
Discovering Conditional Inclusion Dependencies

Jana Bauckmann
Hasso-Plattner-Institut,

Germany
jana.bauckmann@
hpi.uni-potsdam.de

Ziawasch Abedjan
Hasso-Plattner-Institut,

Germany
ziawasch.abedjan@
hpi.uni-potsdam.de

Ulf Leser
Humboldt-Universität zu

Berlin, Germany
leser@informatik.hu-berlin.de

Heiko Müller
Intelligent Sensing and

Systems Laboratory, Australia
heiko.mueller@csiro.au

Felix Naumann
Hasso-Plattner-Institut,

Germany
naumann@hpi.uni-potsdam.de

ABSTRACT
Data dependencies are used to improve the quality of a
database schema, to optimize queries, and to ensure con-
sistency in a database. Conditional dependencies have been
introduced to analyze and improve data quality. A con-
ditional dependency is a dependency with a limited scope
defined by conditions over one or more attributes. Only
the matching part of the instance must adhere to the de-
pendency. In this paper we focus on conditional inclusion
dependencies (Cinds).

We generalize the definition of Cinds, distinguishing cov-
ering and completeness conditions. We present a new use
case for such Cinds showing their value for solving complex
data quality tasks. Further, we propose efficient algorithms
that identify covering and completeness conditions conform-
ing to given quality thresholds. Our algorithms choose not
only the condition values but also the condition attributes
automatically. Finally, we show that our approach efficiently
provides meaningful and helpful results for our use case.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications

Keywords
ontology engineering, Linked Data, data mining

1. PROBLEM STATEMENT
Studying data dependencies, or integrity constraints, has

a long history in database research. Traditionally, integrity
constraints are defined such that all tuples in a table must
obey them, and they have mostly been used to preserve con-
sistency in a database and as a hint to the query optimizer.
Recently, a weaker form of dependencies, so called condi-
tional dependencies, have gained attention, mostly due to
their power in analyzing and improving data quality [9].
A conditional dependency is a dependency with a limited

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

scope, where the scope typically is defined by conditions
over several attributes. Only those tuples for which these
conditions evaluate to true must adhere the dependency.
Research has focussed on two types, i. e., conditional func-
tional dependencies (Cfds) [4] and conditional inclusion de-
pendencies (Cinds) [5]. Results have been published on rea-
soning about consistency and implication [5, 6], validation
of known conditional dependencies [6], or detection of con-
ditional functional dependencies [11, 12].

Interestingly, detecting conditional inclusion dependencies
has yet received little attention. We present an entirely new
case for Cinds, which clearly shows their value for solving
complex data quality tasks. To this end we generalize the
established definition for Cinds to cover a subtle, yet im-
portant difference between different classes of Cinds. We
present algorithms to detect all Cinds and evaluate their
efficiency.

1.1 Motivating Use Case
Our motivation for studying Cinds comes from the prob-

lem of describing links between objects on the web. Con-
sider, as an example, the problem of interlinking representa-
tions of persons in the English and German version of DB-
pedia[3]. Clearly, many persons have both an English and
a German description in DBpedia. Relationships between
entries in DBpedia are either represented by using the same
URI or by “sameAs”-links; we refer to these relationships as
links. We use the following relational schema to represent
information about persons in DBpedia: person(pid, cent),
birthplace(pid, bplace), deathplace(pid, dplace) with foreign
key relationships from birthplace.pid to person.pid and from
deathplace.pid to person.pid. Each person has an identifier
(pid; mostly a person’s name), and a century of birth (cent).
The separate relations for place of birth and place of death
result from the fact that persons in DBpedia can have sev-
eral places of birth or death distinguishing for example the
country, region, and city of birth or death. Figure 1 shows
(part of) the result of the full outer join over relations person,
birthplace, and deathplace on the foreign key attributes in
the English version of DBpedia (Person_EN) and the German
version (Person_DE).

Links between persons in Person_EN and Person_DE in Fig. 1
are represented by an identical pid. For some persons in Per-

son_EN there is no link to Person_DE (and vice versa). Having
a German person without a link to an English person (and
vice versa), two situations are possible: (1) This English

description does not exist; then the lack of the link truly
reflects the database. (2) The English description does ex-
ist; then the missing link is a data quality problem. Such
problems are very common in scenarios where heterogeneous
data sets have overlapping domains but no central authority
takes care of properly and bi-directionally linking objects.
Many examples of such cases can be found in the world of
Linked Open Data [14].

The inclusion dependency Person_EN.pid ⊆ Person_DE.pid

holds only for part of Person_EN. The goal of discovering
Cinds is to identify conditions within Person_EN that sum-
marize properties of those persons that have a link to Per-

son_DE. In the given example we can observe a condition
deathplace = United States ∧ cent = 18, which can be ex-
plained by the large number of European emigrants in the
19th century to the US. Such conditions are a useful tool to
identify candidates for missing links. We propose a method
to automatically identify conditions for Cinds between sets
of interlinked objects.

pid cent birthplace deathplace
Cecil Kellaway 18 South Africa United States
Mel Sheppard 18 United States United States
Buddy Roosevelt 18 Meeker, Col. Meeker, Col.
Sante Gaiardoni 19 - -

(a) Relation Person_EN

pid cent birthplace deathplace
Cecil Kellaway 18 Kapstadt Los Angeles
Cecil Kellaway 18 Kapstadt Kalifornien
Cecil Kellaway 18 Kapstadt United States
Cecil Kellaway 18 Südafrika Los Angeles
Cecil Kellaway 18 Südafrika Kalifornien
Cecil Kellaway 18 Südafrika United States
Mel Sheppard 18 Almonesson Lake Queens
Sam Sheppard 19 - -

(b) Relation Person_DE

Figure 1: Selected data about persons from the En-
glish (Person_EN) and German (Person_DE) DBpedia.

1.2 CIND Discovery and Condition Features
We approach the the problem of Cind detection in three

steps: (i) detecting an approximate Ind, i. e., an Ind that
is only satisfied by part of the database, (ii) detecting con-
ditions that can turn an approximate Ind into a Cind, i. e.,
conditions that hold in that part of the database that sat-
isfies the approximate Ind, and (iii) choosing a (sub-)set
of discovered conditions to build the pattern tableau of the
Cind. The first step can be solved using detection methods
for approximate Inds, such as [16], or it could be manu-
ally performed by an expert user. The problem of finding
an optimal pattern tableau has been addressed for Cfds
in [12]. In this paper we assume approximate Inds to be
given and focus on the second step, namely on efficiently de-
tecting “good” conditions that turn given approximate Inds
to Cinds. We outline in [2] how the third step can be real-
ized by applying our algorithms to the ideas of [12].

To achieve our goal of identifying good conditions, we for-
mulate desired features of conditions. In the following we
reason over single conditions and their features. A condi-
tion on a dependent relation R1 should distinguish tuples of
R1 included in the referenced relation R2 from tuples not in-
cluded in R2. A condition that is satisfied only by included
tuples is called a valid condition. Simply relying on counting
the number of tuples that match a condition, however, may
not give the desired results. In our example there are multi-

ple tuples for a single person. If we want to find a condition
filtering all included persons, should all tuples for this per-
son match the condition or does one matching tuple suffice?
Consider the six tuples for Cecil Kellaway in Person_DE: Ce-
cil Kellaway certainly matches condition deathplace = Los

Angeles. Counting tuples, however, lets this condition look
only one-third as good, because it covers only 2 out of 6 tu-
ples. This problem is common when discovering Cinds over
relations that are derived by joining relations in a normal-
ized database.

To account for these discrepancies we introduce a new fea-
ture to characterize the scope of conditions: We distinguish
covering conditions for counting objects, e. g., persons; and
completeness conditions for counting tuples. More general, a
covering condition counts groups of tuples whose projection
on the inclusion attributes is equal.

We are not only interested in valid conditions that per-
fectly filter only included persons. To be able to propose
missing links, we are also interested in “almost valid” condi-
tions with some non-included persons matching the condi-
tion. We use precision and recall measures to quantify the
quality of a condition, i. e., the degree of its validity, cover-
ing, or completeness (Sec. 2). Our use case then requires to
find valid and covering conditions with a certain quality.

Discovering valid and covering, or valid and completeness
conditions of a given quality for given approximate Inds
poses two major challenges: (i) Which (and how many) at-
tributes should be used for the conditions? (ii) Which at-
tribute values should be chosen for the conditions? Within
this paper, we propose algorithms that address both of these
challenges. Given an approximate Ind, our algorithms find
all selecting conditions above a given quality threshold for
validity and covering (or completeness) without the need to
specify the attributes over which the condition is generated.

The contributions of this paper are as follows:
• A novel use case for Cind detection that is motivated

by the increasing amount of linked open data;
• A generalization of Cinds to distinguish covering and

completeness conditions for discovering Cinds over de-
normalized relations;
• Two algorithms that efficiently identify valid and cov-

ering (or valid and completeness) conditions, while choos-
ing condition attributes and values automatically;
• A thorough evaluation of the algorithms using two

real-world data sets. Details on algorithms and ex-
periments are provided in [2].

2. CIND DEFINITION
Formally, a Cind is defined by an embedded approximate

Ind and a pattern tableau representing the conditions. The
following definitions are based on [5] and [9] but we chose a
different, yet more intuitive formulation. Let R1, R2 be rela-
tional schemata over a fixed set of attributes A1, A2, . . . , Ak.
Each attribute A has an associated domain dom(A). We de-
note instances of R1 and R2 by I1 and I2, respectively. Each
instance I is a set of tuples t such that t[A] ∈ dom(A) for
each attribute A ∈ R. Let X,XP and Y, YP be lists of at-
tributes in R1 and R2, respectively. We use t[X] to denote
the projection of t onto attributes X.

Def. 1: Approximate IND An approximate IndR1[X] ⊆
R2[Y] is an Ind that is satisfied for a non-empty subset of
tuples in I1, i. e., ∃t1 ∈ I1, t2 ∈ I2 : t1[X] = t2[Y].

A tuple t1 ∈ I1 satisfies R1[X] ⊆ R2[Y] if there exists
a referenced tuple t2 ∈ I2 with t1[X] = t2[Y]. We call at-
tributes X and Y inclusion attributes.

Def. 2: Pattern tableau A pattern tableau TP restricts
tuples of R1 over attributes XP and tuples of R2 over at-
tributes YP . For each attribute A in XP or YP and each
tuple tp ∈ TP , tp[A] is either a constant in dom(A) or a
special value ’-’.

Each pattern tuple tp ∈ TP defines a condition. A con-
stant value for tp[A] restricts a matching tuple’s attribute
value to this constant, a dash represents an arbitrary at-
tribute value. A tuple t1 ∈ I1 matches tp ∈ TP (t1 � tp) if
∀A ∈ XP : tp[A] = (’–’ ∨ t1[A]). The definition for a tuple
t2 ∈ I2 matching tp ∈ TP follows analogously over attributes
YP . The pattern tableau is divided into a left-hand side
(with attributes XP) and a right-hand side (with attributes
YP). Both sides of the tableau can be left empty specifying
no restriction on any attribute of the respective relation. We
call attributes XP and YP condition attributes.

Def. 3: Conditional inclusion dependency (CIND) A
Cind ϕ: (R1[X;XP] ⊆ R2[Y ;YP], TP) consists of the em-
bedded approximate Ind R1[X] ⊆ R2[Y] and the pattern
tableau TP over attributes XP and YP defining the restric-
tions. Sets X and XP are disjoint, as are Y and YP .

Our example Cind is denoted as follows: ϕ: (Person_EN[pid;
cent, deathplace] ⊆ Person_DE[pid;], TP)

TP :
cent deathplace
18 United States

A Cind ϕ holds for a pair of instances I1 and I2 if the
following two conditions hold:

1. Selecting condition on I1: Let t1 ∈ I1 match any tuple
tp ∈ TP . Then t1 must satisfy the embedded IND.

2. Demanding condition on I2: Let t1 ∈ I1 match any
tuple tp ∈ TP . Further, let t1 satisfy the embedded
Ind with referenced tuple t2 ∈ I2, i. e., t1[X] = t2[Y].
Then t2 also must match tp.

Note that the Cind definition treats selecting conditions
and demanding conditions separately and asymmetrically
regarding validity and completeness.

Given a Cind ϕ and instances I1 and I2. Let Iϕ denote
the set of tuples from I1 that satisfy the embedded Ind,
i. e., Iϕ = I1 nX=Y I2. We refer to Iϕ as the set of included
tuples. We are also interested in groups of included tuples
that have equal values in attributes X, e. g., all tuples for
Cecil Kellaway. Let gx denote a group of tuples in I1 having
value x for t[X], i. e., gx = {t|t ∈ I1 ∧ t[X] = x}. We call
gx an included group if all tuples are included tuples, i. e.,
gx ⊆ Iϕ. A group gx matches a pattern tuple tp, denoted
by gx � tp, if any of the tuples in gx matches tp, i. e., gx �
tp ⇔ ∃t ∈ gx : t � tp. Let G1 denote the set of groups in
I1 and Gϕ denote the set of included groups. Finally, for a
pattern tuple tp let I1[tp] and G1[tp] denote the set of tuples
from I1 and the groups in G1 that match tp, respectively.

Def. 4: Valid Condition A condition is valid if all tuples
of I1 that match tp also satisfy the embedded IND, i. e.,
I1[tp] ⊆ Iϕ.

The validity of a condition can be measured by the pre-
cision of this condition, i. e., the number of matching and

included tuples related to the number of all matching tuples.
We call tp γ-valid if it has validity greater than threshold
γ. We also define a measure for validity based on groups as
the number of matching and included groups relative to the
number of all matching groups. We call a condition γ-validg

if it has group validity greater than γ.

Def. 5: Completeness condition A condition is complete
if it matches all included tuples, i. e., Iϕ ⊆ I1[tp].

The completeness of a condition can be measured as re-
call of this condition counting the relation’s tuples, i. e., the
number of matching and included tuples related to the num-
ber of all included tuples. We call tp δ-complete if it has
completeness greater than δ.

Def. 6: Covering Condition A condition is covering if it
matches all included groups, i. e., Gϕ ⊆ G1[tp].

The quality of covering conditions can be measured by the
recall of these conditions based on the relation’s groups, i. e.,
the number of matching and included groups related to the
number of all included groups. We call tp λ-covering if it
has recall greater than λ.

3. DISCOVERING GENERAL CONDITIONS
We describe algorithms to detect all γ-validg and λ-covering

conditions without restricting the attributes that should be
used. We provide two different approaches: “Conditional
INclusion DEpendency REcognition Leveraging deLimited
Apriori” (Cinderella) uses an Apriori algorithm and is
faster, while“Position List Intersection”(PLI) leverages value
position lists and consumes less memory. We present the
general idea of both approaches for discovering covering se-
lecting conditions and refer to [2] for details and modifica-
tions to discover completeness and demanding conditions.

Our algorithms do not rely on the relational representa-
tion of the data. Instead, we choose a representation that
allows to handle multiple uses of one attribute or predicate
for a single group and that holds information if a group is
included or non-included: Given an approximate inclusion
dependency R1[X] ⊆ R2[Y] we first compute the left outer
join R1|1X=Y R2[Y] and group the result on the X at-
tributes. Each group is represented by the following items:
(i) the left-hand side inclusion attribute(s), e. g., the person
identifier, (ii) a right-hand side inclusion indicator with val-
ues Included for included groups or Null for non-included
groups, and (iii) one item for each (attribute : value)-pair for
potential condition attributes, i. e., all attributes of the de-
pendent relation apart from the inclusion attributes. In the
following we assume this representation for the embedded
IND Person_DE.pid ⊆ Person_EN.pid to describe our algo-
rithms discovering conditions for persons.

3.1 Using Association Rule Mining
We apply association rule mining to identify conditions

like “Whose century of birth is 18 and place of death is
‘United States’ often also is Included (in the English DB-
pedia)”. There are two challenges: (i) mapping the problem
of condition discovery to association rule mining and (ii) im-
proving efficiency based on characteristics of condition dis-
covery. To leverage association rule mining we prepare our
baskets in two steps: We use the modified representation of
the left outer join result as described above. We must encode

the affiliation of values to their attributes to form basket
items. For our example, we want to be able to distinguish
the two conditions birthplace = Los Angeles and deathplace

= Los Angeles. Therefore, we prefix each value with an at-
tribute identifier. Using prefixes A to D for our example
yields the following basket for Cecil Kellaway: { Included,
A18, BKapstadt, BSüdafrika, CLos Angeles, CKalifornien,
CUnited States, D“. . . Schauspieler”@de }. Now we are able
to apply an Apriori algorithm to these baskets to find fre-
quent itemsets and derive rules.

The Apriori algorithm [1] finds all frequent itemsets and
uses these frequent itemsets to derive association rules. Apri-
ori uses support and confidence of a rule to prune the search
space. In our case the covering of a condition corresponds to
the support of a rule in the set of included groups, and the
validity of a condition corresponds to the confidence of the
rule. A frequent itemset then ensures λ-covering conditions,
while the rule generation step filters γ-validg conditions.

The following observation exposes an optimization possi-
bility for our problem: We need only rules with right-hand
side item Included, because left-hand side items of such
rules build the selecting condition. Thus, we can largely re-
duce the number of itemsets that must be handled and there-
fore improve the efficiency of the algorithm. Our Cinde-
rella algorithm reduces the number of generated frequent
itemsets by only considering itemsets that contain item In-
cluded [2].

3.2 Using Position List Intersection
The Position-List-Intersection (PLI) approach uses a po-

sition list representation of values that has been used by
the algorithm TANE for discovering functional dependen-
cies [15]. While our approach looks for intersections of lists,
the partition refinement of TANE is based on the discovery
of subset relationships of position lists.

Position lists (or inverted lists) represent each distinct
value in an attribute of a given instance by the set of tu-
ple IDs [15] where the value occurs in. Thus, each attribute
is associated with a set of position lists – one for each of its
distinct values. In our case, positions are group-IDs (e.g.,
numbers 1-3 for Cecil Kellaway, Mel Sheppard, and Sam
Sheppard). For our example the position list for attribute
cent are cent: 18 = {1, 2} and cent: 19 = {3}.

The idea of PLI is twofold: (i) We use a special posi-
tion list for included groups, in our example included= 1, 2.
(ii) We cross-intersect position lists of attributes to test value
combinations (i. e., conditions) for the intersected attributes,
e. g., intersect each position list of attribute A with each po-
sition list of attribute B. The covering of a condition then
corresponds to the ratio of the cardinality of its position list
P intersected with included to the cardinality of included
(|P∩included|/|included|). The validity of a condition corre-
sponds to (|P ∩ included|/|P |). The PLI algorithm [2] recur-
sively processes the powerset lattice depth-first by checking
all possible combinations that contain a certain condition.
It uses the covering threshold for pruning.

4. EVALUATION
We evaluate our algorithms using two real-life data sets:

Persons in the English and German DBpedia 3.6 and Wikipe-
dia image data from [13]. We implemented our algorithms
in Java6. Data is stored using a commercial DBMS. All
experiments were run on a 2x Xeon quad-core server with

16 GB RAM running a 64bit Linux.
DBpedia use case. There are 296, 454 persons represented
in the English and 175, 457 persons in the German DBpedia
data set; 74, 496 persons are included in both data sets (iden-
tified by using the same URI). We mapped the data sets into
relations with 13 attributes, including pid, name, birthdate,
birthplace, birthcent, deathdate, deathplace, deathcent, and
a description descr. The resulting relations contain 474, 630
tuples for the English DBpedia, and 280, 913 tuples for the
German DBpedia with an intersection of 133, 208 tuples.

We identify 85 conditions with a γ-validity of above 0.84
(i. e., twice validity of the empty condition) for German
DBpedia persons included in the English DBpedia. The
two conditions with the largest covering measure are de-

scr = American actor
1 (γ-validg = 0.91, λ-covering = 0.029)

or descr = American actress (0.89, 0.024). These conditions
are intuitive and hardly surprising. But we also found un-
foreseen conditions such as birthcent = 18 ∧ descr = Amer-

ican politician (̄0.94, 0.015) and birthcent = 19 ∧ death-

place = Los Angeles (̄0.91, 0.010). In [2] we provide a more
detailed evaluation and explanation of discovered conditions.
Wikipedia use case. Golab et al. [13] use two tables of
Wikipedia to discover conditions for Cinds: table Image with
attributes name, size, width, height, bits, media_type, ma-

jor_mime, minor_mime, user, user_text, timestamp, sha1 and
table Imagelinks denoting links from webpages to image files
(attributes il_from and il_to). The authors in [13] assert
the embedded Ind image.name ⊆ imagelinks.il_to and build
a pattern tableau with completeness conditions of the pre-
selected attributes bits, media_type, and user_text. The
main advantage of our approach over [13] is that the condi-
tion attributes need not be pre-selected. Here, we use the
same dataset to compare the conditions discovered by both
approaches.

If we restrict our algorithms to the same attribute set with
the same validity threshold of 0.85 and a completeness of at
least 0.003, we discover the same conditions as [13]. Cinde-
rella runs 23s compared to 18s reported by [13] (on pre-
sumably different hardware). However, our algorithms also
discover more detailed conditions, which cannot be found
by [13]: E. g. for condition media_type = AUDIO there is an-
other condition media_type = AUDIO ∧ bits = 0 with the ex-
act same validity and completeness. These stricter condi-
tions give more insight into the dataset and prevent wrongly
generalizing the identified conditions for similar datasets.

Running our algorithms without restricting condition at-
tributes yields even more interesting results: Unexpectedly,
attributes width and height provide conditions with higher
completeness than all other attributes. Conditions width =

200 ∧ major_mime = image and width = 300 ∧ major_mime =

image both reach a completeness of 0.04, compared to com-
pleteness measures between 0.003 and 0.008 of the previ-
ous conditions. Conditions height = 300 and height = 200

(each with completeness = 0.02), height = 240 and width =

240, (each with completeness = 0.01) also have higher com-
pleteness. These conditions are non-trivial: other widths
and heights also appear in the dataset with similar fre-
quency. Cinderella runs 78 s to identify 188 conditions
with γ-valid > 0.85 and δ-complete > 0.008.

In summary, the ability to select the condition attributes
automatically led to the discovery of more completeness con-

1Note that we provide translated condition values as the
actual value is in German.

ditions satisfying the same validity requirements, which in
turn enables to build better pattern tableaux. [13] report an
overall support of 0.0636, while we discover already individ-
ual conditions with a completeness of 0.04, corresponding
to a support of 0.03. Our top two conditions already yield
a tableau with a completeness of 0.0824 (support 0.0641).
Performance of algorithms. Comparing both algorithms,
Cinderella is less sensitive in runtime to increasing num-
bers of identified conditions, while PLI is less sensitive in
memory consumption. The amount of included tuples is the
decisive factor, not so much the size of the entire data set.
We refer to [2] for details and a complexity estimation.

5. RELATED WORK
Conditional inclusion dependencies (Cinds) were proposed

by Bravo et al. for data cleaning and contextual schema
matching [5]. In [5], complexity bounds for reasoning about
Cinds and a sound and complete inference system for Cinds
are provided. The problem of discovering Cinds from a given
database instance, however, is not addressed. De Marchi et
al. propose data mining algorithms to discover approximate
Inds [16]. Approximate Inds are input to the algorithms
presented in this paper. Algorithms for generating pattern
tableaux for given Inds are proposed in [8, 13]. The algo-
rithm in [8], however, does not ensure or check validity of
conditions. Golab et al. present Data Miner, a system for
analyzing data quality [13]. The two main differences to
our approach are that (1) we do not require the condition
attributes to be pre-selected, and (2) we introduce the new
concept of covering Inds, which is essential for the type of
data and use case that we consider.

The algorithm in [13] extends the one proposed in [12]
for generating pattern tableaux for conditional functional
dependencies (Cfds), which were introduced in [10]. Algo-
rithms for discovering Cfds are also considered in [7, 11].
In contrast to other approaches, the work in [7] does not
assume that the Fd is given in advance. Discovering Fds,
however, is significantly different from discovering approxi-
mate Inds and it therefore is not clear how the algorithms
in [7] can be applied to Cind discovery. Fan et al. propose
algorithm CFDMiner for discovering constant Cfds based
on closed itemset mining [11]. A minimal constant Cfd is
a Cfd for which the pattern tableau contains only constant
values for the attribute in the right-hand side of the embed-
ded Fd. Thus, minimal constant Cfds correspond to asso-
ciation rules with single attribute in their antecedent with
confidence 100 %, i. e., to selecting conditions with γ-validity
one. Contradiction patterns are also a form of association
rules with fixed antecedent [17]. Contradiction patterns were
proposed to discover conditions that are frequent within a
subset of a database but not frequent within the remain-
der of the database. The definitions of conflict relevance
and conflict potential are similar to our definitions of valid
and completeness conditions. Covering conditions, however,
cannot be discovered using the algorithms presented in [17].

6. CONCLUSION AND FUTURE WORK
We generalize the definition of Cinds by distinguishing

covering and completeness conditions. This distinction is
important when discovering Cinds over denormalized re-
lations. To discover Cinds we present algorithms Cinde-
rella and PLI. In contrast to existing approaches, both
algorithms not only select the condition values but also the

condition attributes automatically. Cinderella is faster
than PLI, but consumes more memory. In our experimen-
tal evaluation we identified comprehensible, but unforeseen
conditions that highlight characteristics of persons for which
there exists a link between the English and German version
of DBpedia. We plan to adapt the distinction of covering
and completeness conditions to the right-hand side of the
pattern tableau.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In Proc. of the Int.
Conference on Very Large Databases (VLDB), 1994.

[2] J. Bauckmann, Z. Abedjan, U. Leser, H. Müller, and
F. Naumann. Covering or complete? discovering
conditional inclusion dependencies. Technical report,
Hasso-Plattner-Institut für Softwaresystemtechnik an der
Universität Potsdam, 2012.

[3] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,
R. Cyganiak, and S. Hellmann. Dbpedia - a crystallization
point for the web of data. J. Web Sem., 7(3):154–165, 2009.

[4] P. Bohannon, W. Fan, F. Geerts, X. Jia, and
A. Kementsietsidis. Conditional functional dependencies for
data cleaning. In Proc. of the Int. Conference on Data
Engineering (ICDE), 2007.

[5] L. Bravo, W. Fan, and S. Ma. Extending dependencies with
conditions. In Proc. of the Int. Conference on Very Large
Databases (VLDB), 2007.

[6] W. Chen, W. Fan, and S. Ma. Analyses and validation of
conditional dependencies with built-in predicates. In
Database and Expert Systems Applications, 2009.

[7] F. Chiang and R. J. Miller. Discovering data quality rules.
Proc. of the VLDB Endowment, 1:1166–1177, 2008.

[8] O. Curé. Conditional inclusion dependencies for data
cleansing: Discovery and violation detection issues. In Proc.
of the Int. Workshop on Quality in Databases (QDB),
2009.

[9] W. Fan. Dependencies revisited for improving data quality.
In Proc. of the Symposium on Principles of Database
Systems (PODS), 2008.

[10] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing data
inconsistencies. ACM Transactions on Database Systems
(TODS), 33(2):1–48, 2008.

[11] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering
conditional functional dependencies. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 23(4):683–698,
2011.

[12] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu.
On generating near-optimal tableaux for conditional
functional dependencies. Proc. of the VLDB Endowment,
1:376–390, 2008.

[13] L. Golab, F. Korn, and D. Srivastava. Efficient and effective
analysis of data quality using pattern tableaux. IEEE Data
Engineering Bulletin, 34(3):26–33, 2011.

[14] H. Halpin, P. Hayes, J. P. McCusker, D. McGuinness, and
H. S. Thompson. When owl:sameas isn’t the same: An
analysis of identity in linked data. In Proc. of the Int.
Semantic Web Conference (ISWC), 2010.

[15] Y. Huhtala, J. Kaerkkaeinen, P. Porkka, and H. Toivonen.
TANE: an efficient algorithm for discovering functional and
approximate dependencies. The Computer Journal,
42(2):100–111, 1999.

[16] F. D. Marchi, S. Lopes, and J.-M. Petit. Unary and n-ary
inclusion dependency discovery in relational databases. J.
Intell. Inf. Syst., 32:53–73, 2009.

[17] H. Müller, U. Leser, and J.-C. Freytag. Mining for patterns
in contradictory data. In Proc. of the SIGMOD Int.
Workshop on Information Quality for Information Systems
(IQIS), 2004.

