Übungsblatt 4

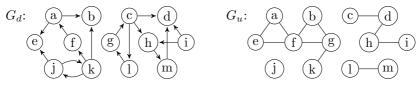
Besprechung der mündlichen Aufgaben am 1.–4. 12. 2020 Bearbeitung des Moodle-MC-Tests bis 30. 11. 2020, 23:59 Uhr Abgabe der schriftlichen Lösungen bis 8. 12. 2020, 23:59 Uhr

Aufgabe 23 Sei R eine Relation auf einer Menge A. Beweisen Sie: mündlich

- (a) $R^2 \subseteq R \Leftrightarrow R$ transitiv $\Leftrightarrow R^i \subseteq R$ für alle $i \ge 1$.
- (b) $R^+ = \bigcup_{i>1} R^i$.
- (c) R ist symmetrisch $\Rightarrow R^*$ ist symmetrisch.
- (d) $h_{\text{sym}}(R) = R \cup R^T$.
- (e) $h_{aq}(R) = (R \cup R^T)^*$.

Aufgabe 24 mündlich

Ein Digraph G' = (V', R') heißt Subgraph (oder auch Teilgraph) des Digraphen G = (V, R), falls $V' \subseteq V$ und $R' \subseteq R$ gilt. Die bzgl. Subgraphenordnung maximalen (stark) zusammenhängenden Subgraphen von G bezeichnen wir als die (starken) Zusammenhangskomponenten von G. Für zwei Knoten x und y gelte xZy (xSy), falls es eine (starke) Zusammenhangskomponente gibt, in der sowohl x als auch y liegen. Gegeben seien der Digraph $G_d = (V_d, R_d)$ und der Graph $G_u = (V_u, R_u)$.



- (a) Geben Sie die Knotenmengen der Zusammenhangskomponenten des Graphen G_u sowie der starken Zusammenhangskomponenten des Digraphen G_d an.
- (b) Drücken Sie Z in G_u bzw. S für G_d durch die Kantenrelation R_d bzw. R_u aus.
- (c) Geben Sie die Menge der Vorgänger $R_d^{-1}[k]$ und die der Nachfolger $R_d[k]$ von k in G_d sowie die Nachbarschaft $R_u[f]$ in G_u an.

Aufgabe 25 Seien E_1 und E_2 Äquivalenzrelationen auf A. **9 Punkte** Sind dann auch $E_1 \cap E_2, E_1 \cup E_2, E_1 \circ E_2$ Äquivalenzrelationen? Welche der drei Eigenschaften Reflexivität, Symmetrie und Transitivität bleiben jeweils erhalten, welche nicht? Begründen Sie.

Aufgabe 26 Auf $\mathbb{N}^+ = \mathbb{N} \setminus \{0\}$ seien folgende Relationen definiert: 8 *Punkte*

- (a) $xRy :\Leftrightarrow x + 2y$ ist durch 3 teilbar, (mündlich)
- (b) $xSy :\Leftrightarrow |x y| \le 7$, (3 Punkte)
- (c) $xUy :\Leftrightarrow x + y$ ist gerade, (5 Punkte)

Welche dieser Relationen sind Äquivalenzrelationen? Begründen Sie. Geben Sie gegebenenfalls die Äquivalenzklassen und ein Repräsentantensystem an.

Aufgabe 27 Sei $\Sigma = \{a, b\}$ und $x, y \in \Sigma^*$. 8 **Punkte** Dann heiße x Teilwort von y ($x \subseteq y$), falls $u, v \in \Sigma^*$ existieren mit y = uxv.

- (a) Zeigen Sie, dass \subseteq eine Ordnung auf Σ^* ist. (mündlich)
- (b) Zeichnen Sie das Hasse-Diagramm der Einschränkung \sqsubseteq_A von \sqsubseteq auf die Menge $A = \{a, b, aa, ab, ba, aab, abb, bba, aabba\}$ (Erinnerung $\sqsubseteq_A = \sqsubseteq \cap A \times A$). (mündlich)
- (c) Bestimmen Sie alle größten, kleinsten, minimalen und maximalen Elemente von A in der Ordnung (A, \sqsubseteq_A) . (2 Punkte)
- (d) Bestimmen Sie obere und untere Schranken sowie Supremum und Infimum von $H := \{abb, bba\}$ in der Ordnung (A, \subseteq_A) (sofern vorhanden). (2 Punkte)
- (e) Gibt es eine Menge $B = \{m_1, \ldots, m_9\}$ von endlichen Mengen m_i , sodass (B, \subseteq) isomorph zu (A, \subseteq_A) ist? Falls ja, geben Sie B und einen Isomorphismus an, falls nein, begründen Sie, warum kein solches B existiert. (4 Punkte)

Aufgabe 28 Sei $R = \{(\diamondsuit, 2), (\heartsuit, 3), (\diamondsuit, 4)\} \subseteq A \times B$ und $||A \times B|| = 6$. **5 Punkte**

- (a) Geben Sie $B \times A$ an und begründen Sie Ihre Antwort. (2 Punkte)
- (b) Welche der Relationen R, R^T , $(A \times B) \setminus R$ und $R \setminus \{(\diamondsuit, 4)\}$ sind Funktionen? Welche der Funktionen sind zusätzlich injektiv? (3 Punkte)