document (see Section 3). For all 
relationship types, we store links to the two linked entities, classifier confidence, and 
associated sentence. Note, that the resulting database is quite large; altogether, 
GeneView indexes more than 209 million different entity mentions. 

Entity type Entities  Distinct entities Number of articles 
Cell-type 18,891 231 5,622 
Chemical 77,606,023 47,905 9,851,536 
Disease 145,001 4,643 74,583 
Drugs 47,113,224 3,061 6,246,067 
Enzyme 894,895 2,298 590,301 
Genes 37,080,749 83,705 2,959,439 
Histone-mod 77,210 575 7,673 
SNP 1,078,640 42,505 192,544 
Species 44,808,988 115,966 9,119,134 
Tissue 239 31 222 
Overall 209,788,411 304,565 13,463,850 

Table 2. Overview of detected entities in GeneView. 

Document specific aggregated information for each entity type is injected into the 
Lucene index once the NER/NEN/RE pipeline has finished. Thereby, Lucene can handle 
all ranking issues without a need to get back to the databases; the database is only 
accessed for highlighting during web display (see above) and for assisting users in 
formulating queries. Here, GeneView provides on-the-fly lookup functionality which 
suggests auto-completions if entered tokens match an entity name (see also Section 2). 
This lookup issues one query to the database for each keystroke the user makes, which in 
turn requires a carefully indexed lookup table. We realize this lookup as a materialized 



view over the entity-specific annotation tables storing the original mention, its 
normalized representation and its corresponding identifier. Additionally, each entry 
contains the overall number of occurrences of this entity in the corpus and the number of 
articles it has been found in. 

Visualization in the Web Interface 

For single article visualization, entities and their spans are requested from the relational 
database. For each type of entity found, a separate instance of the articles HTML 
representation is enriched with highlighting in a type-specific color. When displayed in 
the browser, these instances are overlaid to appear as a single document. The objective 
of this multi-layered approach is to allow collision free multi-entity annotation. For 
instance, a single entity may be (correctly) identified as both a drug and a chemical, 
causing two overlapping annotations. As GeneViews highlighting are semi-transparent, 
the resulting overlap of layers will appear to the user in a different, mixed color, 
indicating the detected ambiguity. A drawback is the need to transfer each text to the 
user, i.e., from server to client, multiple times within a single HTML document. While 
this is less problematic for abstracts, it does raise scalability issues for lengthy full texts 
in terms of the number of different entity types which can be included. For instance, 
GeneViews web page of a full text including five different types of entity mentions can 
reach a size of around 1MB.  

For its aggregate view of annotations in the left-hand pane, GeneView utilizes the entity-
count data stored in the Lucene index. For each entity type, it shows a table of all found 
entities ranked by their number of occurrences. For genes, these counts are also available 
on the section level. This enables the user to fine-tune the ranking by including or 
excluding specific sections.  

The web interface also provides link-out information for entities. Such information is 
implicitly linked to an entity during entity normalization; the source of the specific 
information is type-dependent. For instance, information on genes is retrieved from the 
PiPa database [ASA11]. This information is aggregated and enriched with external links 
to the referenced databases. The specific information to be displayed is configured by 
implementing a plug-in for the respective entity type. When an entity is clicked in the 
user interface, an AJAX call with entity type and entity Id is sent to the web server, 
which uses this information to resolve the plugin to be used, which in turn retrieves the 
information to be displayed and converts it into a HTML snippet sent back to the client. 
Generally, such plug-ins can be arbitrarily complex. While some simply generate links to 
external reference databases, others may retrieve information from such databases at run-
time, such as for genes (see above).  



5. Conclusions 

We presented GeneView, an entity-centric search engine for the biomedical literature. 
To achieve its functionality, the system encompasses over two dozens of external NLP 
and information extraction tools whose output are stored in a classical information 
retrieval engine (Lucene ) and in a relational database (MySQL).  

This paper gave an account of the many smaller and larger problems that emerge during 
the construction of systems like GeneView. Many of these problems stem from the fact 
that we follow a best-of-breed strategy, i.e., we use the best available tools for each of 
the different entity classes and relationship types that are indexed, which comes along 
with heterogeneous requirements in terms of execution environment, different data 
formats, multiple runtime dependencies, and continuous problems with version 
incompatibilities. In particular, the lack of standards for representing annotated texts, 
which gives rise to many different ways to link annotations with text spans, creates the 
need to perform repeated format conversions and to keep multiple copies of the text, 
along with brute-force mapping tables. Almost every tool in our pipeline has a different 
format for the input text and the positional annotations it returns. We currently see little 
hope that these problems will go away in the near future, unless efforts such as ???NIF 
succeed in defining standards for the community. As a positive message, we experienced 
that the basic infrastructures, especially Lucene, are able to provide stable, flexible and 
scalable search performance, although their usage for advanced features such as entity-
based ranking requires some thought and effort. 

However, we also see that a project like GeneView poses considerable challenges to 
current methods in terms of scalability, flexibility, and maintenance cost. For instance, 
the workflow depicted in Figure 5 can be executed in various orders, each of which will 
take different time depending on the selectivity of the contained filter operations, the 
time required to execute the various tools on input of varying size, the available 
hardware, etc. There have been first attempts to optimize such complex IE workflows 
mostly consisting of non-standard operations [RRK+08; SDNR07], but these focus on 
comparably simple operations like regular expression matching and co-occurrence. We 
believe that advanced methods for entity recognition and relationship extraction like the 
one implemented in GeneView have distinct properties that call for specific optimization 
techniques. We have started work in this direction [HRL+12] in the course of the 
Stratosphere project6. 

Another challenge is flexibility in executing an IE pipeline. Very often, only parts of the 
entire workflow have to be run, for instance if new versions of individual tools are 
available. In such cases, running the entire workflow would imply a great deal of 

                                                           

6See http://www.stratosphere.eu/ 



unnecessary computations, but running only specific parts of it is not easily achieved, 
given that the workflow technically consists of a series of intertwined scripts in different 
languages. But because implementing sub-workflows is costly in terms of manpower, we 
often simple run the entire workflow despite the waste in compute power. A proper 
support for specifying and executing such pipelines should also support data incremental 
execution, as pipelines often break unexpectedly due to format problems in the input or 
bugs in the IE tools. Restarting the pipeline should not imply re-annotating texts that had 
already been finished in the previously though finally failed run. There exist some 
suggestions towards this problem [KSB+10], but these, to the best of our knowledge, 
haven’t been integrated into real dataflow languages yet. 

Besides these data-management-related challenges, also the text mining part of 
GeneView is still far from fully satisfactory, especially in the area of relationship 
detection. For instance, relationship extraction still is sentence-specific. Finding 
relationships across sentences would require the inclusion of algorithms for anaphora 
resolution [HK09]. Another problem is that of negation and hedging, i.e., assessing the 
strength of the author’s certainty in a reported, possibly negative, finding [FVM+10].  
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