Biostatistics

https://www.youtube.com/watch?v=0Pd3dc1GcHc

Grundlagen der Bioinformatik

14.06.2022

Raik Otto raik.otto@hu-berlin.de

What Bioinformaticians What Computer Scientists think of when hearing 'Biostatistics' think of when hearing 'Biostatistics'

Agenda

- Need for biostatistics
- Normalization
- Differential expression
 - Fold Change
 - P-value
 - o t-test
- Clustering

Experimental Design

 $N_1,...,N_n$: control samples

 $T_1,...,T_n$: case samples

Identify genes with <u>significant</u> differences between **control** and **case**

Compare **control** gene X from group N with **case** gene X of group **control** = $\{n_1,...,n_m\}$ **case**= $\{t_1,...,t_n\}$

Sources of biases which necessitate normalization

Human beings

Experiments

Tissues Similar genes

Sources of technical variance

Separate technical from biological signal

What we want: comparability

Figure 7A. Ratio Intensity Plot of all probes for four pairs of chips from GeneLogic spike-in experiment

Figure 7B. As in A, after normalization by matching quantiles. Both figures courtesy of Terry Speed

before normalization

after normalization

Bolstad, Benjamin M., et al. "A comparison of normalization methods for high density oligonucleotide array data based on variance and bias." Bioinformatics 19.2 (2003): 185-193.

Quantile normalization

- √ Biological differences retained
- X Biological differences reduced
 - X: Expression matrix
 - C: columns $\{c_1, \ldots, c_m\}$

- 1. Sort columns: $X_c \rightarrow X_{c \text{ sorted}}$
- 2. Replace all rows in $\mathbf{X}_{c \text{ sorted}}$ with row medians
- 3. Unsort replaced $X_c \rightarrow X_{c \text{ sorted}}$

es	
⇉	
Š	

Indexes

Sort

Replace

E1	E2	E3	E4	E5
28	28	28	28	28
23	23	23	23	23
19	19	19	19	19
14	14	14	14	14
8	8	8	8	8
3	3	3	3	3
3	5	6	1	5
5	6	4	4	1
2	4	1	5	3
4	2	3	3	2
6	1	2	2	6
1	3	5	6	4

Reorder

Red boxes Median values

Differential expression

Z-score normalization

- Correct for different amount of mRNA per sample
- Z-score = scaling of counts
 - o 0 = average
- Examples: 2,-1, 0.1

$$Z = (X - mean_{est}) / sd_{est}$$

 $X_i =$ expression gene i

Mean_{est}: (estimated) expr. average over all genes

Sd: (estimated) expr. standard deviation of all genes

Fold Change

$$FC = log_2(rac{\overline{T}}{\overline{N}}) = log_2(\overline{T}) - log_2(\overline{N})$$

Thresholds (examples)

|FC| <1 not interesting

|FC| >2 interesting

Genes	Mean Case	Mean Control	Mean Case / Control	FC
А	16	1	16	4
В	0.0625	5 1 0.0625		-4
С	10	10	1	0
D	200	1	200	7.65

Fold Change - Advantages / Disadvantages

✓ Intuitive

- X Independent of scatter
- X Independent of absolute values
 - Score only based on mean of groups
 - o Spread of data points essential

Impact of variance

			1													1 3
	N1	N2	N3	N4	N5	N6	N7	C1	C2	C3	C4	C5	C6	C7	FC	1
Gene A	5	5	8	8	7	6	7	10	10	12	12	11	10	12	-4	
Gene B	3	4	3	3	5	5	4	4	11	10	4	11	8	3	-3	

- High abs(FC) for Gene A and Gene B
- But: variance very high in the tumor samples of Gene B
- Find test for FC and variance

$$Var(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$$

Hypothesis Testing 1

- 1. Determine null H0 and alternative hypothesis H1
 - H0 is opposite of what you want to show (H1)
- 2. Select a significance level (alpha) accepted risk
- 3. Take a random sample from the population of interest
- 4. Calculate a test statistic
- 5. Decision

Hypothesis Testing 2 - tests on risk

N DI-UNIL

T-test (unpaired two -sample)

Compares the mean of two unpaired samples

Assumption

- Values normally distributed
- Equal variances

Hypothesis

 H_0 (Null hypothesis): $m_1 = m_2 \text{vs.} m_1 != m_2$ (means are not equal)

Test statistic

Function of the sample that summarizes the data set into one value that can be used for hypothesis testing

Hypothesis Testing 3

OLDT-UNIL PSITA?

From T-statistic to p-value

T-value, a and number of samples determine the-p
value (look-up tables)

P-value

- Probability of observing your data under the assumption that H₀ is true
- Probability that you will be in error if rejecting H₀

Significance level (a)

 Probability of a false positive outcome of the test, the error of rejecting H₀ when it is actually true

If |t| > |T| we reject H_0

→ p-value is significant (p-value < a)

Examples

	q = 0.6	0.75	0.9	0.95	0.975	0.99	0.995	0.9975
n = 1	0.3249	1.0000	3.078	6.314	12.706	31.821	63.657	127.321
2	0.2887	0.8165	1.886	2.920	4.303	6.965	9.925	14.089
3	0.2767	0.7649	1.638	2.353	3.182	4.541	5.841	7.453
4	0.2707	0.7407	1.533	2.132	2.776	3.747	4.604	5.598
5	0.2672	0.7267	1.476	2.015	2.571	3.365	4.032	4.773
6	0.2648	0.7176	1.440	1.943	2.447	3.143	3.707	4.317
7	0.2632	0.7111	1.415	1.895	2.365	2.998	3.499	4.029
8	0.2619	0.7064	1.397	1.860	2.306	2.896	3.355	3.833
9	0.2610	0.7027	1.383	1.833	2.262	2.821	3.250	3.690
10	0.2602	0.6998	1.372	1.812	2.228	2.764	3.169	3.581
11	0.2596	0.6974	1.363	1.796	2.201	2.718	3.106	3.497
12	0.2590	0.6955	1.356	1.782	2.179	2.681	3.055	3.428
13	0.2586	0.6938	1.350	1.771	2.160	2.650	3.012	3.372
14	0.2582	0.6924	1.345	1.761	2.145	2.624	2.977	3.326

Degrees of freedom: |Samples| - 2, Here 16 - 2 = 14

Example t -value

Null-Hypothesis

$$H_0: m_N - m_T = 0 \text{ vs } H_1:$$

$$m_N - m_T != 0$$

Significance level (alpha or evalue in slide before): 0.05

$$T = \{3.7, 10.9, 10.3, 3.57, 10.5, 8.18, 3.27\}$$

Test statistic

Data from slide 9

P-value

$$_{\scriptscriptstyle 0.06}$$
 $t=$

$$=\frac{X_1-X_2}{S_p\cdot\sqrt{\frac{1}{m_1}\cdot\frac{1}{m_2}}}$$
 =

Critical value = 2.45

-> Not significant

Volcano plot

Combine P-value and Log-FC

- Y-axis: Negative log10 of the pvalue
- X-axis: Fold-change

Interested in

- Upper left
- Upper right corner

Multiple Testing Correction

Problem

Microarrays has 22k genes, thus anx=0.05 leads to approximately $22\ 000\ *0.05 \sim 1100$ FPs.

Solution: Multiple testing correction

- 1. Family wise error rate (FWER)
 - a. The probability of having at least one false positive in the set of results considered as significant
- 1. False discovery rate (FDR)
 - a. The expected proportion of true null hypotheses rejected in the total number of rejections.
 - b. FDR measures the expected proportion of incorrectly rejected null hypotheses, i.e. type I errors

Bonferroni correction

Ngenes pp-value

$$p_{\text{adjusted}} = p^* N$$

E.g. case of two palues (multiply by 2)

- 1. 0.001 -> 0.002
- 2. 0.03 -> 0.06

- Iff p_{adjusted} smaller than the *alpha* test significant
- Independence between the tests assumed
 - Possibly not the case
- Appropriate when a single false positive in a set of tests would be a problem (e.g., drug development)

Benjamini - Hochberg correction

- 1. Choose a specifi α (e.g. α =0.05)
- 1. Rank all m p-values from smallest to largest
- 1. Correct all p-values: $BH(pi)i=1,...,m=p_i*m/i$
- 1. BH (p) = significant if BH(p) $\leq \alpha$

Genes	p-value	rank	BH(p)	Significant 0.05
Α	0.00001	1	0.00001*1000/1 = 0.01	yes
В	0.0004	2	0.0004*1000/2 = 0.20	no
С	0.01	3	0.01*1000/3 = 3.3 -> 1.0	no

Clustering - Motivation

Subgroups detection

Quality control

Similarity -detection in spatial and temporal behavior

- Co-regulated / expressed genes
 - E.g. genes controlled by the same transcription factor

Discovery of new disease subtypes

Example

Clustering

Hierarchical clustering of expression data

Goal

 Partitioning Biological interpretation of subtypes (clusters)

Requires

(Useful) similarity measure

Advantages

Intuitive Simple (you would think)

Hierarchical Clustering - algorithm

ORW DE SITAY.

- Distance measure
 - a. Euclidean
 - b. Pearson, etc.
- 1. Compute similarity matrix S
- 1. While |S|>1:
 - a. Determine pair (X,Y) with minimal distance
 - b. Compute new value Z = avg(X,Y), (single, average, or complete linkage)
 - c. Delete X and Y in S, insert Z in S
 - d. Compute new distances of Z to all elements in S
 - e. Visualize X and Y as pair

Hierarchical Clustering - Linkage

- Methods produce similar results for data with strong clustering tendency
 - o (each cluster is compact and separated)
- Single Linkage

$$D(X,Y) = \min_{x \in X, y \in Y} d_{xy}$$

- Single smallest distance
- Violates the compactness property (i.e., observations inside the same cluster should tend to be similar)
- Complete Linkage
 - $D(X,Y) = \max_{x \in X, y \in Y} d_{xy}$ Most distant elements
- Average Linkage
 - $\bigcirc \qquad \text{Compromise} \qquad D(X,Y) = \frac{1}{N_X N_Y} \sum_{x \in X} \sum_{y \in Y} d_{xy}$