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Abstract—We present the BB-Tree, a fast and space-efficient
index structure for processing multidimensional workloads in
main memory. It uses a k-ary search tree for pruning and
searching while keeping all data in leaf nodes. It linearizes the
inner search tree and manages it in a cache-optimized array,
with occasional re-organizations when data changes. To reduce
the frequency of re-organizations, the BB-Tree introduces a
novel architecture for leaf nodes, called bubble buckets, which
automatically morphs between different representations based
on their fill degree and are thus able to buffer large numbers of
insertions in-place. We compare the BB-Tree to scanning, main-
memory variants of the R*-tree, the kd-tree, and the VA-file, and
the PH-tree using workloads over real and synthetic data. The
BB-Tree is the fastest index for range queries up to a selectivity
of 20%, and achieves an exact-match query performance similar
to that of the best point access method, and is the most space-
efficient index structure.

I. INTRODUCTION

Searching multidimensional data can be sped up by using
multidimensional index structures (MDIS). In this work we
focus on multidimensional range queries (MDRQ) over all
(complete-match) or a subset of dimensions (partial-match).
MDIS are different from one-dimensional index structures
as they cannot exploit a natural sort order in the data.
Especially partial-match queries require MDIS to treat all
dimensions equally, which is typically achieved by building
and maintaining some, often hierarchical, structure on top
of the data [10]. Navigation of such a structure necessitates
inefficient random access patterns, which quickly leads to the
scan outperforming an MDIS when queries are less selective,
irrespective of whether data is held on disk [14], or in
main memory [12]. Research thus aims at creating an MDIS
that can efficiently support exact-match and range queries,
has low memory overhead, performs gracefully in read/write
workloads, is robust against the data dimensionality, and is
faster than scans.

We present the BB-Tree, a novel main-memory MDIS
which fulfills these requirements. Conceptually, a BB-Tree
is an almost-balanced k-ary search tree, where inner nodes
recursively split the data space into k partitions according
to a delimiter dimension and k& — 1 delimiter values. Data
objects are stored in leaf nodes (buckets). When too many
data points are inserted and buckets overflow, the structure is
rebuilt to achieve a beneficial balance regarding the depths
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of leafs. Within this general and well-known layout, the BB-
Tree combines a number of advanced techniques that yield
its superior performance. As the main contribution, BB-Trees
introduce elastic buckets, called bubble buckets (BB), that
efficiently handle fluctuating bucket fill degrees and signif-
icantly reduce the frequency of index rebuilds. BB morph
between different representations, depending on their number
of stored data objects. We distinguish between regular and
super BB. Regular BB can hold up to b,,,, data objects and
are implemented using arrays. Super BB are composites and
consist of a routing node and a set of up to k regular BB.
Hence, they locally add a further level to the tree. BB can
dynamically grow: Overflowing regular BB let them morph
into super BB. This leaves the rest of the BB-Tree unchanged.
Since overflows create k£ new leaf buckets, a BB can cater a
large number of inserts. Eventually, the tree is rebuilt when
a super BB overflows. In workloads with hammered inserts,
i.e., series of insertions into the same small region, BB help
to significantly reduce rebuilds and greatly improve the write
performance with minimal performance impact, at the cost of
a slightly deeper tree. BB keep the inner search tree (IST)
stable over long periods of data changes, which enables the
adaptation of the inner nodes to cache lines. The number
of delimiter values is adapted to the cache line size, to
improve utilization. Furthermore, we store the inner nodes
in a flat and static array to avoid pointer chasing, decrease
random accesses, and reduce cache misses. Typically, such an
optimization either makes the index completely static [6], [11]
or requires delta stores [7], [9]. In contrast, BB-Trees manage
large numbers of changes in-place without rebuilds. Also,
eliminating pointers improves space efficiency. We compared
the BB-Tree to sequential scans, and four MDIS [2], [4], [14],
[15]. The BB-Tree’s performance is virtually unaffected by the
data dimensionality. It beats all competitors for range queries
up to a selectivity of 20%, and has the best space efficiency;
for less selective queries it is only beaten by a scan.

II. RELATED WORK

MDIS have been researched for decades [3]. The kd-tree [2]
organizes multidimensional point objects in a binary search
tree by splitting the data space at each node using one
of the dimensions as delimiter. It is integrated into several
mature DMBS, e. g., PostgreSQL. The Vector Approximation-



file (VA-file) [14] is a mixture between an MDIS and a
sequential scan that divides the space into cells of equal
size, using hash functions to allow for efficient pruning.
Many approaches were developed for disk-based data storage,
but can be adapted to main-memory settings [12]. The PH-
tree [15] is a recent main-memory MDIS, which integrates the
concepts of PATRICIA-tries and hypercubes. The R-tree [4]
is probably the most prominent method for handling spatially
extended objects, and is frequently used for storing point
objects [5]. It uses minimum bounding rectangles (MBR) to
represent all objects of a certain subtree. MBRs are used for
pruning. The R*-tree [1] improves partitioning by aggressively
reinserting data objects leading to a more efficient search
performance, employed by several DBMS to manage spatial
data, e. g., SQLite.

III. THE BB-TREE INDEX STRUCTURE

In a nutshell, a BB-Tree is a main-memory optimized MDIS
for point data. It combines the pruning power of an almost-
balanced k-ary search tree with the efficiency of scans in main
memory. The inner search tree (IST) is linearized and stored
in a cache-optimized, yet immutable array. Data objects are
stored in special leaf nodes, the bubble buckets (BB), which
can digest a large number of insertions without hurting the tree
balance considerably. Eventually, the BB-Tree must be rebuilt.

Data Organization. A BB-Tree consists of two compo-
nents: A k-ary search tree and a set of BB. Inner nodes of
the IST recursively split the data space into k disjoint subsets
according to a delimiter dimension and k — 1 values. Data
are kept in regular BB, which hold up to b,,,4, m-dimensional
data objects, and can dynamically expand to cope with a larger
number of objects. When queried, inner nodes are used to
reduce the data space. Once, all irrelevant subtrees have been
pruned, the remaining BB are scanned to determine the results.

Inner search tree. The entire IST is implemented as a sin-
gle, immutable array. This has several advantages: (1) Cache
lines are the basic unit for transferring data between main
memory and CPU caches. By choosing an appropriate k, the
BB-Tree maps inner nodes to the cache line size. (2) A single
dense array makes pointers superfluous. Array indexes of child
nodes are calculated in constant time using the tree level and
the fan out k. The BB-Tree linearizes inner nodes in a breadth-
first order, reducing memory pressure while increasing cache
efficiency. (3) Binary search efficiently searches a specific
delimiter value.

Leaf nodes. All data objects are stored in BB, each has a
capacity of b,,,, objects that determines the balance between
time spent in pruning the IST, and the time spent in leaf scan-
ning. A large b,,,,, results in large leaf nodes, less inner nodes,
and low tree depth, preferable for lowly selective queries. In
contrast, a lower capacity results in smaller leaf nodes and a
deeper tree structure, beneficial for highly selective queries.

Delimiter values. Upon rebuilt, BB-Trees choose their de-
limiter dimensions in the order of the dimension’s cardinality,
moving high cardinality dimensions, and thus a presumably
higher pruning power, to the top. If a dimension has more than
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Fig. 1: A BB-Tree (k = 3, bjnee = 4) of height h = 2
managing n = 36 data objects of dimensionality m = 3. The
IST is linearized as a single immutable array.

k distinct values, delimiters are determined such that each sub-
tree features a roughly equal number of objects. If the number
of inner node levels, h, is smaller than the dimensionality
m of the data set, BB-Trees omit the dimensions with the
smallest cardinalities in the IST. This scenario is quite frequent
due to the high fanout of the tree, resulting in a rather flat
BB-Tree for very large data sets. If h is larger than m, we
employ dimensions multiple times as delimiters in a round-
robin fashion. Figure 1 illustrates a BB-Tree with two levels,
and nine BB storing 3d objects.

Bubble Buckets. We describe two techniques to cope with
changing data, namely BB and index rebuilds. All leaf nodes
are implemented as elastic BB. There exist two types of BB:
A regular BB is implemented as a C++ std::vector, which is
a dynamically growing and shrinking array, and takes inserts
up to its maximum capacity b,,.,. In contrast, a super BB
locally adds a further level to the tree. It consists of an inner
node and a set of k regular nodes. The inner node holds a
delimiter dimension and delimiter values. Super BB employ
the delimiter dimension based on the largest number of distinct
values, and these & — 1 delimiter values are chosen to evenly
distributed data objects among the k regular child BB. Regular
BB morph into super BB upon overflow.

Inserts. The complete procedure for inserting objects is as
follows: We first traverse over the IST to determine the bucket
that is responsible. If the chosen BB is a regular BB and has
free space, we simply insert the object. If not, we morph the
regular BB into a super BB, and insert the data object. To insert
into a super BB, we check if it contains less than & * b4,
objects, determine the regular (child) BB, and insert the object;
if all fails, we reorganize the index.

Building and Reorganizing a BB-Tree. A BB-Tree ini-
tially consists of one regular BB. After b4, objects have been
inserted, this regular BB morphs into a super BB. Eventually



Data Set n m  Distinct per m Raw Size
UNIFORM  10k-10M 5 to 100 10k-1M 0.19-190.74MB
CLUST 10k-10M 5 10k-1M 0.19-3.8GB
POWER 10k-10M 3 1k-10M 0.11-114.44 MB

TABLE I: Real and synthetic data sets used.

the super BB overflows, triggering a rebuild. A rebuild consists
of four steps. First, we compute how many regular BB are
required, while leaving capacity for new inserts, and derive the
necessary number of levels of the IST. By default, we set the
number of BB to n/(10%#byq. ) allowing each node to ingest
further 90% * b4, data objects until it overflows. Second,
we randomly sample Rsamples% representatives of the whole
data set, and estimate the cardinality of each dimension.
Dimensions are sorted by cardinality and assigned to the h IST
levels in descending order. Third, we recursively determine the
delimiter values for the inner nodes. Using the sample data, we
compute an equi-depth histogram with k& buckets of roughly
equal size, an estimate of the value distribution of the current
level, and obtain £ — 1 delimiter values. Finally, objects are
inserted into their respective BB.

Search Algorithms. BB-Trees are designed for partial- and
complete-match range, but also support exact-match queries.
All search queries first exploit the linearized inner nodes to
efficiently find BB that may hold relevant data objects while
pruning all others. This is followed by sequential scans over
all candidate BBs to determine the matching data objects.
Evaluation of search queries potentially follows multiple paths
through the tree.

IV. EVALUATION

We compare the BB-Tree with the state of the art by execut-
ing workloads over synthetic and real-world data sets. We exe-
cuted all experiments on a server with two Intel Xeon E5-2620
CPUs (each 2 GHz, 64-byte cache lines, six cores, 12 hardware
threads) and 32 GB RAM. All experiment are single-threaded.
All competitors are completely kept in main memory. All data
sets are inserted in random order. Experiments run three times
and we present the arithmetic mean. We compare the BB-Tree
to general-purpose MDIS: the kd-tree [2], the PH-tree [15],
the R*-tree [1], the VA-file [14] and the sequential scan [12].
For the R*-tree, we used an open-source, main memory im-
plementation (https://libspatialindex.github.io/). For the main-
memory PH-tree, we used a public implementation (https:
//github.com/tzaeschke/phtree-1). For the kd-tree, the VA-file
and the sequential scan, we used our own main-memory
implementations [12]. We evaluated the BB-Tree with & = 17,
as k — 1 = 16 four-byte floats fit into one cache line, and
empirically set b,,q; = 2,500. The BB-Tree implementation
is freely available (https://hu.berlin/bbtree). We evaluate on
three data sets Table I. Uniform Data (UNIFORM) is synthetic
and facilitates experiments with arbitrary data set sizes (n),
dimensionalities (m) and query selectivities. Clustered Data
(CLUST) features five-dimensional data set in up to 20 clusters
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Fig. 2: Performance of exact-match queries.
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Fig. 3: Performance of synthetic complete-match range
queries.

generated using [8] . Real world Sensor Data (POWER) is
from the DEBS 2012 challenge (http://debs.org/?p=38).

Exact-Match and Range Queries Figure 2 shows the
average execution time of n exact-match MDRQ given n
objects. Each exact-match query retrieves a randomly-chosen,
existing data object. To store 10* objects, the BB-Tree employs
just one super BB with k£ = 17 regular nodes (b,,4 = 2, 500).
For exact-match queries, the performance of the BB-Tree
is very similar to that of the kd-tree and the PH-tree. It
clearly outperforms the R*-tree, the VA-file and the sequential
scan for all data sets, often by multiple orders of magnitude.
Although the BB-Tree scans the BB, it is very competitive, as
it effectively prunes the data using the IST.

Figure 3 shows the average execution time of complete-
match MDRQ, generated by using two objects from the data
set as upper and lower bounds. The obtained MDRQ have
varying average selectivity; UNIFORM: 0.4% (o = 0.9%),
CLUST: 19.8% (o0 = 19.7%), POWER: 12.6% (0 = 13.1%).
For CLUST, one range query may span multiple clusters,
therefore average selectivities are higher than for UNIFORM,
although both data sets have identical generation properties.
The BB-Tree has the overall best performance, outperforming
the other contestants, by up to three orders of magnitude. For
UNIFORM, the R*-tree’s performance is similar to that of the
BB-Tree. Figure 4 shows the performance of range queries
on ten million objects from UNIFORM, depending on query
selectivity. We do not plot the kd-tree as its query execution
time was orders of magnitude higher when selecting more
than 1% of the data. The BB-Tree outperforms all other MDIS
regardless of the query selectivity. It beats the scan for queries
with a selectivity of up to 20%, and for less selective queries
remains close to that of a scan. The BB-Tree has a high cache
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Fig. 5: Performance of exact-match and complete-match range
queries (average selectivity = 1%, o = 0.7%) depending on
dimensionality (n=10M, UNIFORM).

efficiency, similar to a sequential scan, as it follows most
predicted branches, leading to few pipeline flushes.

Impact of Dimensionality. We measured the performance
of exact-match and complete-match range queries on ten
million data objects from UNIFORM depending on data set
dimensionality. We generate complete-match range queries
with an average selectivity of 1% (o = 0.7%). With growing
dimensionality very low single-dimension selectivities pose
serious challenges to MDIS, as pruning becomes less useful.
Figure 5 shows the runtimes for m between ten and 100. The
PH-tree ran out of memory for m higher than ten. Likewise,
the R*-tree ran out of memory for m > 100 dimensions. For
exact-match queries, all methods except the R*-tree are mostly
unaffected by dimensionality. For MDRQ), all methods behave
similarly and show a degradation roughly proportional to m,
whereas slow-down is more pronounced for lower m. Scans
become slower with increasing m as more delimiters must be
compared. On a CLUST workload (not shown) with m = 5
vs m = 10 the B-Tree behaves similar as for UNIFORM.

Space Consumption. Figure 6 shows the space consump-
tion of the contestants for ten million data objects. The BB-
Tree achieves a high space efficiency, which is mainly enabled
by the linearization of its inner nodes. Compared to the other
MDIS, it requires the smallest index overhead over the scan.
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Fig. 6: Space consumption of the competitors (n=10M).

V. CONCLUSIONS

We presented the BB-Tree as a fast and space-efficient
means for storing and querying multidimensional data in
main memory. It supports complete- and partial-match range
queries, exact-match queries, and dynamic updates. We com-
pared the BB-Tree with state-of-the-art MDIS using different
synthetic and real-world workloads over different synthetic
and real-world data sets with three to 100 dimensions. The
BB-Tree beats all competitors in executing range queries
up to a selectivity of 20%; for less selective queries it is
only outperformed by a scan. It executes exact-match queries
almost as fast as the best competitor, the PH-tree; for higher
dimensionalities it even provides the best performance.
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