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Data Integration for the Life Sciences, 1993

e Robbins, R. J. (1994). "Report of the invitational DOE Workshop on
Genome Informatics I: Community Databases." [Rob94a]

— DOE funded large parts of the HGP starting end of the 80ties

o “Continued HGP progress will depend in part upon the ability of
genome databases to answer increasingly complex queries that span
multiple community databases. Some examples of such queries are
given in this appendix.”

o “Note, however, until a fully atomized sequence database is available
(1.e., no data stored in ASCII text fields), none of the queries in this
appendix can be answered, The current emphasis of GenBank seems
to be providing human-readable annotation for sequence information.
Restricting such information to human-readable form is totally
Inadequate for users who require a different point of view, namely one
in which the sequence is an annotation for a computer-searchable set
of feature information.”
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Twelve Queries Unanswerable (1993)

1. Return all sequences which map 'close' to marker M on chrom. 19, are put.
members of the olfactory receptor family, and have been mapped on a contig

— Multidatabase: Chromosome maps from GDB, sequence-contig in GenBank,
annotation from elsewhere

3. Return the map location, where known, of all a/z elements having homology
greater than "h" with the alv sequence "S".

— GenBank and a similarity search
4. Return all h. gene sequences for which a putative functional homologue has
been identified in a non-vertebrate organism

— Human: GenBank, non-vertebrates: species databases; how to describe function?
8. Return the number and a list of the distinct human genes that have been
sequenced

— What is a gene? Semantic heterogeneity and scientific uncertainty

11. Return all publications from the last two years about my favorite gene,
accession number X####.

— Synonyms & homonyms; naming conventions, disambiguation

UIf Leser, Sarah Cohen-Boulakia: Next Generation Data Integration, ICDE 2011




The Classical Problems are all there already

1. Return all sequences which map 'close'
members of the olfactory receptor family,

— Multidatabase: Chromosome maps from GC
annotation from elsewhere

3. Return the map location, where known,
greater than "h" with the a/u sequence "S"
— GenBank and a similarity search
4. Return all h. gene sequences for which
been identified in a non-vertebrate organis
— Human: GenBank, non-vertebrates: species
8. Return the number and a list of the dist
sequenced
— What is a gene? Semantic heterogeneity an
11. Return all publications from the last tw
accession number X####.
— Synonyms & homonyms; naming conventio

Distributed information

Non-standard processing

Scientific uncertainty and evolving
concepts

Semantic heterogeneity

Naming ambiguity
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Data Integration, 2011

e BiologicalNetworks "

Interaction Network Seguences Phylogeny TianefSpawNa\ue
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Data Integration in 2011 Hosts genes
differentially

Known PPI between expressed during
e Example task: Find infection

host and pathogen
genes that play a central \/
role in the response of a

host to a pathogen Intersect
— Bacteria / viruses must l
attgch to cells to have Expand graph with
an influence neighboring PPIs
— Attachment is a l
physical binding of
proteins Filter for overrepresented
— This binding provokes a subnetworks
reaction in the cell, / \
transmitted by more : :
. : GSEA to find Study co-regulation by
protein-protein relevant processes shared TFBS
interactions (e.g. P

signaling) l l
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Data Integration in 2011

e Example task: Find
genes that play a central
role in the response of a
host to a pathogen

— Bacteria / viruses must
attach to cells to have
an influence

— Attachment is a
physical binding of
proteins

— This binding provokes a
reaction in the cell,
transmitted by more
protein-protein
interactions (e.g.
signaling)
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Data Integration?

Data Sources Hosts genes
differentially

expressed during
Known PPI between infection

host and pathogen
a PPI N \/ Microarray
Databases Intersect Databases
(IntAct, l (GEO, AE)
N MINT, -..) J Expand graph with
neighboring PPIs
Filter for overrepresented TFBS databases
[ Gene %‘gzlogy} subnetworks (TransFac, Jaspar)
i / \
\ GSEA to find Study co-regulation by

relevant processes shared TFBS
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Data Integration?
Integration Processes

Unstructured
annotations

Known PPI between I

host and pathogen Uncertainty
é HJ8 1D Mapping ' ID Mapping Microarray
Databasgies Intersect Databases
ji"¥e Quality filtering l' (GEO, AE)
MINT, ...) .
\ Expand graph with

neighboring PPIs

!

Filter for overrepresented

TFBS databases

Non-standard
ID Mapping predicate

shared TFBS

ay: Statistics
Aggregation

relevant processes
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Take Home Message

e The number of sources to be used has increased a lot

e The diversity of the sources has increased a lot

e The complexity of the questions to be answered has increased a lot
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Emergence of New Trends

e The number of sources to be used has increased a lot
»Scalability of integration in number of sources
»0One major goal of the Semantic Web

e The diversity of the sources has increased a lot
»Inclusion of quality as a first-class citizen into models
»Ranking of integrated search results

e The complexity of the questions to be answered has increased a lot
»Integration requires analysis and analysis requires integration
> Scientific workflows
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This Tutorial

Part I — Data Integration for the Life Sciences (45 min)
— Biological Data & Biological Databases

— Data Integration

— Some Myths, some Truths

Part II — Past and Presence (35 min)

Part III — Current Trends (85 min)

Part IV — Conclusions (5 min)
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Scope: What are the Life Sciences?

e Molecular Biology (Biophysics, Biochemistry)
e Systems Biology

e Molecular medicine

e Translational medicine

e A zillion species (human, animals, bacteria, virus, plants, ...)
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Computational Biology

Genomics Proteomics Systems Biology = Medicine

Sequencing Structure prediction  Pathway analysis Phenotype —
Gene prediction  Structure comp. Pathway simulation genotype

Phylogeny Motives, domains Gene regulation ~ Mutations and risk
Regul. elements Docking Signaling Population genetics
RNA and miRNA  PP- Interaction Metabolism Drug-drug interact.
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Enourmous Speed

Gl

1953
Double helix structure of DNA,
Watson/Crick

nature news home | news archive ! specials | opinion ! features news blog | events blog r
_ comments on this Fublished online 16 April 2008 | 452, 786 (2008} | doi:10.1038/452788h
> 2 Gk

James Watson's genome sequenced at high
Stories by subject Sl)t‘t‘(l

« Biotechnology

2008
Genome of J. Watson finished
4 Months, 1.5 Million USD

E in halbes Jahrhundert nach der Entdeckuny der DMNA-Struktur
izt das menschliche Erbout ertschlizsel. Forscher und Politiker
feierten am Montag den Erfolg als Meilenstein” in der

= “ermischte News Geschichte der Menschheit

2003
First human genome sequenced

Took ~14 years, ~3 billion USD

2010
1000 Genomes Project releases
first results
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Database Perspective
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Systems Biology = Medicine

Pathway DBs Patient DBs
Regulation DBs Biobanks
Small molecule DBs Signaling DBs Drug DBs
Motive DBs Metabolic DBs Study DBs
genetic DBs PPI DBs Model DBs Population DBs
mMiRNA DBs Kinetic DBs

MRNA DBS
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Different Species are Important

e We are >96% genetically identical to chimps, orang-utan, mice, ...
e We share 2000-3000 genes with E.coli

o We perform many experiments with mice / E.coli we cannot technically
perform and do not want to perform with humans

e Genetics of bacteria / viruses is essential for fighting infectious disease
e Most things we eat has lived before

e Probably most of what we know about humans was learned from mice
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A Biological Database (GenBank)

Global identifier = [ID FSIGHAF  standard; RNA; HUM; 1089 BP.

XX
AC  J00231;
XX
NI 0185041
inti XX
Descrlptlon DT 17-DEC-1994 (Rel. 42, Last updated, Version 6)
\¥ Human Ig gamma3 heavy chain disease OMM protein mRNA.

XX
KW  C-region; gamma heavy chain disease protein;
X

Taxonomy Eukaryota; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria; Primates;
XX
RN [1]
RP  1-1089

References = |kx VEDLINE: 82247835.

PR  GDB; 119339; IGHG3.

H DR GDB; G00-119-339.
Cross-Links -
CC  The protein isolated from patient OMM is a gamma heavy chain
FH
. CDS 23. .964
Featu res. FT /codon_start=1
Semistructured T 567112"
,§Q_> Sequence 1089 BP; 240 A; 358 C; 271 G; 176 T; 44 other;
Seq uence CCTGGACCTC CTGTGCAAGA ACATGAAACA NCTGTGGTTC TTCCTTCTCC TGGTGGCAGC 60
TCCCAGATGG GTCCTGTCCC AGGTGCACCT GCAGGAGTCG GGCCCAGGAC TGGGGAAGCC 120
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A Biological Database (GenBank)

pm—
ID HSIGHAF standard; RNA; HUM; 1089 BP.
XX
AC  J00231;
XX
NI 0185041
XX
DT 17-DEC-1994 (Rel. 42, Last updated, Version 6)
XX
DE Human Ig gamma3 heavy chain disease OMM protein mRNA.
XX
[KW  C-region; gamma heavy chain disease protein;
XX

. 0C Eukaryota; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria; Primates;

Annotation = [
RN [1]

RP  1-1089

RX  MEDLINE; 82247835.

DR  GDB; 119339; IGHG3.
DR  GDB; G00-119-339.

CC  The protein isolated from patient OMM is a gamma heavy chain

FH

FT  CDS 23. .964

FT /codon_start=1

FT 567112"

XX

SQ Sequence 1089 BP; 240 A; 358 C; 271 G; 176 T; 44 other;

CCTGGACCTC CTGTGCAAGA ACATGAAACA NCTGTGGTTC TTCCTTCTCC TGGTGGCAGC 60

szaaal (jaatea TCCCAGATGG GTCCTGTCCC AGGTGCACCT GCAGGAGTCG GGCCCAGGAC TGGGGAAGCC 120
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Properties Micro-Syntax (non 15t normal

~ form)

ID HSIGHAF standard; RNA; HUM; 1089 BP.

XX
/ AC  J00231;
XX

Line codes NI g185041
(pre-XML) o

DT 17-DEC-1994 (Rel. 42, Last updated, Version 6)

XX
————135" Human Ig gamma3 heavy chain disease OMM protein mRNA.
Free teXt KW  C-region; gamma heavy chain disease protein;

fields o
0C Eukaryota; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria; Primates;
XX
RN [1]
RP  1-1089

VUUGGUIWUIUL [\

Layout influences | [? ©o%: coo-119-330.
SyntaX / Semant|cs N The protein isolated from patient OMM is a gamma heavy chain
FH

FT 23. .964

FT /codon_start=1

FT 567112"

XX

SQ Sequence 1089 BP; 240 A; 358 C; 271 G; 176 T; 44 other;
CCTGGACCTC CTGTGCAAGA ACATGAAACA NCTGTGGTTC TTCCTTCTCC TGGTGGCAGC 60
TCCCAGATGG GTCCTGTCCC AGGTGCACCT GCAGGAGTCG GGCCCAGGAC TGGGGAAGCC 120
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Biological Databases Today

This “flatfile horror” mostly has gone
— Much XML for exchange (considerable standardization)
— Flat files only for export / exchange
Exotic techniques did exist — not any more
— Almost all BDB today are maintained in relational systems
e "“Read-only”, no transactions
— Very few BDB accept user submissions
e Web-based user interfaces
— Very very few direct SQL accesses (but dump files for own use)
— Simplicity rules: IR-style queries
e Most BDB are available entirely for download
— New releases every X months
e Not big (changing rapidly)
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There are 100reds of Them

sigil Growth of BioDBs
NAR
v
@ 1200
v
(gv}
'r% 1000 |
=
A 800
U
© o0t
-
w ..-"‘
-g 4001 °
2 200! New Databases

1996 1998 2000 2002 2004 2006 2008 2010 2012

Year

Number of existing (circles) and new databases (triangles) are plotted from
1996 to 2011. New databases are difference between the number of existing
databases for each year. DBcat (red) is shown with NAR (blue) counts.

Copyright Geospiza 2011
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Data Model

e The classical DBs all started as books

— One object — one page
e Sequence, gene, protein, diseases, ...

e Object may be an abstract concept
(gene) or a measurement (sequence)

— Entry-based: A primary object and its

(nested) annotations 1

— Perfectly suited for XML and flatfiles ]

e More recent, none-archival (integrated)

databases often are more “"multi-object” = = = ——
— Multiple primary objects N AR e
. . — == _‘____“h I = “"'."'f. E{\
— Links between objects = B>z |
— More “normal” database B | L W
B . B
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Classes of Biological Databases

Primary — secondary — tertiary - ...

— Primary BDB for experimental data (sequences)

— Secondary BDB for conclusions drawn from experiments (genes)

— Relatively few primary (20?), many secondary (100reds)
Species—specific — type-specific

— All stuff on one species (MGD), all on one topic across species (GenBank)
Curated or not

— Most secondary databases are created and maintained manually

— Many of them by reading and summarizing (curation)

— Issues: Consistency, completeness, quality assurance, objectivity, ...
Some primary databases are international de-facto standard

— Sequences: Genbank, proteins: UniProt, structures: PDB, ...
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Links

e BDB maintain links to many other BDBs
— Instance level - external IDs, web browsing support

e No central authority for ID or links
e No consistency — "“link hell”

Cross

5 A T :.‘
O\ S

Source: BioGuide
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Different Cultures

o BDB developers often are more similar to BDB users (from LS) than to
database researchers (DR)

e DR publishes methods, LS publishes results
— 1.300 databases = 1.300+ LS papers
— 1.300 databases = ~10 DR papers

e DR: Often little willingness to become domain-specific
— Building a BDB usually is not considered CS research (no papers, no PhD)

e DR: Often little willingness to consider CS as science
— Too abstract, no concrete results on physical objects

e A VLDB paper on a BDB is by no means certainly a contribution to LS
e A NAR paper on a BDB is by no means certainly interesting for a DR
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Types of "Data”

e Knowledge

g%" — Confirmed, abstract, condensed
% — Text, graphics
- — Publications

D T ey P P * InfOrmation

L e — Interpreted, filtered

— Objects, annotations

— BDB — secondarv databases
e Data
— Measured - raw, noisy, context-free

— Numbers, sequences, metadata
— BDB — primary databases

[soLnswAyy]
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Data and Analysis Workflow

e High-throughput experiments require a

Select_MAPaired

multi-step analysis pipeline e
_ P ysis p P_
e Many different suggestions for each step [
and for their composition into a process 'B”"’TJLZ:T;?ZZ"‘ e
e User only interested in result: Which genes - v ' P:'M‘
i /ij’ AN
are over-expressed in acute lymphoma? N
- . . / Chplmg
e Data (information) may be integrated at ~ m / E
various levels / /@ = j !
— Resulting in very different final results - i N
e Rule-of-thumb: The later, the less
comparable numerically éj
— You may write a survey after mentally ) / } \ \E %
aggregating the results, but you cannot 77 7 | ~
compute further with them Trcn ] OSEpor | [RCEoor ] [e_soyr | e oo ot ][

[myExperiment]
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Data to Information

Spot detection &

» Scanning > Image

assignment
Background correction < Raw data
spot-to-gene, ...

[SoLRWALY]
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Data to Information

Spot detection &

» Scanning > Image

assignment
Background correction < Raw data
spot-to-gene, ...

1

Experiment-level
normalization

1

C:ﬂn"\l‘l I aYa
Siyliatuico

Clusterin
Differentially 2
expressed genes Functional analysis
Classification
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Steps with a wide Choice of Methods

Spot detection &

» Scanning > Image

assignment
Background correction < Raw data
spot-to-gene, ...

1

Experiment-level
normalization

1

C:ﬂ“"\l‘l 1B/~
Siyliatuico

Clusterin
Differentially 2
expressed genes Functional analysis
Classification
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Data to Knowledge 1

; Spot detection &
Scanning T assignment
e ——, : v
ackground correction

Experiment-level
normalization

v

Differentially
expressed genes

K Spot detection &
Scanning Image assignment
v
Background correction
spot-to-gene, ... Raw data

Experiment-level
normalization

v

Differentially
expressed genes

Discrete
Result Integration

- Spot degfction &
Scanning Image assifnment
v

Raw data

Signatures

Background correction
spot-to-gene, ...

v

Experiment-level
normalization

v

Differentially
expressed genes

Clustering

Functional analysis

Classification
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Data to Knowledge 2

- Spot detection &
Scanning Image assignment

A 4

Background correction P
spot-to-gene, ... Raw data

- Spot detection &
Scanning |—>| Image |'— > assignment

v
Background correction
spot-to-gene, ... Raw data

Statistical
Data Integration

Signatures

i ot detection &
Scanning e assignment
Background correcti v

ackground correction
spot-to-gene, ... Raw data

Clustering

Functional analysis

Classification
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This Tutorial

Part I — Data Integration for the Life Sciences
— Biological Data & Biological Databases

— Data Integration

— Some Truths, some Myths

Part II — Past and Presence

Part III — Current Trends

Part IV — Conclusions
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Because digital data are so easily shared and replicated and so
recombinable, they present tremendous reuse opportunities,
accelerating investigations already under way and taking advantage of
past investments in science.”

(Clifford Lynch, Nature 2008)
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Why Integration?

e Cost savings: Avoid duplication of experiments

e Quality control: Compare your result with that of others

e Complementation: Use additional data to strengthen your results
e Credibility: Let others redo your analysis

e Synergy: Combine data to produce stronger results

e Unigueness: Some experiments are (almost) irreproducible
e Higher utility: Let others produce new results with your data
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Success Stories

e Biological research is full of data-sharing success stories

International reference databases (Genbank, PDB, GEO, ...)
Data published as Supplementary Material
Bioinformatics very much depends on sharing

e Numerous findings support benefits of integrated data
e For instance, integrated PPI datasets ...

are more complete

yield better results in function prediction

yield better results in finding functional modules
allow more stringent quality filtering

help to identify false positives more easily

help to find disease genes more accurately

allow more accurate inference on
evolutionary relationships
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Political Will

Data sharing code of conduct, revised after the Foggy Bottom meeting on May 25 2010
FINAL

Sharing research data to improve public health: A joint
statement by funders of health research

Introduction

Recent advances in information technology have revolutionised science - providing new
opportunities for researchers to share data and build on one another's work. Infermatics and the
ability to mine large datasets and combine them with information from many other sources

Sharing # Integration

But only shared data can be integrated

« Better value for money
« Higher quality science

Each funding institution will work within its own legal and operational framework, and we are
committed to working towards these goals together. We intend to establish joint working groups
where appropriate. We call on governments and other actors that generate routine health service
statistics and other types of public health data to adopt a similar approach.

This Statement establishes guiding principles and desired goals. It recognizes that flexibility and a
variety of approaches will be needed in order to balance the rights of the individuals and
communities that contribute data, the investigators that design research and collect and analyse
data, and the wider scientific community that might productively use data for further research.
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The Problem

e Research in molecular biology

is performed world-wide in thousands of labs — mostly in competition
has a multi-scale, highly complex target: Life in all its variants

is driven by dozens of experimental techniques to reveal different
properties of genes, cells, organisms, diseases, ...

produces results that are highly context-dependent — integration always
has to face inconsistencies, noise, large error margins, ...

works with concepts that are in constant evolution — class names change
their meaning with time

more and more requires consideration of many different experimental
techniques, scientific approaches, and interdisciplinary teams
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Classical Dimensions of Distributed DBs [ov99]
(and two not-so-classical ones)

Distribution

T » Autonomy

Heterogeneity

Transparency
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Are BDB Distributed?

e > 1000 different databases
— Plus many data sets that are not stored in a DB
— E.g. Supplementary material
e Content is highly redundant
— Replica (sequence / microarray databases)
— Large unintentional overlaps (UniProt — PIR, KEGG — Reactome)
— Large intentional overlaps (selection of species-specific data)
— Some databases mostly copy from other sources (Ensembl)
e Content may be changed (curated) during copying
— Inconsistencies
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Example: Protein-Protein-Interactions

e There are >300 BDBs related to PPI and pathways
— See http://www.pathguide.org

e Manually created e~ o e o
“source” DBs el sreen

. Interactions

a
Predictive interactions
. . Metamining
.Exchange format language
/ EntrezGene Unifying efforts
/ Not categorized

Flybase

Uniprot ¢ Y EMBL
ChEBI GenBank
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Example: Protein-Protein-Interactions

e There are >300 BDBs related to PPI and pathways
— See http://www.pathguide.org

e DBs integrating others ”wf»
and HT data sets N/

DPEA LDSC

7

I3
PIG .
e

MIPS-MPPI _ / /

CCCCC
EHMN
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Extreme Example: Protein-Protein-Interactions

e There are >300 BDBs related to PPI and pathways
— See http://www.pathguide.org

Interaction Type

Source —® Mining source data

Source — Maps to source
‘ — Bidirectional exchange agreement
Theintaractiv oF y .

SMART

Resource Type
PubChIm . @ nteractions
.Patnways
D||J|IOT—-—- smcu Predictive interactions

RING .I‘.!etamlnlng
‘Exchange format language
- . H Scansite ifyi
e Predicted interactions s
Uanmt FDB Fuuhd

G-ank
HGNC Pfam
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Extreme Example: Protein-Protein-Interactions

e There are >300 BDBs related to PPI and pathways
— See http://www.pathguide.org

Interaction Type

Source —# MMining source data
Source <— Maps to source

PDB NCBI
—— Bidirectional exchange agreement
Resource Type
MDC- vzn ' terPro @ interactions
@rathways
4——Pfam Predictive interactions

ccsa—_.

.Hetammmg
Un! IPm ’) @ Exchange format language
Unifying efforts
Not categorized

EntrezGen

\./'

. _-RegulonbB

e Pathway DBs
(consisting of PPI)

Ensembl

4
e [KP10] &
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A Mess [KP10]

e Inconsistent understanding of what a PPI actually is
— Binary, physical interaction
— Complexes
— Transient, functional association

e Some integrated DBs have imported more data than there is in the
sources

e Source databases overlap to varying degrees

— Effort to sort things out in IMex consortium
e Largely different reliability of content

— Literature, high-throughput experiments, transferred from orthologs, ...
e Literature-curated DBs do not exhibit higher quality than HT [CYS08]

— Re-annotation reveals inconsistencies, subjective judgments, errors in gene
name assignment, ...
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Vertical Distribution

TRRD: GEO, ArrayExpress:
Transcriptional Regions gene expression
Flybase, MGD, AGRIS: Entrez, UniProt, GenCards:
species-specific dat gene annotation
Transfac: B, DBD:

60 databases related to

human, curat binding sites

regulation and transcription factors

OregAn in 2011 NAR issue B
community-curation tructures, bindings

KEGG, Reactome: ProSite, IntAct:
regulatory networks Binding motifs

StemBase:
regulation and differentiation
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Are BDB Heterogeneous?

Technical heterogeneity: not that much
— RDBMS, web services, HTML forms, ...
Syntactic heterogeneity: not too much of a problem any more
— XML exchange, flatfiles
— Many ready-to-use parsers are available
Semantic heterogeneity: terrible
— Objects have several names and IDs (and versions, states, orthologs, ...)

— Meaning of schema elements are heterogeneous, scientifically uncertain,
and change over time

— Metadata often is not available in sufficient detail
As usual — distribution creates (semantic) heterogeneity
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What is a Gene (1)?

DNA mRNA Protein

—“oOo-H4H0o0rororon-H4H4a0>

—oO-H4H00ror00ron-H4roa-H4H4a00>

o A stretch of DNA (with holes) on a chromosome that at some stage
gets translated into a protein
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What is a Gene (2)?

(A) EUCARYOTES

cytoplasm
nucleus
introns exons
DNA

. l \
transcription unit
TRANSCRIPTION

“primary
RNA transcript” ¥

5 CAPPING
;NP%EYPUCWG
RNA cap | ADENYLATION

\
mRNA e A AAA
EXPORT

L
mRNA S A A A A

| TrRAaNSLATION
protein C———

Figure 6-21 part 1 of 2. Molecular Biclogy of the Cell, 4th Edition.

o A re-assembly of stretches of DNA that are transcribed together plus
some further editing on the mRNA level
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What is a Gene (3)?

MNature Reviews | Molecular Cell Bioclogy

o A re-assembly of stretches of DNA that are transcribed together plus
some further editing on the mRNA level plus parts of the sequence
downstream that is necessary to regulate transcription of the gene
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What is a Gene (4)? [GBRrR+07]

e The same gene?
— Genes may generate different assemblies (differential splicing)
— Genes may have interspersed genes
— Gene have duplicates in the same genome
— The ,same" gene in another organism
— Mutated genes
— Common variations of a gene

e A nongp?
~ \ Wl ING .

9
— Pseudo genes (never transcribed, yet highly similar)
— Non-coding genes

— miRNA (25 bases!)
e Gene definitions change(d) over centuries, decades, and last year
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Does it Matter?

Sometimes yes
— E.g. to study differential splicing
— E.g. to study regulatory relationships
e Sometimes no
— E.g. to study gene function (without too many details)
— E.g. to study gene interactions (without too many details)

e Most studies today are carried out “without too much detail”

e E.g., detailed knowledge on splice variants and their functional
differences is still almost non-existing

e Researchers know they are doing wrong, but it is the best they can do
(now)
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Is this a Problem?

Yes, if you plan to create a stable,  NO, if you are pursuing a specific

precise, comprehensive integrated study taking into account your
gene database selection of genes
T
Gene DWH :_ |
£ <
=
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Is Data Quality an Issue in BDB?

e Most important quality aspects: Completeness and error-freeness

e BDB have terrible problems in both aspects
— Complete collections exist nowhere (maybe except PDB and GenBank)
— All BDB have a severe level of all kinds of errors
— Many copy-and-paste problems (predictions become reality)
— Most of the errors are statistical in nature (noise)
o Why? Recall: most BDB are filled from (high-throughput) experiments
— Experiments that are not perfect
— Measurements that are highly context-dependent
— Performing the same experiment again will produce different results
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Are BDB Autonomous?

e The big ones are maintained by specialized institutions
— EBI, NCBI, EMBL, ...
e Few of them have continuous, secured funding
— Need to comply to calls from funding agencies
e Itis (bad) tradition to reinvent the wheel all over again
— 80 different software systems for microarray storage and analysis — with
largely overiapping functionality [KZTL11]
o De-facto standards for some subfields
— Gene Ontology, NCBI taxonomy, BioPax, SMBL, PSI-MI
— Annotation guidelines: Minimum information about ... (MIA*)
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This Tutorial

Part I — Data Integration for the Life Sciences
— Biological Data & Biological Databases

— Data Integration

— Some Truths, some Myths

Part II — Past and Presence

Part III — Current Trends

Part IV — Conclusions
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Myth: Integration of 100dres of Databases

e There are hundreds of BDB
e Integrating 15-25 of them today is common practice
e But no project (we know of) needs to integrate >30-40 BDB

e Why not?

e Noise accumulates — the more joins over erroneous data, the larger
the resulting error

e Nobody has such broad knowledge to pose any meaningful queries
e Nobody could review the papers stemming from the results ©
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Myth: Users do not Know Where to Search

e Transparency is nothing
e Provenance is everything

e User mostly know their favorite data sources very well
— But pointing to alternatives can be helpful

 New databases have a very hard time before getting accepted
— Unless created by big shots

e A piece of data without knowledge where it comes from is meaningless
for most researches

— How produced it? Which method? How many replications? Has it been
confirmed? Where was it published? How paid for the study?
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Was Myth: Data Volumes are so huge that
Virtual Integration is Necessary

e All of EMBL now has ~150 TB (zipped), ENSEMBL hast ~1TB (MySQL
dump), UniProt has ~5GB (zipped)

e Probably 90% of the 1300 DB’s in NAR have <1GB
e Sequence data explodes due to Next Generation Sequencing
e Not many images (yet)

200M

300G :
entries

bases

UIf Leser, Sarah Cohen-Boulakia: Next Generation Data Integration, ICDE 2011




Truth: Every Piece of Information lives in
Many Places — with Many Different Values

e For most classes of objects, there are more than one database that
covers them

e Values often are contradicting
— Different context, different conclusions, different facts

e Copy & paste errors

e Often, there is no true value

e Integrating different measurements usually is treated as a statistical
problem

— No majority voting etc.
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Truth: Integration is Vital for Many Projects
in the Life Sciences

Discrete Integration Statistical Integration
Join by ID Aggregate and test
Aggregate
MedianPolish
Fit to model
t-Test
> GenelD
Gene_ PP- | Gene_ TEBS
Expression Interaction Expression
Gene Ontology MiRNA
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This Tutorial

Part I — Data Integration for the Life Sciences

Part II — Past and Presence
— Early Approaches (<2000)
— State-of-the-art

Part III — Current Trends

Part IV — Conclusions
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The Early Days (to the Best of our Knowledge)

Large-scale digitization of biological data started in the early 90ties
— Data volumes grew too big to be handled manually
— Mostly sequences (DNA, proteins)
e Human Genome Project: Designed as a collaborative effort
— Data sharing and integration considered crucial for project success
o First calls for data integration infrastructures in the early 90ties

— "If the informatics is not handled well, the HGI could spend billions of
dollars and researchers might still find it easier to obtain data by repeating
experiments than by querying the database. If this happens, someone
blew it". Robbins, NSF program director, 1991

e First functional systems: 1993 — 1995

o Database people jumped in: 1994-

e First workshops: 1994/1995

o Explosion of papers / prototypes: 1995-
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First Systems

e First functional systems emerged around sequence databases

— Etzold, T. and Argos, P. (1993). "SRS - an indexing and retrieval tool for
flat file data libraries." CABIOS

e Still working and probably still the most popular system to date

— Akiyama, Y., Goto, S., Uchiyama, 1. and Kanehisa, M. (1995). "WebDBGET:
an integrated DB retrieval system which provides hyper-links among
related database entries". 2nd Meeting on IMDB

e Still working

— Ritter, 0. (1994). The Integrated Genomic Database (IGD). In Suhai, S.
(ed). Book "Computational Methods in Genome Research". Plenum Press
e Built on proprietary technique and failed quickly
e From the start, database entries were link-rich
— IDs from other databases

— Became HTTP-links on the web
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First Contributions

e (itations

Karp, P. D. Ed. (1994). "Report of the Workshop on Interconnection of
Molecular Biology Databases", SRI, Stanford, California

o http://www.ai.sri.com/pkarp/mimbd/94/abstracts.html

Karp, P. D., Ed. (1995). "2nd Meeting on Interconnection of Molecular
Biology Databases". Cambridge, UK

o http://www.ai.sri.com/pkarp/mimbd/95/abstracts.html

e Early input from DB people (examples)

Davidson / Buneman: Semistructured data; declarative transformations
Wiederhold: Mediators; semantic heterogeneity

Goodmann: Modularization, standardization, software design
Spaccapietra: Schema integration, schema mappings (correspondences)
Kemp: Functional data model

Wong / Kosky: Distributed query optimization
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Influential Paper

o Defined the framework on what would happend in the next years

— Davidson, S., Overton, G. C. and Buneman, P. (1995). "Challenges in
Integrating Biological Data Sources." Journal of Computational Biology

e Two classes of systems: Federated or materialized
— Autonomy and currentness versus performance and reliability

Transformation into a common data model

v

Schema matching to find equivalent classes / attributes

v

Schema integration to derive a global schema

v

Data transformation

v

Object matching (deduplication, inconsistencies)
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,Classical" Systems

SRS: Flat file indexing
— Also representing DBGet, Entrez, Atlas, ...

Kleisli: Multi-database query language
— Also representing OPM, P/FDM, ...

DiscoveryLink: Federated database
— Also representing BioMediator, caGRID, ...

TAMBIS: Ontology-based integration
— Several follow-ups in the early 2000: SEMEDA, BACIIS, ...
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Common Ground

Queries

Integration Layer,
Global Schema

A
Files Web
RDBMS Apps Source

Integrated

System
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SRS

Architecture

Flat-files are parsed into a semi-
structured model

Per-attribute textual indexes
IR-style queries

Features

Semantic free: No semantic integration,
no deduplication, no schema matching,
no data fusion

No distributed access
Only simple types of structured queries
Joins following links on instance level

Extremely successful
Largely ignored by DB community

IR-style queries

Attribute-specific
keyword indexes

Flat-
files

Flat-
files

Flat-
files
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Kleisli / BioKleisli / K2

Architecture

— Structured multi-database query Structured queries
language
— Emphasis on distributed query
optimization
e Features Query optimization /
— Semantic integration must be achieved query planning

by users through complex queries
— No object deduplication, no data fusion
— Sources may be distributed
e Popular in DB community

e BioKleisli resulted in commercial system
for some years
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DiscoveryLink

Architecture

— Federated database SQL with UDF
— Queries over non-relational sources
o Features
— Semantic integration must be achieved
by defining proper (relational) views Query optimization

— No object deduplication, no data fusion

— Sources may be outside DB (and can be
distributed)

e Very popular in DB community

w
e Started as Garlic, commercially | Wrapper Wrapper |
marketed as DiscoveryLink, stopped )
very soon Flat- Web
files sources
7
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TAMBIS

Architecture

Mediator-based architecture

Emphasis on semantic integration by
ontology-based query rewriting

e Features

Source descriptions in Description Logic
Query planning as subsumption

Full semantic integration on schema
level

No object deduplication, no data fusion
Sources may be distributed (Kleisli)

e Builds on previous work in DB
community (SIMS, Kleisli)

e Only prototype

Queries (DL)

Global schema (DL)
Source descriptions
Query subsumption
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Summary

SRS Kleisli Discoverylink TAMBIS
Global No (queries) No (views)
schema
Distributed No Yes Not in focus Yes
data later added Kleisli
Virtual Somehow Yes Yes Yes
Global data - Nested Relational DL
model collections
Data No No No No
handling
Process Limited No No (UDF) No
integration
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Impact in the Life Sciences

e Except SRS / Entrez, systems were essentially ignored in the LS
community

e Many citations (from DR) but negligible practical impact
e None of the DB-drive systems still in use today (maybe K27?)
e Many have never been used in practice
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Essence of the Approaches from DR

e Fix your set of sources to be integrated

e Build one schema (GS) embracing all others

— Global (TAMBIS) or user-defined (Garlic etc.)

— Goal: Non-redundant, minimal, comprehensible

— Semantic integration — homonymy, hyponymy, partonomy, ...
e Wait for users to pose queries against GS

— Use schema mappings for query rewriting
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Possible Explanations

e Focused on schemas, while biologists focus on data
— Content is king
e Virtual integration prevents changing the data
— Statistical integration often needs to manipulate data
e Transparency hides provenance as indicator for quality

e Approaches tried to remain domain-independent

— Genes cannot be compared with the same methods as person names —
different error models, different primary data, different additional data,
different types of “equality”

e DR target discrete integration, while LS thinks in statistical integration
— Schema, queries, mappings, ...
— Sequence alignment, normal distribution, error models, ...
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Life Science Research Food Chain

‘ Experiments ‘

Data Collection ‘

Data Analysis
\ Results

New Hypothesis ‘
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DR Idea —

‘ Experiments ‘

Data Collection I—) D<| le{ Other Data

Data Analysis
\ Results

New Hypothesis ‘
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LS Requirement

‘ Experiments ‘

Data Collection Other Data

Integrated
Data Analysis

Results

New Hypothesis
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Success Stories

e General DR research
— Relational technology
— Idea of modeling data
— Importance of versioned data

e Integration technologies
— Controlled vocabularies (ontologies)
— Data Warehouse architecture (ETL — littie OLAP)
— XML (for data exchange)
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Other Way round: Influence of LS-DI on DR

o XML after UnQL which cites ACeDB as a main motivation
o Still, many DR-DI papers use LS requirements as motivation

e Motivation for research in topics such as
— Information integration in general
— Quality-based source selection
— Integration of string search capabilities in DBMS
— Wrapper development (query—to—parser)
— Integration of web sources
— Semistructured data
— Coping with limited source capabilities (web integration)
— Data fusion
e One reason: All these BDB are really available — for free
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This Tutorial

Part I — Data Integration for the Life Sciences

Part II — Past and Presence
— Early Approaches (<2000)
— State-of-the-art

Part III — Current Trends

Part IV — Conclusions
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The Presence

XML + Perl + MySQL
o Or better

XML +
(Perl | Java | Python) +
(MySQL | Oracle | PostGreSql)

e Big role of open source libraries and frameworks
e Ontologies are common practice
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The Presence

e “"Data Warehouses” approaches everywhere

— Virtual integration is mostly dead
e Despite frequent papers stating the opposite

— Survival in some niches: DAS, some mash-ups
e Semantic integration performed manually (wrappers)
— No schema matching, little query rewriting
e Several systems up-and-running integrating dozens of sources
— Freshness in the presence of data cleansing remains a hard problem
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BioWarehouse Lrw+06]

Analysis Tools { Applications P

e Standard ETL design

API/ Web Service

* Unified schema defined et see o - O
m a n u a I Iy Data :darts Logging }
— Leads to semantic differences L N |
within tables o gm— i
— No cleansing or de-duplication e — ]
— Mappings are programmed in .- -
the ,loaders™ [ieses-rasee —
e Loader for 14 sources sl BT
 Full provenance information s
e Ships with JAVA lib and GUI [LPW+06]
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Columba [TRM+05]

Integrates 12 sources describing
aspects of protein structure
Standard DWH approach

— Custom-made wrappers

— Reuse of open source tools

Multidimensional integration

— Each source builds its own
domain

— Semantic overla
resolved

— Provenance information attached
to the dimension table

DS are not
pS are No

wn

SCOP

Classific

SwissProt

Sequence

ation\/

CATH

Classifica

PDB

Structures

GeneOnt.

Terms

tion

N

Sec.

DSSP

KEGG

Pathway

structure
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EnsMart/BioMart kksos] Dim:ﬁimm

e Multidimensional access to the grT BEH

D http: Mfvwe, biomedcentral.com/ 1 471-2 164/ 1022 table/T1 T
Ensembl database z
Table 1
Reve rse Sta r Schema Description of all publicly accessible BioMarts to date
Name of BioMart Description of contents Location of BioMart
— Freq uent Cha nges tO the APIS Ensembl Genes automated annotation of over 40 eukaryotic genomes EMBL-EBI, UK
Ensembl Homology Ensembl Compara arthologues and paralogues EMBL-ERI, UK
- Ensembl Variation Ensembl Yariation data from dbSMP and other sources EMBL-EBI, UK
- Perl, Web Se rVICeS, Tave rna, ] EQZSLT:SLGEHDWC Ensembl Markers, clones and contigs data EMBL-EBI, UK
. Yega Manually curated hurman, mouse and zebrafish genes  EMBL-EBI, UK
) H I h I Com |eX & u n - uTeT High throughput gene targeting/trapping to produce Sanger, UK
mouse knock-outs
- Gramene Comparative Grass Genomics CSHL, USA
d Ocu me nted Creatl O n p rocess Reactome Curated database of biological pathways CSHL, Usa
wWormbase C. efegans and C. briggsae genome database CSHL, UsA
Dictybase Dictyostelium discoideurn genome database Northwestern University, USA

Proteomic data repository

o Fu I I_fl ed ed Web I nte rfa Ce RGD Rat model organism database Medical College of Wisconsin, USA
PRIDE EMBL-EBI, UK

EURATMart Rat tissue expression compendium EMBEL-EBI, Uk
. Ve r Su Ccessfu I MSD Protein structures EMEL-EBI, UK
y Uniprot Protein sequence and function repositary EMEL-EBI, UK

Pancreatic Expression Barts & The London School of

Pancreatic cancer expression database o
P Medicine, UK

H H Database
- Dozens Of I nsta I Iatlons a rou nd PepSeeker Peptide mass spectrometer data for proteomics University of Manchester, UK

ArrayExpress Microarray data repository EMBEL-EBI, Uk

the WO rld GermOnLing Cross species knowledgebase of genes relevant for Biozentrum/SIB, Switzerland

sexual reproduction

. DroSpeGe annotation of 12 Drosophila genomes Indiana Univeristy, US&
—_ U Sed by I’ I Ia ny for acceSSI ng HapMap Catalogue of comman human variations in a range of o e
populations
enom ics data VectorBase Invertebrate vectors of human pathogens University of Notre Dame, USa
g Paramecium DB Pararmeciurn tetraurelia model organism database CMRS, France

R B- d t Eurexpress Mouse iy sity expression data MRC Edinburgh, UK

( / Iocon uc Or) Euranhenome Mouse phenotype data from high throughput MRC Harwell, UK
standardized screens

Fettig
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Comparison

BioModels BioCyc Pathways

Pathway Pathway

DataSource
/ Pathway
Proteins
PID

PathDB
= Proteins M

Pathway Pathway
PathwayAttribute
Pathway

Reactome KEGG Attribute
Value
Pathway Pathway
e Source-specific sub-schemata e Generic pathway table
e Provenance encoded in tables o Will contain data with
e Difficult UNION, simple value- different semantics
based selection e Simple UNION, difficult value-

based selection
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... and many more ...

e All following the ,,DWH"-approach

e GUS [DCB+01]

e IMG [MKP+05]

e ArrayExpress [SPLOOQ5]
o Atlas [SHX+05]

e Biozon [BY06]

e GeWare [RKLO7]

e GenoQuery [LLFO8]
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Notable Exception 1:
Distributed Annotation System as+os]

Federated system serving a single type of information
— (Genomic annotation

e DAS server receives query (genomic coordinates)
DAS providers

d broadcasts to all

e Results are bundled and reported == Y N Pa— e
P . Py e vt N s A deoncarrlgmior rndiinp i
e No semantic integration, _
no annotation types, Client
simple XML format,
very simple protocol,
e Highly successful DAS Server
, Reference
Provider Genome
Provider I Provider

Provider
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Notable Exception 1:
Distributed Annotation System as+os]

o Federated system serving a single type of information
— (Genomic annotation

e DAS server receives query (genomic coordinates) and broadcasts to all
DAS providers

e Results are chained and reported

e No semantic integration,
no annotation types,
simple XML format,
very simple protocol,

1.01

e Highly successful

! ! ! ! ! "
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
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Notable Exception 2: BioMart

e BioMart actually is capable of accessing distributed data sources
e Source schemas must comply

to BIOMart |ayOUt and namlng Phenotypes Expression Genomes
conventions Ej Efj

° Links and SChemaS have to be Give me all 1 Give me all il Give me all 1
declared and configured in the ==, J o J S, J
middleware

e No semantic integration, no query BloMart integration fayer
optimization / rewriting Give e allaencsmitt, |

g ' ° renzoonit J Www
[ ] BlOMart Portal: >1OO databases in brain and associated with web browser

coding SNPs

e Full provenance information

— You query a source, not a
relation

e Highly successful

=
—

UIf Leser, Sarah Cohen-Boulakia: Next Generation Data Integration, ICDE 2011




Notable Exception 3: caBIG (. caBIG

o Heavy-weight, full fledged data
sharing and analysis middleware

— Model-driven architecture, XML, portal N b
) . g : Dndimd Data ‘I%‘_’nrkflw
Semantic Web, SOA, Grid, ... §E -
. prdll User Access Layer
e Top-down development (heavily ‘§ = —
g s Mast Workflow ‘Semantic Vo oW
criticized), funded by the NCI i ==
° Four Ievels Of Compatibility to , d Bicinformatics and Knowledge Discovery Services Layer
caBIG standards mabite || 6as [lorms [ coms
. 0| (DGSADAT)
e Slow adoptlon Advanced Grid Middleware Layer

e “Critics of the massive project say cram et | erirre | mos.
it's inaccessible. Champions say the ' Common Grid Infrastructure Loyer
payoff requires embracing the new
language, and culture, of
bioinformatics.” [INCI news, 2/2010]

[SOH+06]
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Wrap-Up

e Probably >95% of integration projects use materialization

e Successful systems implemented by domain scientists, with little
participation of DR
— Exception: caBIG

e Little automatic semantic integration, very little distributed query
optimization, very little data fusion, very little schema matching /

crhhAarmAn TrkFAaArakiAN
SUIICIH A Iyl alvull
e Full provenance information

e Exceptions only support canned queries and require standardized
schemas
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BIOSQL (http://www.biosql.org/]

dbxref
- dbxref_id
- dbname
- accession
- version

reference

taxon

biodatabase

- biodatabase_id

- taxon_id
- nebi_taxon_id
- parent_taxon_id

comment

name - node_rank
authority - genetic_code
- description - mito_genetic_code
~left_valie
- right_value
bioentry
- bioentry_id
- biodatabase_id Po—
- taxon i =
- name - taxon_id
- accession - name
- identifier - name_class
- division
- description
- version

bioentry_dbxref | | term_dbxref
- bioentry_id - term_id

- dbsref_id - doref_id
- rank -rar

bioentry_reference

- bioentry_id
- reference_id
- start_pos

- end_pos

- rank

- bioentry id
- comment_text
- rank

term

seqfeature

- seqfeature_id
- bioentry,_|
- type_tem_id

- source_term_id
- display_name
- vank

“terua_id

- identifier
- is_obsolete
- ontology_id

term_synomym

- synomym
- term_id

seqfeatwre_qualifier_value

seqfeature_relationship

- seqfeatuce_id
- term_id

- rank

- value

- seqfeature_relationship_id
- object_seqfeature._id
ubject_seqfeature_id

- term_id

- rank

bOSCQUICE | [ pyere_qualifer_value biventry_path bioentry_qualifier_value bioentry.
~bioamy_id | [T ~object bioeny 14 prR— - bioentry._relationship_id
- version - - - - - object_bioentry_id
- term_id - subject_bioentry_id - term_id ¢
-length ! ‘ - subject_bioeatry_id
et - rank - term_id - value :
- 2 uabe - value - distance - rank - femm &
-seq - rank
location
erem— - location._id seqfeature_path
seqfeature_dbxref - seqfeature_id A =
- - dbxref id - abject_seqfeature_id
- seqfeatuce_id ! ‘
et 10 - tem_id - subject_seqfeature_id
b - start_pos - term_id
an - end_pos - distance
- strand
- rank.

location_qualifier_value

~ location 1

onfology

- ontology i
- name
- definition

tem_patla =

- term_path_id
- subject_term_id

- predicate_term _id
- object_term_id

- onfology_id

- distance

- term_relationship_id
- subject_term_id
- predicate_ter
- object_term_id
- ontology_id

term_relationship_t

- term_relationship_id
- tem_id

e Generic relational schema for representing sequences and features
e Standard storage layer for BioPerl, BioPython, BioJlava
e Ready-made parsers from Genbank, UniProt, NCBI Taxonomy, ...
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GMOD [sms+02] GM“D

e “GMOD is the Generic Model Organism Database project, a collection
of open source software tools for creating and managing genome-scale
biological databases”

e Developed by app. 20 organizations

e Ships with schema (Chado), genome browser, annotation pipeline,
exchange middleware, web-app development tool, ...

e Essentially everything that many smalil/midsize genome projects need
e Of course: Integrating several GMOD databases is fairly simple
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Ontologies

Ontologies definitely are a success story in LS since ~2000
— OBO hosts ~130 ontologies, BioPortal ~200
— Most famous: Gene Ontology, ~30.000 concepts, used world-wide
o Almost all are simply DAGs of ISA relationships (and PART_OF)
e Usage as structured, controlled vocabulary
— Speaking about the same thing
— Function prediction, semantic similarity, Text Mining, ...
o Very little usage of logical inference: no constraints, roles, axioms, ...
e Remove semantic heterogeneity in data integration upfront
— At the instance / value level
— Take the role of standards
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This Tutorial

e Part I — Data Integration for the Life Sciences

e Part II — Past and Presence

e Part III — Current Trends
— Data Integration Workflows
— Semantic Web
— Ranking in Integrated Datasets

e Part IV — Conclusions
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Lesson's Learned - Observations

e Semantic and technical heterogeneity, data distribution, redundancy
and inconsistencies are real problems in the Life Sciences

e Data volume is not much of an issue, nor is it up-to-date’ness

e Materialization possible and viable
— Faster, data cleansing, more robust, easier to build and maintain

e Virtual integration is only pursued under very specific conditions
— Restricted queries, semantic heterogeneity removed up-front

e General technique to raise the level of automation did not find much
uptake
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Increasing Need

e Integration is more necessary than ever

— Holistic, comprehensive, genome-wide, data-driven ... everywhere

— Systems biology, translational medicine, biodiversity, personal medicine, ...
e Encompasses data integration and information integration

— Ever growing number and diversity of available data sources

— Ever growing repertoire of high-throughout techniques

e Most of the raw data is statistical in nature

e Breadth of scientific questions increases
— Calling for an integrated view on data from many fields

— Example personalized medicine: genome, pedigree, environment,
intoxication, medical status, ...
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Example Large-Scale Projects

e Large-scale EU framework 7 project

Informatics Grid *

pearch ... realize the potential of Personalized Medicine."
— >50 centers, 20 million / year
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Open Challenges

Integrating dozens of data sources still requires
Effort considerable effort

Interesting (from a LS perspective) DI problems

AnalySIS require complex analysis processes
Users want to know exactly where each piece of data
Provenance  .oooe o Y P
: Finding the right answer, not ,finding any answer" or
QU aI|ty g g g any

“finding all answers”
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Three Trends

« Integration means analysis, and analysis

' tDatat' means integration
ntegration No schemas, no explicit semantics
Workflows -
« Scientific workflow systems
« Report results in a biologically
Ranki meaningful order
anking Stays with queries, adds ranking
e Requires a DI system in place
_ e Reduce upfront cost of DI
Semantic . :
Web No schemas, explicit semantics

e Semantic Web tech. (RDF, SPARQL)
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This Tutorial

e Part I — Data Integration for the Life Sciences
e Part II — Past and Presence

e Part III — Current Trends
— Data Integration Workflows
— Semantic Web
— Ranking in Integrated Datasets

e Part IV — Conclusions
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Classical View

RDBMS
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Classical View - DWH

Data Warehouse

RDBMS
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Classical View — Expanded

» Warkflow input ports

: | microarray_pathways || qtl_pathways |A .
| common_pathways || regex |

| kegg_pathways |

e

| remov e_null_values |

- Workdow outgput porta

: | interzecting_p athways |T :

Data Warehouse

RDBMS Files
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True Architectures

Wi kflow ingat porte

: | microarray_pathways || qtl_pathways |.‘. '

SRR PGSR '
| common_pathways || regex |

==

| kegg_pathways |

(]

| remov e_null_values |

Data Warehouse
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Life Science Research Food Chain

Experiments

<

Data Collection

N

Data Analysis

Results

New Hypothesis
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DR Idea

‘ Experiments

Data Collection Other Data

Data Analysis
\ Results

New Hypothesis ‘
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With DI Workflows

Other Data

Experiments

<

Data Collection

Results

New Hypothesis

UIf Leser, Sarah Cohen-Boulakia: Next Generation Data Integration, ICDE 2011




Data Integration Workflows

e No separation between integration and analysis

e Scientific Workflow Management System (SWFS) to encode integration
and analysis process

e Integrated (cleansed) data sets can be a by-product

e Tasks and sub-workflows may be shared across workflows
— Data access, parser and filter, data normalization, tests, ...

e Uses materialization and virtual access —whatever is best
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Scientific Workflow Management System

SWFS = WEFS for scientific tasks
— "“Data analysis pipeline”
— Complex pipelines are broken
into tasks and their connection
— Data flow driven

e Tasks can be executed locally or
distributed (web services)

e SWFS manages scheduling,
process control, logging,
recovery, reproducibility, ...

o Often equipped with graphical
workflow designer

e Several systems available
(Taverna, Kepler, Triana, ...) Ll e sl i . Y

e e e e o | (R0 e yweas | [ | e | (v | et |

o | e | e e &

—
- T
T

\
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Example: Taverna

e SWFS developed at U Manchester for ~10 years (myGrid)

o Full fledged, production-level system

e Integrates hundreds of bioinformatics resources and services
— Ontology-based service lookup

e SCUFL: Simple Conceptual m— —
Unified Flow Language 0~ i o) N

REEH || save all resuts rhefloe ohject Available service E]Em

- - wiorkfiow model ) §
. H f ol isstus i Resuts | Provenance Tree | Process repart (=) Workflow inpLts list l:l F Watch loads
undareds or users, some Vorson e
Pave as Type Matte: Last evert Evert timestamp | Event detal ¥ oldreaut Local Services
- ‘ Blast2_program ProcessComplete [28-Jul-2004 11:37 W species Soaplab @ hitp:Mndustry . ebiac ukisoap/soaplkak
t n I ) cormparer ProcessComplete [28-Jul-2004 11:39... W chramosome Bicroby @ http:fnobycertral chr nrs calcg-bin
re po r S O rea p rOJ eC s ™) Fasta_to_numbered [ProcessComplete [28-Jul-2004 11:39,.. (2 Workflowr outputs WSDL @ bt fphioebius o5 man ac. uk: 6081 faxis
] simplifier ProcessComplete [28-Jul-2004 11:39... A sinple Soapleh @ hitp: fphosbus s man ac uk 8051 faxi
] hehiblast FrocessComplete  [28-Jul-2004 11:39... A\ comparison | adaptor
) repestmasker FrocessComplete  [26-Jul-2004 11:38 A genbark g chromoadaptar
™) refrieve ProcessComplete |28-Jul-2004 11:39 A fasta_out gl speciesadaptor
g copyright ProcessCormplete  [28-Jul-2004 11:37 A missed = database
™) blast2 ProcessComplete  [28-Jul-2004 1139, A Se_rurbered g paraextractor
@ lister ProcessComplete  [28-Jul-2004 11:39... A\ B2_plignimert g srebuider
A\ COPYRIGHT i uricouery
(=) Processors @ curanery
Intermediate inputs | Intermesiate outputs @ Biast2_program: bla g sudquery
g comparer o farmatils
& Fasia i -
A BER)
— = Load nputs | Mew input 04 ¥ remove

| ) Input Docurmert
= W bare_seq_in

Click to et | |7
212 W old resut

wi

= W species

Homo sapiens
= W chromosome

(= Load ‘@ Load from URL

A

o ok

[MSR+10] : :
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Data Integration Workflows

e There is no clear separation between a (scientific) data integration
workflow and an ordinary scientific workflow
e Scientific workflows embody integration tasks
— Data access (remote or local)
— Parsing
— Transformation (values, structure)
— Filtering (selection, projection)
— Discrete merging (union, join, difference)
— Statistical aggregation (mean, median, testing, ...)
— User-defined predicates

e SWEFS treat integration tasks the same as any other tasks
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Problems Tackeled

e Get away from “once for ever” idea of classical information integration
o Complex integration processes become first-class citizen

— Exposes what is done rather than hiding it

— Data quality issues can (and must) be considered (selection, filtering, ...)
e Produces results that are immediately interesting for the researcher

— No queries
e Requires deep understanding of the domain

— Integration is only one ingredient to the solution
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But ...

e What do we save compared to Perl?
— No support for semantic integration

— Potentially, everything must be
programmed anew every time

— Workflows are not easier to
read than Perl programs
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But ...

e What do we save compared to Perl?
— No support for semantic integration

— Potentially, everything must be
programmed anew every time

— Workflows are not easier to
read than Perl programs

e But Perl doesnt do
— Automatic logging of all steps
e Reproducibility, credibility
— Automatic scheduling on available hardware
— Automatic restart in case of failure
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Less Obvious Advantage:
Sharing (Sub-)Workflows

e Existing tasks and sub-workflows are available in SWFS repositories
e These can be searched, downloaded, and reused

e Sharing tasks
— Generic parser is shared, specific filter is developed
e Sharing sub-workflows
— Performing some complex processes producing a defined result
— Partly relief from the infamous “shims and glue” trap
e Parameterization increases reusability
— Which filtering / selection?
— Where is the data source / service to use?

UIf Leser, Sarah Cohen-Boulakia: Next Generation Data Integration, ICDE 2011




i\ experiment

> 1300 workflows available for immediate download
Cross-system: Taverna, Triana, Kepler

Social functionality: Tagging, rating, usage statistics
Reuse features could be improved

Workflows released by manth
my experiment myExperiment makes it easy to find, use and share scientific :
workflows and other Research Objects, and to build communities
1000 1000
Al v ]
800 &
First time visitor? Try these videos: > " 5.
Register 2 _ £
[ Project Introduction E 7m0 H
[ Bioinformatics Case Study i e elis H S
o = & 4 B0 = midow
Use myExperiment to... e | [ | Ysemame or Emall H & scufl
o - 2 50 5 —oiginal workfows
= e &l 5 onginal wor
2 Find Workflows
o Paseword & 5 —ahos
(& Share Your Workflows and Files [ B | v H 400 & —idalworklows
e = £
[ Create and Find Packs of ltems Remeraber me: (] g 10 3
= 0
£ Find People and Make Friends Or use OpenD, i 300
i 5
£ Create and Join Groups About myExperiment t J
i (eg: name.myapenid.com) 2
R . Join the Mailing List
* Build your Profile and Reputation _
: myExperiment Publications .
Tag and Rate things For Developers 100
) Write Reviews and Comments Give us Feedback Forgot Password? | 3
The BioCatalogue Project ! LD T N » o
glghoinz(112131415 7l8lanonthzn
0 01
myExperiment has over 3000 members, 200 groups, 1000 workflows, 300 files and 100 packs Wonths
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Opportunities (and Untackeled Problems)

1. Improve support for workflow sharing

— Beyond searching (missing) documentation
2. Supporting typical integration tasks

— Reducing amount of repeated work
3. Distributed data access

— Data to service or service to data?

4. Adaptive execution environments
— Many tasks require special environments — not portable per-se
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1. Finding the Right Workflow

e Currently only IR-style queries on metadata / documentation

e Open question: Querying workflow repositories
— Given a high-level description of a (integration) task — a sketch
— Given a input and/or and output format/type
— Given a workflow

— Find workflows (global similarity) or sub-workflows (local similarity)
e Core of the probiem: Workflow simiiarity

— Metadata similarity, topological similarity, semantic similarity
e Becomes a practical topic only now: Large repositories are available
o Complication: Search across workflow models
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e All three workflows perform microarray analysis integrating various
sources (pathway DB, probe mapping, PubMed)

e May be re-used entirely (which fits best?) or partly (from probes to
genes? Differently expressed genes? From DE to pathways?)
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Work on Workflow Queries

Using only topological properties [GLGO06]
— Ignoring WF metadata and task descriptions
Topological similarity in serial-parallel graphs [ZCBD+09]
— Captures a large class of workflow graphs
— Can be solved in polynomial time
Query languages from the business workflow community
— BPQL, BPMN-Q [AS10], BP-QL [BEKMOS], ...
— Do not include notion of similarity not local (sub-workflow) matches
— Bound to workflow specification languages (BPEL)
Query languages for repositories of workflow runs [KSB10, MPB10]

— Querying the log of a workflow execution to find, e.g., the lineage of a
specific result /trace

Queries for filtering workflow runs [BCB+08]
— Definition of views to filter relevant from irrelevant
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2. Supporting DI Tasks

e Integration tasks are typically data-intensive and time-consuming
e Especially during WF development, such tasks need to be executed
again and again
e Storing and reusing intermediate results can be of high benefit
— Transparent materialization and reuse (caching)
e Open problem: Savepoints in SWFS
— How to define (language, graphical)?
— Who places them into a WF (manual or automatic)?
— Mapping of results to workflow steps?
— Efficiently storing and reusing the data

* Note: Results depend on concrete data, workflows do not
Note: Storing input together with results also enhances reproducibility
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Work on "Smart Recomputation”

e (Caching
e Strong Links [KSB+10]
— Mapping of files using signature of “upstream” workflow
— Support for post-WF analysis (which runs used this file?)
e Smart re-computation [LAF+06]
— Moves responsibility to the file system
— Requires tight integration with SWFS

e Also see “"Managing Scientific Data”, CACM 2010, [AKD10]
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To the Extreme: Global Analysis Repository

e Savepoint data could even be exchanged globally

— Analysis on a particular data set is performed once and then re-used all
over the world

e This has predecessors — storing processed and raw data
— Sequence database: DNA sequences and trace files
— Proteomics: Identified proteins and 2D-Page Gels
— Transcriptomics: CEL files and CCD images

e Repositories would have to store runs, data sets, results, and
intermediate results
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3. Distributed Data Access

o Intensive usage of web services, though attractive from a reuse point-
of-view, has a cost
— Data must be shipped back-and-forth
— Reliability of entire WF decreases with every additional service
e In the LS, data files typically are not terribly large, but analysis
requires many steps
e Open question: Reducing round-trip cost
— Services must become “location-aware”

— Data could be passed by reference (if servers are used

— Code could be moved (many tasks are R modules anyway)
— Decision should be based on estimations about runtime

— Alternative: Data transfer as first-class citizen
o Allows users to influence behavior in optimal manner
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4. Execution Environement

o If tasks are not executed remotely, they need to run locally
e But tasks may require certain software to be pre-installed

— Programming languages, runtime libraries, infrastructure services, ...
e Open question: Make SWFS infrastructure-aware

— Problem is well studied in operating systems / middleware
e Linux package loader, ...

— Tasks need to specify dependencies

— Needs a “module LUIILE[JL for uuwnwauiﬂQ and iﬁSLalliﬂg Missing pieces
— SWEFS need to communicate with operating system

— Essentially, one needs OGSi for SWFMS

e Low hanging fruit with potential for large impact

UIf Leser, Sarah Cohen-Boulakia: Next Generation Data Integration, ICDE 2011




Towards Ultimate Credibility

e A major advantage of SWFS is reproducibility (hence: credibility)
e Publish workflow together with its results (and input data)
e Everybody can reproduce analysis

— If input is available — in the correct versions

— If workflows runs an machine

— If all services are available in the correct versions

e Stronger: Also publish WF traces and intermediate results
— Every step of the analysis becomes visible and can be checked

o (alls (again) for global repositories of entire analysis’s
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A Vision: The Executable Paper

e "“The Executable Paper Grand Challenge” (Elsevier)

How can we develop a model for executable files that is compatible with
the user’s operating system and architecture and adaptable to future
systems?

How do we manage very large file sizes?
How do we validate data and code, and decrease the reviewer’s workload?

How to support registering and tracking of actions taken on the executable
paper?
[http://www.executablepapers.com/]

e The other way round: Make pipelines citable

Get credits for your pipeline, not for your paper
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DI Workflows and ETL

o DI workflows are similar to ETL processes
o But there are important differences [Alb09]

ETL mostly consists of relational operators, SWFS mostly uses user-defined
predicates

ETL mostly runs on relational data, SWFS on any data
ETL are proprietary and bound to companies, SWFS mostly use public data
ETL always runs on different data, SWFS often repeated on the same data

ETL are a business asset and not shared, SWFS are a scientific
achievement and shared (until now, mostly by papers)
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DI Workflows and ETL

o DI workflows are similar to ETL processes

o But there are important differences [Alb09]

— ETL mostly consists of relational operators, SWFS mostly uses user-defined
predicates

— ETL mostly runs on relational data, SWFS on any data
ETL are proprietary and bound to companies, SWFS mostly use public data
ETL always runs on different data, SWFS often repeated on the same data

ETL are a business asset and not shared, SWFS are a scientific
achievement and shared (until now, mostly by papers)

Gives sharing of SWF a better
perspective than sharing in ETL/business
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DI Workflows and Data Flow Languages

o Data flow languages recently became en vogue
— iFuice [RTA+05], PIG-Latin [ORS+08], DryadLinq [YIF+08], ...

e Invented to analyze terabytes of data
e Often focusing on scalability (parallelization, Map&Reduce)

e Typically declarative (to a certain degree) and less expressive than a
typical SWFS language

e Certainly worth exploring:
Similarity and differences between SWFS and data flow languages
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Three Trends

e Integration means analysis, and analysis

' tDatat' means integration
ntegration No schemas, no explicit semantics
Workflows -
« Scientific workflow systems
« Report results in a biologically
Ranki meaningful order
anking Stays with queries, adds ranking
e Requires a DI system in place
_ e Reduce upfront cost of DI
Semantic . .
Web No schemas, explicit semantics

e Semantic Web tech. (RDF, SPARQL)
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Recall: Links

Report all GO annotation for a given protein
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Ranking of Search Results

e Recall: Most types of objects are represented in multiple sources
e Recall: Sources link to each other (extensively yet unsystematically)

e As a consequence, for a query X->*->Y there usually exist multiple
paths producing an excessive number of results

— Which results are the best
— Which results have the highest relevance to the query?

e This is not data fusion: No consensus, but present best choice(s)
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Integration + Ranking

‘ Experiments ‘

Data Collection I—) D<| le{ Other Data ‘

N

| Rank by Relevance
User
Cutoff
Analysis
Results

‘ New Hypothesis
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Typical Queries

e For an object s of a source
relation S, rank all objects t
from a target relation T that
are reachable from s

— Through a path of joins/links

e Possibly augmented with
various types of constraints
— Attribute values of source /

NCE!IE!Iast -EnlrezGen

target / intermediate objects
— Minimum quality of links Rank all annotations from GO
— Maximal length of a path reachable from an entry in

EntrezProtein [DGL+09]
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Common Approach

e Execute query and map result into a graph
— Compute and follow all (or some) paths
— Collect intermediate objects on each path
— Build data graph (objects and links)

e Compute ranks based on graph

® Disease

e OMIM (Gene)
Protein i
! —> Nucleotide
(Protein) > (Sequence)

e PubMed (Citation)

[BLM+04]
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Relevant for Relevance

« Assessment of quality of data sources

Us.edr g Assessment of quality of links
provide Currentness, completeness, trust, ...
* Number of paths

Query P
d dent Length of paths
ependen Overlap in paths
Domain . Simil.arity of Iinke_d seque_nces |
i e Quality of matching leading to a link
Specitic Many more
Graph - Density of the graph
Intrinsic » Topology of the graph
Technical « Execution time (jc?intc,, d?stributed query optimization)
. » Budget-based optimization
ISSUES

Best-effort optimization
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Example

Which source is better?
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Example

Which link is better?
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Example

Which path is longer?
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Example

Which objects are reached by more paths?
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Example: BioGuide [cep-+os]

e Conceptual three-level entity model
— Entity types (genes), source entities (EntrezGene), objects (DMD)

e Fully implemented and
functioning system

e Query execution using SRS

e Ranking based on
— User-provided assessments
— Computed links-quality
— Query-dependent criteria

e Various restrictions on path
structure possible
— Direction of links?

— Paths with loops inside
the entity source graph?

Stralagy

[¥] Ordered entiies.  [[] Gnily ghven entities [ Source once for all

& (4]

o]
3
@
2
-3

UCSCGenome_BAC |— AT
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Systems: BiI0oZon [s1vos]

e DWH of ~30 different sources (sequence, protein)

e Pre-computation of additional links
— Sequence homology, structural similarity, ...

e Four “prominence” models o, @ T
— Eigenvalue centrality - P - |
— PageRank SN e L e A
— Hubs & Authorities ;" 4 ST
— Katz's Status e S

—————————
--------

*****

e Either computed on
entire database or on
query-dependent subgraph

e Tendency: PageRank best, global scheme better than local ones
— Yet yery difficult evaluation
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BioRank pGL+09]

Scenario 1 Scenario 2
306 well-known functions, 20 well-studied proteins 7 less—known functions, 3 well-studied proteins
N . ) ) 1 1 »
Reliability Propagation Diffusion ’ . : ? * : :
0.8 | - T 08
0.73 :
c 07 ] c 07
2 : (=]
w (7]
T 08 D 086
< g
& g5 i . . T S o5t gas
<3 0.42 &
g 0.4 | . . ) % 04
> >
< p3 < o3
02 0z
0 [ Mean |- . . . X 04
—@ Stdv
0 [s}
Rel Prop  Diff InEdge PathC Random Rel Prop Diff InEdge PathC Random
Scoring function Scoring function
(a) (b)

e Built upon BioMediator [SMB+04]
e Several graph-based ranking schemes
— Network reliability (approx), diffusion, pathcount, inEdge, propagation
e Evaluation using gold standard annotation and expert opinion
e No clear results

— Simple measures work well for well-known proteins (publication bias?)
— Complex measures work better for less-known proteins
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Columba [HTLO7]

e Ranking built for the Columba DWH

e Probabilistic model to rank results by confidence or by surprisingness
— What's new, what's certain?
— Considering size of data sources, size of link sources, and mutual overlaps

e But: Restricted data model, does not work in general graphs
Hon

»»muwwwuuuwwuumuuummuuuummum\mm
Low -

surprisingness 3,963

Seq2Struct (275,539

PDBSWS (69,303)
HH‘
Wm

MSD (65,785)

High
surprisingness
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Summary

e Systems require underlying data access (integration) infrastructure
— Can be central (BioZon, Columba) or distributed (BioGuide, BioRank)
e Systems require different degrees of human intervention
— Fully automatic (BioZon, Columba) to human-driven (BioGuide, BioRank)
e Ranking considerations may have an influence on query execution
— Prune paths/subplans if expected quality too low
— Not here, but other projects, e.g. [BLM+04, NLF99]
e To date, no in-use DI system implements a decent ranking method
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Opportunities & Challenges

Exploiting different semantics of links
Obtaining confidence scores

Considering incompleteness of links
Integrating matches with textual data
Comparable, objective evaluation strategies

A N
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1. Link Semantic

e Frequent interpretation: Equality (unweighted, symmetric, transitive)

e But not all links are equal
— Similarity: Weighted, (usually) symmetric, intransitive
— Specialization: Weighted or not, asymmetric, transitive
— Part-of: Unweighted, asymmetric, (usually) transitive
— Associative: ?, ?, ?

o~ -

— Co ItEXL'UE[JCIIUEIIL links: Sometimes tr uc, sometimes Wrong

e Propagation schemes make different assumptions
— About link semantics
— About independence of links
— About semantic of network
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Example

Reliability Propagation

V-
— Probability of getting a signal from source to sink

e Propagation: Probability of being equal based on local evidences
— Strength of evidence in a Bayesian sense
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Reliability Propagation

Example

r=0.75

similar_to

has_function

Function

e Probably dependent evidence — little (no) increase in confidence
e Reliability is a proper model
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Reliability Propagation

Example

similar_to

Mouse Genome
Database

Function

e Probably independent evidence — strong increase in confidence
e Propagation is a proper model
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Second Example

part_of
1 Gene A
Complex 1 <
ompiex Gene B
0.8 Complex 2 , Gene C
has_function 0.8

e Which genes have function X?
e Ranking:C>A=B
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Second Example

part_of
1 Gene A
Complex 1 <
Omprex Gene B
0.8 Complex 2 , Gene C
has_location 0.8

e Which gene are active in subcellular location X?
e Ranking:C=A=B
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Opportunities

o What are appropriate classes of links?
e How can we classify links (annotation, automatic)?
e How does link type influence the interpretation of assigned weights?
e How to consider context for the interpretation of weights?

— Gene has function X only in certain location or in certain stage of the cell
 How can ranking algorithms be aware of the semantic of links?
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2. Obtaining Scores

 We need (confidence, probabilistic) scores for data sources, link
sources, objects, links

o Quality of biological databases is a much discussed issue, but difficult
to map into a single value

e Computed scores usually cannot be used directly
— Sequence similarity of 40% in proteins -> very likely same function
— Sequence similarity of 40% in genes -> no statement about function

e User-defined preferences are hard to specify and to obtain
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Work in this Direction

Quality of biological databases [BCF+07, BBF+01, MNF03]
— Often completeness / currentness

— Measuring ,degree of truth® is notoriously difficult — different experiments,
different results

Quality criteria / user preferences [NLF99, BFL+04]

Learning user preferences from relevance feedback [TIM+08]
— Based on BioGuide system

Robustness of ranking [DGL+09]
— With respect to small derivations in preference scores
Interactive search processes are under-researched
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3. Link Bias

A Nt

e Link sets are incomplete 15 |

e Incompleteness is not a random process |

— Popular objects receive more research il == ]

— more curation — more links o (S 1

— Objects discovered more recently T
have less links e

— Highly linked objects are found more [ et e ]
often — are linked more often | e— e

e Opportunity: Consider this fact for ranking | .

[RMLOS5]
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4. Textual Attributes

e Many queries are not based on strict criteria but use keywords
o Keywords match fields like descriptions, annotations, explanations,

abstract, summary
e Accordingly, nodes on a path are matched to different degrees

— Example: “Search genes involved in cell cohesion”

GO annotation
PubMed
Gene
Protein < GO annotation
Protein Motif GO annotation
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Example Continued

GO annotation

Protein <

GO annotation

Protein

Motif

i

GO annotation
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Example Continued

GO annotation

Caona
mitotic sister chromatid cohesion { Ctf18 RFC-like complex

The cell cycle process in which the sister A heptameric complex related to replication
chromatids of a replicated chromosome are factor C, which loads the DNA polymerase
Jjoined along the entire length of the processivity factor proliferating cell nuclear
chromosome, from their formation in S phase antigen (PCNA) onto DNA and plays a vital role
through metaphase during a mitotic cell cycle. in chromosome cohesion. In Saccharomyces the
This cohesion cycle is critical for high fidelity subunits are known as Ctf18p, Rfc2p, Rfc3p,
chromosome transmission. |: Rfc4p, Rfc5p, Dcclp, and Ctf8p.
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Example Continued

GO annotation

_
bMed descriptio
Lo -~
' mitotic sister chromatid cohesion r1 Ctf18 RFC-like complex
gl cvcle process in whichlLee®ter ?

chromatids or a repicated chromosomg are
Jjoined along the entire length of the
chromosome, from their formation in S phaSg

through metaphase during a mitotic cell cycle.

This cohesion cycle is critical for high fidelity S

chromosome transmission.

UIf Leser, Sarah Cohen-Boulakia: Next Generati

167



5. Evaluation

e Probably the hardest problem
e Problem: To what and how should results be compared?

e How: Choice of metrics
— Precision at k, average precision, ROC, ...

e "To what” option 1: Expert opinion
— Favors the certain, ignores the surprising
— Subijective (inter-annotator agreement?)
— Not scalable
e "“To what” option 2: Gold standard data sets
— No generally accepted gold standards exist - everybody uses its own
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More Problems with Ranking

e Computation and comparison of ranking under multiple criteria is a
hard problem relevant for many domains

e Many results apply to the LS as well

* Note that in LS result sets are often different, i.e., the overlap of
ranked results is small

e Comparing rankings, e.g. [FKM+06]
e Computing consensus ranking, e.g. [Ail10]
e Top-K query optimization, e.g. [IBS08]
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Related Work

Ranking in IR, especially on the web
— Also combine textual with topological evidence

— But: Unstructured entities, no entity classes, semantic-free links, different
query types (no paths)

Keyword searches in relational databases

— Also consider paths through a data graph

— Also may use class information

— But: Different query types (subgraphs)

Long tradition in Al research

— Bayesian networks, fuzzy logic, Dempster-Shafer Theory of Believe, ...
Probabilistic databases

— Highly similar setting

— Also research on different semantics of uncertainty and on different
methods for uncertainty propagation through a query network

UIf Leser, Sarah Cohen-Boulakia: Next Generation Data Integration, ICDE 2011




Three Trends

e Integration means analysis, and analysis

' tDatat' means integration
ntegration No schemas, no explicit semantics
Workflows -
« Scientific workflow systems
« Report results in a biologically
Ranki meaningful order
anking Stays with queries, adds ranking
e Requires a DI system in place
_ e Reduce upfront cost of DI
Semantic . .
Web No schemas, explicit semantics

e Semantic Web tech. (RDF, SPARQL)
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Provenance

Provenance

Quality
Effort




Classical View

[:Queries::l
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Semantic Web Approach

I:: SPARQL/OWL :]
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Semantic Web ,Layer Cake"™ [BHLo1]

Unicode

W Rules Trust Inference of new facts /
Proof o consistency of data set
Logi — ¢ Semantic compatibility
Data ogic 3
A by means of shared
Ontology vocabulappzf . terminilogies
o0
RDF + rdfschema —&———"Common, graph-based
\L data model

Globally unique identifers]
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Resource Description Framework

e Simple, graph-based data model
e Triples: Subject, predicate, object

— n-ary relationships through
blank nodes

— Reification: Statements about
statements

e Several syntactic representations

RDF database: Set of RDF triple
] I.Ilb

neurotransmitter

has_sequence

ACCTGAGAGD
PMID: 1122@

— Several systems available

e SPARQL: W3C standard for querying
a RDF database

mentioned i
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Semantic Web for Data Integration

e Focus on semantic problems and upfront integration cost

e Usual approach
— RDFify everything
e RDF as common data model (not as global schema)

— Trust on the usage of ontologies to cope with semantic heterogeneity at
the instance level

— Trust on the existence of ontologies to cope with semantic heterogeneity
on the schema level

e Use SPARQL as language to pose queries across data sources
e Sometimes: Use OWL for inferencing

— Especially consistency of data sets, inference of new triples

— Almost exclusively used: class, subclassOf, sameAs
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RDF as Common Data Model

%
\ S /
&, N &
7 @ \ S
%o» = / § / a &
’O’f Keyword § $
yw & §
\ Soo Probe q,
* Protem GO r'df MIM id
d
mw“' OMM.rdf
‘h Gene
5
e \
& - VA
5 Enzyme gozEnzymerdf
Organism
Citation o,,
O
Pathway Compund
Enzymes.rdf
KEGG.rdf

PubMed.rdf

Hermann, W3C, 2007
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Life Science Research Food Chain

Experiments

N

Data Collection

N

Data Analysis

Results

New Hypothesis
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... using Semantic Web Techniques

Other Data

Experiments

S Y

Data Collection p——>{ RDF + ontologies

—

Data Analysis
with OWL

Results

New Hypothesis
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Some Examples

e BioDash [NQO6]
— Drug discovery, focus on browsing, ,semantic lenses” as views on a RDF

e Semantic web-enabled data integration (SWEDI) [PRM+07]
— Transcription factors, lack of schema-level ontologies

e SemWeb for translational research [RCB+07]
— OWL performance, lack of rules and axioms, data cleansing and ranking

e BioGateway [ABE+08]
— General purpose DI system, problem of missing transitivity in SPARQL

e Ri02RDF [BNT+08]
— Large-scale transformation of biological databases into RDF

e Chem2Bio2RDF [CD]+10]
— Chemoinformatics, no semantic integration, issue of de-duplication
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Much Uptake

e Some of the largest RDF data sets come from the LS
— LinkedLifeData: 6 billion triples (PubMed: 1.5B; UniProt: ~2B), 23 sources
— Biuo2RDF: 40 sources, 30B triples

. B. Chen, et al., Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data. BMC Bioinformatics, 2010. 11:
. H. Oliver, et al., A user-centred evaluation framework for the Sealife semantic web browsers. BMC Bioinformatics, 2009. 10 Suppl 10: p. S14.

. K.H. Cheung, et al., A journey to Semantic Web query federation in the life sciences. BMC Bioinformatics, 2009. 10 Supp! 10: p. S10.

. T. Slater, C. Bouton, and E.S. Huang, Beyond data integration. Drug Discov Today, 2008. 13(13-14): p. 584-9.

. J.A. Sagotsky, L. Zhang, Z. Wang, S. Martin, and T.S. Deisboeck, Life Sciences and the web: a new era for collaboration. Mol Syst Biol, 2008. 4: p. 201.

. C. Pasquier, Biological data integration using Semantic Web technologies. Biochimie, 2008. 90(4). p. 584-94.

. A. Newman, J. Hunter, Y.F. Li, C. Bouton, and M. Davis. A scale-out RDF molecule store for distributed processing of biomedical data. in Workshop on Semantic Web
. N. Kobayashi and T. Toyoda, Statistical search on the Semantic Web. Bioinformatics, 2008. 24(7): p. 1002-10.

. C. Goble and R. Stevens, State of the nation in data integration for bioinformatics. J Biomed Inform, 2008. 41(5): p. 687-93.

. H.F. Deus, et al., A Semantic Web management model for integrative biomedical informatics. PLoS One, 2008. 3(8): p. e2946.

. F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault, and J. Morissette, BioZ2RDF: Towards a mashup to build bioinformatics knowledge systems. Journal of Biomedical

. E. Antezana, et al. Structuring the life science resourceome for semantic systems biology: lessons from the BioGateway project. in Workhop on Semantic Web

. S. Sahoo, O. Bodenreider, K. Zeng, and A. Sheth. An Experiment in Integrating Large Biomedical Knowledge Resources with RDF: Application to Associating

. A. Ruttenberg, et al., Advancing translational research with the Semantic Web. BMC Bioinformatics, 2007. 8 Suppl/ 3: p. S2.

. L.J. Post, M. Roos, M.S. Marshall, R. van Driel, and T.M. Breit, A semantic web approach applied to integrative bioinformatics experimentation. a biological use case
. R.C. Gudivada, X.A. Qu, A.G. Jegga, E.K. Neumann , and B.J. Aronow. A Genome - Phenome Integrated Approach for Mining Disease-Causal Genes using Semantic
. E.K. Neumann and D. Quan. BioDash.: a Semantic Web dashboard for drug development. in Pac Symp Biocomput. 2006. Hawai, US.

. T. Kazic. Putting Semantics into the Semantic Web: How Well Can It Capture Biology? in Pacific Symposium on Biocomputing. 2006.

. B.M. Good and M.D. Wilkinson, 7he Life Sciences Semantic Web is full of creeps! Brief Bioinform, 2006. 7(3): p. 275-86.

. S. Mukherjea, Information retrieval and knowledge discovery utilising a biomedical Semantic Web. Brief Bioinform, 2005. 6(3): p. 252-62.
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Much Uptake?

e Most papers promise success (if X, Y, Z)
e Fewer papers report on successful applications

. B. Chen, et al., Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data. BMC Bioinformatics, 2010. 11:
. H. Oliver, et al., A user-centred evaluation framework for the Sealife semantic web browsers. BMC Bioinformatics, 2009. 10 Suppl 10: p. S14.

. K.H. Cheung, et al., A journey to Semantic Web query federation in the life sciences. BMC Bioinformatics, 2009. 10 Supp! 10: p. S10.

D T. Slater, C. Bouton, and E.S. Huang, Beyond data integration. Drug Discov Today, 2008. 13(13-14): p. 584-9.

D J.A. Sagotsky, L. Zhang, Z. Wang, S. Martin, and T.S. Deisboeck, Life Sciences and the web: a new era for collaboration. Mol Syst Biol, 2008. 4: p. 201.

D C. Pasquier, Biological data integration using Semantic Web technologies. Biochimie, 2008. 90(4). p. 584-94.

. A. Newman, J. Hunter, Y.F. Li, C. Bouton, and M. Davis. A scale-out RDF molecule store for distributed processing of biomedical data. in Workshop on Semantic Web
. N. Kobayashi and T. Toyoda, Statistical search on the Semantic Web. Bioinformatics, 2008. 24(7): p. 1002-10.

D C. Goble and R. Stevens, State of the nation in data integration for bioinformatics. J Biomed Inform, 2008. 41(5): p. 687-93.

D H.F. Deus, et al., A Semantic Web management model for integrative biomedical informatics. PLoS One, 2008. 3(8): p. e2946.

. F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault, and J. Morissette, BioZ2RDF: Towards a mashup to build bioinformatics knowledge systems. Journal of Biomedical

. E. Antezana, et al. Structuring the life science resourceome for semantic systems biology: lessons from the BioGateway project. in Workhop on Semantic Web

. S. Sahoo, O. Bodenreider, K. Zeng, and A. Sheth. An Experiment in Integrating Large Biomedical Knowledge Resources with RDF: Application to Associating

D A. Ruttenberg, et al., Advancing translational research with the Semantic Web. BMC Bioinformatics, 2007. 8 Supp!/ 3: p. S2.

. L.J. Post, M. Roos, M.S. Marshall, R. van Driel, and T.M. Breit, A semantic web approach applied to integrative bioinformatics experimentation. a biological use case
. R.C. Gudivada, X.A. Qu, A.G. Jegga, E.K. Neumann , and B.J. Aronow. A Genome - Phenome Integrated Approach for Mining Disease-Causal Genes using Semantic
. E.K. Neumann and D. Quan. BioDash.: a Semantic Web dashboard for drug development. in Pac Symp Biocomput. 2006. Hawai, US.

D T. Kazic. Putting Semantics into the Semantic Web: How Well Can It Capture Biology? in Pacific Symposium on Biocomputing. 2006.

° B.M. Good and M.D. Wilkinson, 7The Life Sciences Semantic Web is full of creeps! Brief Bioinform, 2006. 7(3): p. 275-86.

D S. Mukherjea, Information retrieval and knowledge discovery utilising a biomedical Semantic Web. Brief Bioinform, 2005. 6(3): p. 252-62.
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Unusual : NCBO Resource Index [ir+103

e Recognizes and tags concepts from 200+ ontologies in flat-file
representation of 20+ BDB

e Concept-based keyword queries over multiple databases
— No data integration, but uniform, “semantic” search

e Scalability problem:
Tagging gigabytes of texts

with ~4 million terms, s
each consisting of multiple = -
tokens and allowing for * ae o
errors [SBJ+09] =l . R ¥
e i, o om 5
2 oo Marutaiton Tmheriance in Has o ol o
e Not sure if this is a Semantic | =~ . .
Web application ... Lo ) e e :
ok o ol o

Fig. 2. The search for resources that contain both “Tumor Protein p533” AND “Breast Carcinoma.”
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Problems Tackeled

e Low upfront cost

— RDFifying is simple, many DBs are available in RDF

— Very flexible model, no schemas

— No semantic reconciliation in first phase

— Allows quick and uniform access to data from many sources
o Inference over equality-links supported by sameAs (OWL)
e Data provenance is exposed (usually in namespaces)

o Exploitation of the fact that BDB are highly interlinked at instance level
— Perfect model for Linked Open Data (LOD)
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Opportunities

1. Dealing with semantic heterogeneity
2. RDF as data model
3. Extensions to SPARQL
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1. No Semantic Integration
(without Ontologies)

) SPARQL Query - Linked Life Data - Mozilla Firefox

Datei Bearbeiten  Ansicht  Chronik  Lesezeichen  Extras  Hife

@ (o (ot | BB http:ffinkedifedata, comfspardl o - - 2
[&] Meistbesuchte Seiten || Nachsehen || Frequent 5% 'wBI M Lehre -" Google || Mews | | Projekte | | Buecher kaufen | | Paper suchen | | Reisen | MySkuff || Paris
-‘l "semantic web" blog "life scignce” - Goo.. % SPARQL Query - Linked Life Data ﬁ -+ -
E linked life data Pe= . N ,
InKedlifedata Hame | SPARGL | Relfinder | Sources | Conventions | Download | About | Questions? | Admin

SPARQL Query

Append predefined namespaces:

bbc-pont, biopax-2, cpath, dailymed, dailymed-drugs, dailymed-ingredient, dailymed-instance, dbp-ont, dbp-prop, dbpedia, dbpedia-page, dbpedia-resource, dbtune, di,
di-term, diseasome, diseasome-diseases, diseasome-gens, diseasome-instance, drug-category, drug-target, drughank, drugbank-class, drugbank-drog, drugtype,
entrez-gene, entrez-goterm, entrezgene, factbook, fb, ff, foaf, gene-rif, geo-ont, gec-pos, geonames, gr, lhgdn, lifeskim, lingvaj, linkedet, linkedct-condition,

linkedct-intervention, Ild, music-ont, nytimes, oasis, om, opencyc, opencyc-en, of, owl, protonkm, protons, protont, protony, pubmed, pubmed-article, pubrmed-author,

urnls-concept, umls-label, umls-semnetwork, uniprot, uniprot-protein, uniprot-unstable, wordn-sc, wardnet, wordnet15, xsd, yaga

Cluery:
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Dealing with Semantic Heterogeneity

o RDF'fization does not solve semantic heterogeneity, but postpones it
— Data is only available in a common data model
— Predicate names are not unified, but added
— Objects are not unified, but added
e URIs do not enforce common IDs for common objects
— Everybody may invent arbitrary URIs
— sameAs is not enough — not all links are equal
e Existence of ontoiogies are a prerequisite for using SemWeb
technologies, not a consequence of doing so
— But: Ontologies may contradict each other — new problems
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SemWeb Ontologies # LS Ontologies

e Ontologies are extraordinary successful in the LS
e Almost all successful LS-ontologies are informal

— No axioms, roles, attributes, formulas; only ISA and PART-OF
e [S-ontologies are used only for annotation

— Controlled vocabularies on the instance level

e The field does slowly solve the problem of inconsistent terminologies
on the instance level

e Little work on the schema level
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Work in This Direction

e BioPortal [NSW+09]
— Common access to 200+ biological ontologies
e OBO foundry [SAR+08]
— De-facto standard for design of biological ontologies

e Ontology matching [ES08, KTRO7]
— Instance level: Power of links between objects and ontology terms
— Increased complexity if OWL predicates should be considered

e De-duplication in RDF [IPSN10]

e Extensions to SPARQL [KJ07]
— RegExp for predicate names

e Ontology bootstrapping from text [BL0O9]
— Recognition of concepts and ISA relationships
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2. RDF as Common Data Model

o RDF actually was meant to be a model for representing metadata
— Discrete, certain facts
— Geared towards logical inference
— Numerical values not considered as such (no data types)

e But: LS data is dirty
— Dealing with uncertainty, contradictions, noise, ...

e But: LS data can be voluminous
— Not terribie iarge, but much iarger than typical metadata sets
— Experimental data

— Need for hybrid approach
e RDF for representing information (derived facts)
e Links to original data sets in other format
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3. Extensions to SPARQL

e Given the level of heterogeneity in merged RDF data sets, a powerful
query language is a pre-requisite for comprehensive analysis

e However, SPARQL lacks

.. grouping and aggregation for in-query de-duplication and data fusion
.. user-defined predicates for implementing non-standard DI functions
.. an understanding of class hierarchies to exploit semantic structures

.. general transitive predicates to cope with heterogeneous schemas

.. a sensible way to access multiple distributed RDF databases

.. methods to cope with confidence / probabilities
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Work in these Directions

o Distributed SPARQL optimization
— DARQ: Query rewriting based on predicate mappings [QLO8]
— Avalanche: SPARQL over Linked Open Data [BA10]
e Statistical aggregation in SPARQL [KTO08]
— Ad-hoc syntactic extension to SPARQL
e Using ontology mappings in query processing
— Query rewriting using graph pattern rewriting [CSM+10]

Pl oY . U el

e Transitive predicates for SPARQL [KAC+02, KJ07]

e OWL for query rewriting
— Not scalable [ZAV+07]
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Linked Open Data
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Linked Open Life Science Data
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Life Sciences are a major contributor to LOD
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Life Sciences in General?

Bio2RDF is the major contributor
to the Life Sciences LOD
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This Tutorial

e Part I — Data Integration for the Life Sciences
e Part II — Past and Presence
e Part III — Current Trends

e Part IV — Conclusions
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Wrap-Up

e Integration in CS research mostly means logical information integration
— Schemas first, discrete attributes, schema matching, queries rewriting
— "“Data not important”
e Integration in LS firstly requires statistical data integration
— Noisy experimental data, statistical aggregation
— “Schema not important”
o I[INDI+ U
— DI requires the data to be at hand
— II may use instance data
— DI techniques may depend on the origin of the data
— DI and II require reconciliation of objects and object IDs
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Three Trends

e DI workflows emphasize data analysis and may support DI by sharing
— But may be inefficient if results are to be re-used a lot

e Ranking focuses on providing meaningful answers despite questionable
data quality
— But falls short in further processing the ranked data

e Semantic Web strive for cost reduction for initial DI phases

— But do not yet provide mature tools for a tighter integration or integrated
analysis
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Three Trends

o DI workflows emphasize data analysis and may support DI by sharing
— But may be inefficient if results are to be re-used a lot
— Probably most appealing to LS researchers

e Ranking focuses on providing meaningful answers despite questionable
data quality
— But falls short in providing clues on how to further process the ranked data
— Probably most appealing to database researchers

e Semantic Web approaches strive for cost reduction for initial DI phases

— But do not yet provide mature tools for a tighter integration or integrated
analysis
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Further Trend: Standardization

e With proper standards in place, II becomes simple
— Vocabularies (ontologies)
— Schemas (GMOD, DAS, BioMart)
— Required information (MIA* standards)
— Exchange formats (BioPax, GFF, MAGE-TAB, ...)

e Essentially, semantic integration is performed upfront in the sources
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Example: Int. Cancer Genome Cons.

e Large-scale, international
endeavor

e Planned for 50 different
cancer types

e (Cancer types are
assigned to countries

ICG{_: “franchise”
database

|

C \i\

e Distributed BioMg o
infrastructurg “aQCross
e First federa¥ c)Q = L =
to a large int Backend
project [HAA+Q f

ICGC Frontend(s)

Figure 2: ICGC data coordination as a franchise system

Standard schema, restricted functionality, distributed architecture
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Further Issue: Sharing

~We requested data from ten investigators who had published in either
PLoS Medicine or PL0oS Clinical Trials. All responses were carefully
documented. In the event that we were refused data, we reminded
authors of the journal's data sharing guidelines. If we did not receive a
response to our initial request, a second request was made. Following
the ten requests for raw data, three investigators did not respond, four
authors responded and refused to share their data, two email
addresses were no longer valid, and one author requested further
details. A reminder of PLoS's explicit requirement that authors share
data did not change the repiy from the four authors who initially
refused. Only one author sent an original data set.” [SV09]

Most integration projects fail for social reasons, not
for technical ones
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What the Heck ...

Apparently, LS researchers do not like DR

Two cultures
— Publish a database or a method for building databases
— Publish in conferences or in journals

— Find a new fact about the physical world or a new method for an abstract

problem
— Know 100 genes and 3 methods, or know 10 methods and 1 gene
C

h h 1A D
O WNY SnouiG you Carée:

— Data integration is a pressing, real, ubiquitous problem in LS

Life Sciences are changing the (your) world
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