Übungsblatt 12

Aufgabe 75 mündlich

Sei p eine ungerade Primzahl.

- (a) Zeigen Sie, dass α oder $\alpha + p$ ein Erzeuger von $\mathbb{Z}_{p^2}^*$ ist, falls α ein Erzeuger von \mathbb{Z}_p^* ist.
- (b) Überlegen Sie, wie sich effizient verifizieren lässt, dass 3 sowohl ein Erzeuger von \mathbb{Z}_{29}^* als auch von $\mathbb{Z}_{29^2}^*$ ist.
- (c) Bestimmen Sie die Ordnung von 3 in \mathbb{Z}_m^* mit $m=29^3$. Hinweis: Es ist bekannt, dass α für alle $k \geq 1$ ein Erzeuger von $\mathbb{Z}_{p^k}^*$ ist, falls α ein Erzeuger von \mathbb{Z}_p^* und von $\mathbb{Z}_{p^2}^*$ ist.
- (d) Bestimmen Sie einen Erzeuger von \mathbb{Z}_{29}^* , der nicht gleichzeitig Erzeuger von $\mathbb{Z}_{29^2}^*$ ist.
- (e) Berechnen Sie mit dem Algorithmus von Pohlig und Hellman den diskreten Logarithmus von $\beta = 3344$ zur Basis $\alpha = 3$ in der Gruppe \mathbb{Z}_m^* mit $m = 29^3$.

Aufgabe 76 mündlich

Seien die Primzahl p=227 und der Erzeuger $\alpha=2$ von \mathbb{Z}_p^* gegeben.

- (a) Berechnen Sie die Potenzen α^{32} , α^{40} , α^{59} und α^{156} in \mathbb{Z}_p^* und faktorisieren Sie diese über der Faktorbasis $B = \{2, 3, 5, 7, 11\}$.
- (b) Bestimmen Sie die diskreten Logarithmen $\log_{\alpha} p$ der Basisprimzahlen $q \in B$.
- (c) Berechnen Sie $\log_{\alpha} \beta$ für $\beta = 173$ mit der Index-Calculus Methode.

Hinweis: Benutzen Sie die Faktorbasis B und die Zufallszahl 177.

Aufgabe 77 mündlich

Faktorisieren Sie n=256961 mit der Methode der zufälligen Quadrate. Verwenden Sie die Faktor-Basis

$$\{-1, 2, 3, 5, 7, 11, 13, 17, 19, 29, 31\}$$

und testen Sie die Zahlen z^2 mod n mit $z = 500, 501, \ldots$, bis Sie eine Kongruenz der Form $x^2 \equiv_n y^2$ erhalten und die Faktorisierung von n finden.

Aufgabe 78 mündlich

Mit welcher Wahrscheinlichkeit kann eine Zahl n mit der Methode der zufälligen Quadrate erfolgreich faktorisiert werden, wenn als Basis $\mathcal{B} = \{2, 3, 5, \dots, p_b\}$ verwendet wird und c > b+1 Quadratzahlen $z_i = x_i^2$ über \mathcal{B} faktorisiert werden konnten?