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Abstract

Independently and pursuing different aims, Hrushovski and Srour [HS89]
and Baudisch and Pillay [BP00] have introduced two free pseudospaces
that generalize the well know concept of Lachlan’s free pseudoplane. In
this paper we investigate the relationship between these free pseudospaces,
proving in particular, that the pseudospace of Baudisch and Pillay is a
reduct of the pseudospace of Hrushovski and Srour.

1 Introduction

Already back in 1974 Lachlan [Lac74] introduced the free pseudoplane which is
by now a well studied and well understood model-theoretic object. In particular,
Hrushovski and Pillay [HP85] showed that 1-based or weakly normal theories
do not contain a type-definable pseudoplane. Hence the free pseudoplane is the
prototype of a stable and not 1-based theory.

While the free pseudoplane is a 2-dimensional object in essence, two gener-
alizations of the pseudoplane in form of 3-dimensional pseudospaces were inde-
pendently introduced by Hrushovski and Srour [HS89] and Baudisch and Pillay
[BP00]. The motivations for the construction of these pseudospaces differ, but
the constructions itself share many common features. On the other hand, the
axiomatizations are at first sight of a comparatively different style, with even
differently chosen language for the two pseudospaces. It is the main purpose of
this paper to clarify the relationship between these two pseudospaces. In partic-
ular, we construct a standard model of the free pseudospace of Hrushovski and
Srour and prove that the free pseudospace of Baudisch and Pillay is a reduct of
this pseudospace. This relationship was already conjectured in [BP00] but the
actual verification is far from being obvious.

The free pseudospace of Hrushovski and Srour is the first example of a stable
and non-equational theory. Equational theories were introduced by Srour [PS84,
Sro88] and further developed by Junker and Kraus [Jun00, JK02]. A formula
ϕ(x̄, ȳ) is called an equation, if every intersection

⋂

i∈I ϕ(x̄, āi) of instances of ϕ
is equivalent to a sub-intersection

⋂

i∈I0
ϕ(x̄, āi) with finite I0 ⊆ I. A theory is

equational, if every formula is equivalent to a Boolean combination of equations.
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By counting the number of types it is easy to see that equational theories are
stable [PS84]. Thus Srour posed the question whether the class of equational
theories is a proper subclass of the class of stable theories. This question was
answered affirmatively by Hrushovski and Srour with the construction of their
free pseudospace in the unfortunately unpublished manuscript [HS89]. The
result from [HP85] mentioned above shows that Lachlan’s pseudoplane is a
typical example of a stable non-1-based theory. As equational theories provide
a natural generalization of 1-based theories [PS84], this motivates the approach
to search for a stable non-equational theory in form of a higher-dimensional
version of the pseudoplane.

Independently of [HS89], Baudisch and Pillay [BP00] constructed another
free pseudospace as an example of a non-CM -trivial stable theory in which no
infinite field is interpretable. This shows that the hierarchy of n-ample theories,
developed by Pillay [Pil00], is strict up to its second level. The first level of this
hierarchy is again formed by non-1-based theories, whereas 2-ample theories
correspond to non-CM -trivial theories.

This paper is organized as follows. In Sect. 2 we review the pseudoplane
of Lachlan [Lac74]. We also introduce a colored version of this pseudoplane
which will serve as an essential ingredient for the analysis of the pseudospace
of Hrushovski and Srour.

In Sects. 3 and 4 we describe the free pseudospaces Σ of Baudisch and Pillay
[BP00] and Γ of Hrushovski and Srour [HS89]. Using the standard model of Σ
from [BP00] we construct a standard model of Γ.

The main results follow in Sect. 5 where we investigate the relationship
between the axiom systems Σ and Γ. We prove that Σ is a reduct of Γ. The
main technical difficulty for this result lies in deriving from Γ the axioms of
Σ which expresses the freeness conditions. We achieve this by analyzing paths
and circles in models of Γ. As a byproduct we obtain a simplification of the
axiom system Σ.

In the final section we explain the original purpose of Γ as a stable non-
equational theory. In particular, we include a full proof for the non-equationality
of Γ which is based on the proof sketch given in the draft [HS89].

2 The Free Pseudoplane

First we will review the free pseudoplane of Lachlan [Lac74], because it is of
fundamental importance for the higher dimensional pseudospaces that are the
topic of this paper. The language contains unary predicates B and C for lines
and points, respectively, and a binary incidence relation I between lines and
points. The free pseudoplane is axiomatized by the following axiom set ∆:

∆1) Every element is a point or a line, but not both.

∆2) I ⊆ (B × C) ∪ (C ×B) is a symmetric relation between lines and points.

∆3) Every point lies via I on infinitely many lines. Conversely, every line
contains infinitely many points.
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∆4) There are no circles, i.e., there do not exist mutually distinct elements
x0, . . . , xn, n ≥ 2, with I(xi, xi+1), 0 ≤ i ≤ n− 1, and I(xn, x0).

The standard model N0 of ∆ has as its domain the set ω<ω of finite sequences
of natural numbers. The lines of N0 are the sequences of even length, whereas
sequences of odd length are points. The incidence relation I(x, y) holds between
elements x and y, if x is either a direct predecessor or a direct successor of y.
Thus N0 is a countable model of ∆, which is moreover connected. It is well
known that ∆ is a complete theory.

Next we will describe a colored modification of the free pseudoplane, where
lines and points are equipped with colors. This modification is not of indepen-
dent interest, but it will serve as an important building block in subsequent
sections. The language is enriched by unary relations Cr, Cw, Br and Bw for
red and white points and red and white lines, respectively. The axiom set
∆′ contains in addition to the axioms ∆1) to ∆4) the following three axioms
regarding the colors:

∆5) Every line is either red or white, i.e., it fulfills exactly one of the predicates
Br or Bw. The similar condition holds for points.

∆6) Every point lies on infinitely many white and on infinitely many red lines.

∆7) Every red (resp. white) line b contains exactly one red (resp. white) point,
which is called the exceptional point of b.

Models of ∆′ are called free colored pseudoplanes. The standard model N ′

0 of
the colored pseudoplane is derived from the standard model N0 of ∆ by coloring
lines and points. Lines are colored according to

Br(N
′

0) = {b | b ∈ B(N ′

0), bℓ(b) is even}

Bw(N ′

0) = {b | b ∈ B(N ′

0), bℓ(b) is odd} ,

where ℓ(b) denotes the length of the sequence b, and bℓ(b) is its last element. By
this construction every point lies on infinitely many red and white lines.

It remains to color the points. If the predecessor point c of a line b in
B(N ′

0) has a different color than b, then c is the exceptional point of b, and all
successors of b are colored with the color of b. If, on the other hand, b and c

are of the same color, then we can choose the exceptional point freely among
the successors of b. Therefore ∆7) is fulfilled, and hence N ′

0 is a model of ∆′.
It is not hard to directly construct an isomorphism between two countable

connected free colored pseudoplanes. Therefore also the theory ∆′ of the colored
pseudoplane is complete.

3 The Free Pseudospace of Baudisch and Pillay

In this section we describe a 3-dimensional analogon of the pseudoplane as
developed by Baudisch and Pillay [BP00]. In addition to points and lines the
pseudospace contains also planes. The language L of this pseudospace consists
of unary predicates A,B,C for planes, lines and points, respectively, and binary
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predicates I and J for the incidence relations between planes and lines as well
as between lines and points.

Before we describe the axioms of the pseudospace we need to introduce some
terminology. By A, B and C we also denote the set of planes, lines and points,
respectively. We will usually use letters a, a′, ai . . . for planes, b, b′, bi . . . for lines
and c, c′, ci . . . for points, and we will often refrain from indicating explicitly the
type of an element denoted in this way. Planes and lines are identified with the
set of its points, i.e., a = {c | (∃b)J(a, b) and I(b, c)} and b = {c | I(b, c)}. This
allows the use of expressions like c ∈ b, b ⊂ a or a ∩ b, which are considered
as abbreviations for the respective formulas involving the incidence relations
I and J . Further, we define for a plane a the sets B(a) = {b ∈ B |J(a, b)}
and C(a) = {c ∈ C | c ∈ a}. For a point c the sets A(c) and B(c) are defined
analogously.

Elements d0, . . . , dn from a sequence, if I(di, di+1) or J(di, di+1) for all 0 ≤
i ≤ n − 1. If additionally for all 0 ≤ i < j ≤ n with (i, j) 6= (0, n) we have
di 6= dj , then (d0, . . . , dn) is called a path. If all elements di are planes or lines,
then we speak of an AB-path. BC-paths are similarly defined. The length of a
path is the number of different elements in it, i.e. the length of the above path
is either n or n+ 1. A circle is a path (d0, . . . , dn) with d0 = dn.

The free pseudospace of [BP00] is axiomatized by the following axioms Σ:

Σ0) Every element fulfills exactly one of the relations A, B, or C. J ⊆ (A ×
B) ∪ (B ×A) and I ⊆ (B × C) ∪ (C ×B) are symmetric.

Σ1)(a) (A,B, J) is a free pseudoplane. Dually, we have:

Σ1)(b) (B,C, I) is a free pseudoplane.

Σ2)(a) (B(a), C(a), I) is a free pseudoplane for every plane a, and dually:

Σ2)(b) (A(c), B(c), J) is a free pseudoplane for every point c.

Σ3)(a) The intersection of two planes is either empty, or a point, or a line.

Σ3)(b) The set of planes that contain two distinct points is either empty, or
exactly one plane, or the set of planes containing a common line.

Σ4)(a) Let a be a plane and X = (a, b, . . . , b′, a) be a circle of length n. Then
there exists a BC-path between b and b′ of length at most n − 1, which
only contains points from X and lines from a.

Σ4)(b) Let c be a point and let X = (c, b, . . . , b′, c) be a circle of length n.
Then there exists an AB-path of length at most n − 1, which contains
only planes from X and lines from B(c).

It is apparent from the axioms that points and planes are completely dual to
each other. Many arguments can therefore be simplified by establishing some
property only for points and lines, which immediately implies this property for
planes and lines as well. In Sect. 5 we will prove that it is in fact not necessary to
include this duality in the axiomatization. It already follows from the (a)-parts
of the axioms of Σ.
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In [BP00] Baudisch and Pillay construct a countable connected standard
model M0 of Σ. Further, it is shown that the theory Σ is complete, ω-stable,
and not CM -trivial.

4 The Free Pseudospace of Hrushovski and Srour

This section is devoted to another free pseudospace, introduced by Hrushovski
and Srour [HS89]. Although this pseudospace is very similar to the pseudospace
of Baudisch and Pillay [BP00], it also contains a number of additional features.
Before giving the full axiomatization we will provide an informal description.

As in the pseudospace of [BP00] models consist of points, lines, and planes.
As before there are incidence relations I between points and lines and J between
lines and planes, but additionally there are two direct incidence relations Ir and
Iw between points and lines. Lines are either red or white, indicated by unary
relations Br and Bw. Points are also red or white, where the color of points
is specified by the binary relations Ir and Iw between points and planes. In
particular, points can change their color from plane to plane. Via Ir and Iw
planes split into a red and a white section. A red line b of a plane a contains
only points from the red section of a, except for one white point, the exceptional
point of b in a. The same holds for white lines. Lines and points of a plane
therefore form a free colored pseudoplane. Finally, there are axioms stating
that models are maximally free of circles.

The language L′ consists of unary relation symbols A,B,Br, Bw, and C for
planes, lines (red and white) and points, and binary relation symbols I, J, Ir,
and Iw for the incidence relations. Therefore L′ extends the language L from the
previous section. The axiom set Γ from [HS89] contains the following axioms:

Γ0) Every element fulfills exactly one of the relations A, B, or C. Lines are
either red or white, i.e., every line fulfills exactly one of the relations Br

or Bw. I ⊂ (B × C) ∪ (C ×B) is symmetric.

Γ1) Ir, Iw ⊂ (A×C) ∪ (C ×A) are the symmetric incidence relations between
planes and white and red points, respectively. Ir ∩ Iw = ∅. The red
and white sections of a plane a are defined as ar = {x | Ir(x, a)} and
aw = {x | Iw(x, a)}, respectively.

Γ2) J ⊂ (A×B)∪(B×A) is the symmetric incidence between planes and lines.
For all a ∈ A, b ∈ B it holds J(a, b) ↔ ∀x(I(x, b) → Ir(x, a) ∨ Iw(x, a)).

Γ3) The intersection of two lines is either empty or a single point.

Γ4) Every line contains infinitely many points. The set of lines is nonempty.

Γ5) For every plane a and every point c ∈ a there are infinitely many red and
infinitely many white lines in a containing c.

Γ6) For every red (resp. white) line b in a plane a there exists exactly one
exceptional point c ∈ aw ∩ b (resp. c ∈ ar ∩ b).
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Γ7) For every line b and every point c ∈ b there exist infinitely many planes a
with b ⊂ a, such that c is the exceptional point of b in a

Γ8) If b1, . . . , bn, n ≥ 2, are pairwise different lines with bi ∩ bi+1 6= ∅, 1 ≤
i ≤ n − 1, then b1 ∩ bn = ∅, or there exists a point c with c ∈ bi for all
i = 1, . . . , n.

Γ9) Planes are nonempty.

Γ10) The intersection of two planes is either empty or a point or a line.

Γ11) If a1, . . . , an, n ≥ 2, are pairwise distinct planes such that ai ∩ ai+1 is a
line for i = 1, . . . , n−1, then a1∩an = ∅, or a1∩an is a point, or a1, . . . , an

contain a common line.

Γ12) If a1, a2, a3 are three distinct planes such that ai ∩ aj 6= ∅, 1 ≤ i, j ≤ 3,
then a1, a2, a3 contain a common point.

Γ13) If a1, . . . , an, n ≥ 3, are pairwise distinct planes such that ai ∩ ai+1 6= ∅,
1 ≤ i ≤ n− 1, and ai ∩ ai+2 = ∅, 1 ≤ i ≤ n− 2, then a1 ∩ an = ∅.

To obtain consistent notation we have slightly modified the description of Γ
from [HS89] (in [HS89] the symbols A,B,Br, Bw, C are denoted differently, and
incidence relations are not symmetric). The notions of sequences, paths and
circles are easily modified to the language L′. It is, however, also allowed to
use the direct point-line incidence relations. Therefore, sequences in models of
Γ are not necessarily also sequences in the sense of Σ. This can, however, be
easily rectified by inserting appropriate lines in the sequences.

In contrast to the pseudospace of Baudisch and Pillay the duality between
points and planes is not so apparent from the axioms of Γ. Because of the colors
(points are red or white, and planes do not have colors) full duality is not even
possible. We will, however, show in the next section that the role of points and
planes can be interchanged if colors are omitted.

First we will show the consistency of Γ by constructing a colored version
M ′

0 of the standard model M0 of Σ from [BP00]. Planes and lines are defined
as a free pseudoplane ω<ω, where the set of planes is {η ∈ ω<ω | ℓ(η) is even}
and lines correspond to {η ∈ ω<ω | ℓ(η) is odd}. The incidence J(η, τ) holds,
if η is a direct predecessor or successor of τ . In analogy to Sect. 2 lines are
colored according to Br(M

′

0) = {b ∈ B(M ′

0) | bℓ(b) is even} and Bw(M ′

0) = {b ∈
B(M ′

0) | bℓ(b) is odd}. Hence every plane contains infinitely many red and in-
finitely many white lines. Planes and lines therefore form a free colored pseu-
doplane, where the color of planes is neglected.

Now we inductively augment points for the planes and define the relation I.
The set of all points is then formed by

⋃

{C(a) | ℓ(a) even}, such that for every
a (B(a), C(a), I) is a connected countable free pseudoplane. Initially, we choose
C(<>) as a countable set of points. Colors of B(<>) are already determined
by the coloring of (A,B, J) in such a way that B(<>) contains infinitely many
red and white lines. On B(<>) ∪ C(<>) we define a relation I<> such that
(B(<>), C(<>), I<>) is a countable connected free colored pseudoplane. In

6



colored pseudoplanes colors were indicated by unary relations Cr(x) and Cw(x),
here they are determined via the relations Ir(x,<>) and Iw(x,<>). Colors of
C(<>) in planes of length two are chosen in the next step of the construction.

Assume now that C(a) and Ia have already been constructed for all a of
length at most 2n. Let a have length 2n+2 and let b = a2n+1 be the predecessor
line of a. Let further C0 be the set of points of the line b and let C1 be a
countable set of new elements. As in the first step of the induction, the colors
of C0 in planes of length 2n + 2 have not been determined yet. This will be
done below, observing axiom Γ7).

Now we define Ia on B(a)∪C0 ∪C1 such that (B(a), C0 ∪C1, Ia) becomes
a connected countable free colored pseudoplane. We do not introduce any new
points on the line b, i.e., Ia(b, c) holds if and only if c ∈ C0. Colors of points
can be chosen independently in each plane and are indicated by the relations
Ir(x, a) and Iw(x, a). Additionally, the exceptional point of b is chosen such
that for each c ∈ C0 there are infinitely many planes a of length 2n + 2 such
that a2n+1 = b and c is the exceptional point of b on a. This is possible because
C0 is countable and also b contains countably many successor planes a on which
the exceptional point can be chosen arbitrarily. Hence Γ7) is fulfilled.

Finally, the set of all points M ′

0 is the union of all sets C(a), and the relation
I between points and lines is the union of all Ia. The relations Ir and Iw between
points and planes are defined by the respective colorings of the points in the
planes.

Let M0 be the L-reduct of M ′

0. It turns out that M0 is exactly the standard
model of Σ constructed in [BP00]. Therefore Σ is valid in M ′

0. It remains to
show that also Γ is fulfilled in M ′

0. The next lemma follows directly from the
construction of M ′

0.

Lemma 4.1 M ′

0 satisfies the axioms Γ0) to Γ2) and Γ5) to Γ7).

The remaining axioms of Γ will be derived from Σ. As M ′

0 is a model of Σ
this implies the validity of Γ in M ′

0.

Lemma 4.2 Every model of Σ satisfies Γ3), Γ4), and Γ8) to Γ11).

Proof. Axiom Σ1)(b) implies Γ3), Γ4), and Γ8). Axiom Γ9) is implied by
Σ1)(a). The axioms Γ10) and Σ3)(a) are identical. Finally, Γ11) follows from
Σ1)(a) and Σ3)(a). ⊓⊔

To derive Γ12) and Γ13) from Σ requires some extra arguments.

Lemma 4.3 Every model of Σ satisfies Γ12).

Proof. Let a1, a2, a3 be distinct planes and let c1, c2, c3 be points such that
c1 ∈ a2∩a3, c2 ∈ a1∩a3, c3 ∈ a1∩a2. We have to show the existence of a point
c ∈ a1 ∩ a2 ∩ a3. If c1 ∈ a1, then c = c1 is such a point. Likewise, if c2 ∈ a2 or
c3 ∈ a3. Assume now that

ci 6∈ ai for i = 1, . . . , 3. (1)

7



We will derive a contradiction. By assumption c1, c2, and c3 are pairwise dis-
tinct. Hence there exists a circle

(a1, b3, c3, b
′

3, a2, b1, c1, b
′

1, a3, b2, c2, b
′

2, a1)

with pairwise distinct b1, b2, b3, b
′

1, b
′

2, b
′

3. Choosing such lines is possible by (1)
and because (B(ai), C(ai), I) is a free pseudoplane. By Σ4)(a) there exists a
BC-path X between b3 and b′2, containing only lines from a1 and points from
{c1, c2, c3}. The point c1 cannot occur in X because c1 6∈ a1. Hence we have
either

(a) X = (b3, c3, b
′

2) or
(b) X = (b3, c2, b

′

2) or
(c) X = (b3, c3, b

′, c2, b
′

2) with b′ ⊂ a1.

In every case there exists a line b′′1 ⊂ a1 with c3 ∈ b′′1 and c2 ∈ b′′1 , namely in
(a) b′′1 = b′2, in (b) b′′1 = b3 and in (c) b′′1 = b′. Analogously, using c2 6∈ a2 and
c3 6∈ a3 we get lines b′′2 ∈ a2 and b′′3 ∈ a3 with c1, c3 ∈ b′′2 and c1, c2 ∈ b′′3. By (1)
the lines b′′1 , b

′′

2 and b′′3 are pairwise distinct. Hence there exists a circle of lines
and points

(b′′1 , c3, b
′′

2 , c1, b
′′

3 , c2, b
′′

1) ,

contradicting Σ1)(b). ⊓⊔

Lemma 4.4 Every model of Σ satisfies Γ13).

Proof. Let a1, . . . , an, n ≥ 3, be distinct planes with ci ∈ ai ∩ ai+1, 1 ≤ i < n,
and ai ∩ ai+2 = ∅, 1 ≤ i < n − 1. We have to prove a1 ∩ an = ∅. We will show
this by induction on n. The base case n = 3 is clear. Let n > 3 and assume
that Γ13) is valid for all 3 ≤ k < n. By hypothesis we have

ai ∩ aj = ∅ for 1 ≤ i < j ≤ n with i+ 1 6= j and (i, j) 6= (1, n). (2)

Assume now, that there exists a point cn ∈ a1 ∩ an. We will construct a
contradiction, similarly as in the previous lemma. By (2) and the assumption
there exists a circle

(a1, b, c1, b
′, a2, . . . , an, b

′′, cn, b
′′′, a1) .

Applying Σ4)(a) yields a pathX between b and b′′′, containing only lines from a1

and points from {c1, . . . , cn}. By (2) c2, . . . , cn−1 cannot appear in X. Hence we
have X = (b, c1, b

′′′), or X = (b, cn, b
′′′), or X = (b, c1, b1, cn, b

′′′) with b1 ⊂ a1.
In each case there exists a line b1, containing the points c1 and cn. Analogously,
(2) yields lines b2, . . . , bn with ci−1 ∈ bi and ci ∈ bi, 2 ≤ i ≤ n. By (2) all lines
b1, . . . , bn are distinct. Hence there is a circle

(b1, c1, b2, c2, . . . , bn, cn, b1) ,

contradicting axiom Σ1)(b). ⊓⊔

Corollary 4.5 M ′

0 is a model of Γ, and hence Γ is consistent.
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5 The Relationship Between the Two Pseudospaces

In this section we analyse the relationship between the axioms of Σ and Γ.
Already in the last section we have shown that most axioms from Γ (except
those concerning the colors) are derivable from Σ. Now we will prove that the
axioms of Γ also imply all axioms from Σ. But first we will make two remarks
on the system Σ itself.

Lemma 5.1 Every model of Σ0),Σ1) and Σ2)(a) fulfills Σ2)(b).

Proof. Let c be a point. We have to show that (A(c), B(c), J) is a free pseu-
doplane, i.e., we have to check the axioms ∆1) to ∆4). Axioms ∆1) and ∆2)
follow immediately from Σ0).

For ∆3) let a ∈ A(c). By Σ2)(a) (B(a), C(a), I) is a free pseudoplane.
Because c ∈ C(a) there exist infinitely many lines in a that contain c. Therefore
every plane in (A(c), B(c), J) contains infinitely many lines. That every line b
lies in infinitely many planes follows from Σ1)(a), because every plane a ⊃ b

also contains c. Finally, (A(c), B(c), J) does not contain circles as this is already
true for (A,B, J) by Σ1)(a). Hence also ∆4) is fulfilled. ⊓⊔

Lemma 5.2 Every model of Σ0), Σ1) and Σ3)(a) satisfies Σ3)(b).

Proof. Let c and c′ be two distinct points. If there is none or exactly one plane
containing c and c′, then Σ3)(b) is already fulfilled for c and c′.

Assume therefore that a and a′ are two distinct planes that both contain
c and c′. Then {c, c′} ⊆ a ∩ a′, and by Σ3)(a) there exists a line b such that
c, c′ ∈ b and a∩a′ = b. By Σ1)(b) this line b is uniquely determined by c and c′.
Hence the planes containing c and c′ are exactly the planes that contain b. ⊓⊔

For the axioms Γ5) and Γ7) we will now consider the weaker assertions Γ5′)
and Γ7′).

Γ5′) For every plane a and every point c ∈ a there exist infinitely many lines
in a that contain c.

Γ7′) Every line lies in infinitely many planes.

Γ0′) and Γ2′) are obtained from Γ0) and Γ2) by omitting the parts that
refer to the color relations Br, Bw and Ir, Iw. The system Γ′ in the language
L consists of the axioms Γ0′), Γ2′), Γ3), Γ4), Γ5′), Γ7′), and Γ8) to Γ13).
Apparently we have:

Proposition 5.3 Every model of Γ is a model of Γ′.

We now aim to show the equivalence of Σ and Γ′. For this we will first derive
Σ4)(a) from Γ′, which requires the following lemma.

Lemma 5.4 Let M |= Γ′ and let X = (a, b, c0, a1, c1, . . . , cn−1, an, cn, b
′, a) be

a circle in M consisting of planes a = a0, a1, . . . , an, lines b, b′, and points

c0, . . . , cn. Then there exists a BC-path Y = (b, c′0, b
′

1, c
′

1, . . . , c
′

m−1, b
′

m, c
′

m, b
′)

such that {c′0, . . . , c
′

m} ⊆ {c0, . . . , cn} and c′i ∈ a, 0 ≤ i ≤ m. Additionally, we

have b′i ⊂ a, 1 ≤ i ≤ m.
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Proof. The last sentence follows from the first part of the lemma. Namely, if
a′i 6= a is a plane with b′i ⊂ a′i, then c′i−1, c

′

i ∈ a
′

i ∩ a, and hence b′i = a′i ∩ a.
The first part of the lemma is shown by induction on n. Because for n = 2

we use Γ12), and we can only use Γ13) for n ≥ 3, we have to include also n = 2
in the base case of the induction.

Base case. For n = 0 we have X = (a, b, c0, b
′, a), and the claim is true.

For n = 1 we have X = (a, b, c0, a1, c1, b
′, a), i.e., c0, c1 ∈ a∩ a1. Then there

exists a line b′′ = a ∩ a1, and hence there is the sequence (b, c0, b
′′, c1, b

′). If
b = b′′ or b′′ = b′, then the sequence can be shortened. In the following we will
not explicitly mention, if a sequence can be shortened in such a way.

For n = 2 we have X = (a, b, c0, a1, c1, a2, c2, b
′, a). By Γ12) there exists a

point c ∈ a ∩ a1 ∩ a2. We will distinguish four cases.
Case 1. c = c0, i.e., in particular c 6= c2. Then there exists b′′ = a∩ a2 such

that c0, c2 ∈ b′′. Therefore the desired path Y is obtained from the sequence
(b, c0, b

′′, c2, b
′).

Case 2. c = c1, hence c 6= c0 and c 6= c2. Then there exist lines b′′ = a ∩ a1

and b′′′ = a ∩ a2 such that c0, c1 ∈ b′′ and c1, c2 ∈ b′′′. Therefore we have the
sequence (b, c0, b

′′, c1, b
′′′, c2, b

′).
Case 3. c = c2. Like case 1.
Case 4. c 6= c0, c 6= c1, and c 6= c2. Then we have lines b0 = a ∩ a1,

b1 = a1∩a2, and b2 = a2∩a, i.e., there exists the sequence (a, b0, a1, b1, a2, b2, a).
Because a, a1, a2 are pairwise distinct they contain a common line b′′ by Γ11),
which is identical with b0, b1 and b2 by Γ10), i.e., b′′ = b0 = b1 = b2. Therefore
we get the sequence (b, c0, b0, c2, b

′).
Induction step. Let the claim be true for k < n, n ≥ 3. If there exists an

index i, 1 ≤ i ≤ n−1 such that ci ∈ a, then we choose b′′ ⊂ a with ci ∈ b′′. Hence
we have the paths (a, b, c0, . . . , ai, ci, b

′′, a) and (a, b′′, ci, ai+1, . . . , an, cn, b
′, a).

By induction hypothesis there exist BC-paths connecting b and b′′ as well as
b′′ and b′, that only use points from {c0, . . . , cn} lying in a. We obtain the
desired BC-path between b and b′ by concatenation. We can therefore make
the following

Assumption 1 ci 6∈ a for 1 ≤ i ≤ n− 1.

If there exist i and j such that 0 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, j−1 and ci ∈ aj ,
then we can shorten the path X to X ′ = (a, b, c0, . . . , ai, ci, aj , cj , . . . , b

′, a) if
i < j−1, and toX ′ = (a, b, c0, . . . , cj−1, aj, ci, ai+1, . . . , b

′, a) if i > j. In this case
the induction hypothesis for X ′ yields the claim. In addition to Assumption 1
we therefore make

Assumption 2 ci 6∈ aj for 0 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, j − 1.

Finally, if c0 and cn are on a common line b′′, then we directly get the path
Y from (b, c0, b

′′, cn, b
′). We therefore also assume

Assumption 3 c0 and cn do not lie on a common line.
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From Assumptions 1 to 3 we will derive a contradiction, hence for any
given X at least one of these assumptions does not hold, and thus the claim is
proved. By Γ13) there exists some j, 0 ≤ j ≤ n − 2 such that aj ∩ aj+2 6= ∅.
Let c ∈ aj ∩ aj+2. For this situation we will prove the following claim.

Claim 1 If there exists a point c ∈ aj ∩ aj+2 with 0 ≤ j ≤ n − 2, then there

exists a BC-path Y ′ which connects b and b′ and does not use any points except

c0, cn, and c. Further, c appears in Y ′, and we have c 6= c0, c 6= cn, and c ∈ a.

Proof of Claim 1. To prove the first sentence we will distinguish two cases.
Case 1. j = 0, i.e., c ∈ a ∩ a2. Then there exists b′′ ⊂ a such that c ∈ b′′.

Hence we get circles (a, b, c0, a1, c1, a2, c, b
′′, a) and (a, b′′, c, a2, . . . , an, cn, b

′, a).
Applying the induction hypothesis twice yields BC-paths between b and b′′ as
well as between b′′ and b′. By Assumption 1 these paths only contain points
from {c0, cn, c}. By concatenation we get a BC-path connecting b and b′.

Case 2. 1 ≤ j ≤ n− 2. Then we have a circle (a, b, . . . , aj , c, aj+2, . . . , b
′, a),

and by induction hypothesis and Assumption 1 we get a BC-path that contains
only the points c0, cn, c.

Thus the path Y ′ only uses the points c0, cn, and c. The point c is in-
cluded in Y ′ because all choices for Y ′ omitting c, i.e., (b, c0, b

′), (b, cn, b
′), and

(b, c0, b
′′, cn, b

′) contradict Assumption 3. Thus the only possible configurations
for Y ′ are (b, c, b′), (b, c, b′′, cn, b

′), and (b, c0, b
′′, c, b′′′, cn, b

′), in which case c 6= c0
and c 6= cn follow by Assumption 3 and because Y ′ is a path. Hence c appears
in Y ′, and therefore we get c ∈ a by induction hypothesis. ⊓⊔

By Γ13) there exists a point c ∈ aj ∩aj+2, 0 ≤ j ≤ n− 2. Applying Claim 1
to this point we obtain a BC-path between b and b′, using the point c and
possibly also c0 and cn. We will call this path Y1. In the next claim we prove
that c is contained in all planes ai.

Claim 2 For all 1 ≤ i ≤ n we have c ∈ ai.

Proof of Claim 2. We will prove inductively the following claim: if c ∈ ai and
c ∈ aj, 0 ≤ i < j ≤ n + 1 (with a0 = an+1 = a), then c ∈ ak for all i ≤ k ≤ j.
The proof proceeds by induction on l = j − i.

Base case. For l = 1 there is nothing to show. Let l = 2, i.e., c ∈ ai ∩ ai+2.
By Γ12) we have ai ∩ ai+1 ∩ ai+2 6= ∅. Let c′ ∈ ai ∩ ai+1 ∩ ai+2. Claim 1 for
c′ yields a BC-path Y2 between b and b′, that contains c′ and possibly also c0
and cn. As (B,C, I) is a free pseudoplane, BC-paths are unique, and therefore
Y1 = Y2 and in particular c = c′. Hence c ∈ ai+1.

Induction step. Let l ≥ 3 and let the claim be true for all k < l. Then we
have the situation (ai, ci, . . . , ci+l−1, ai+l, c, ai). By Γ13) there exists an index
m such that i ≤ m ≤ i + l − 2 and am ∩ am+2 6= ∅. Let c′ ∈ am ∩ am+2. As
before, applying Claim 1 to c′ we get a BC-path Y2 between b and b′, using only
the points c0, cn and c′. Then we have Y1 = Y2 and hence c = c′. Therefore
c ∈ ai ∩am+1 ∩ai+l and the induction hypothesis yields c ∈ ai+k, 0 ≤ k ≤ l. ⊓⊔

By Claim 1 we have c ∈ a and by Assumption 1 c 6= ci, 1 ≤ i ≤ n − 1.
Together with Claim 1 we get c 6= ci, 0 ≤ i ≤ n. By Claim 2 this means
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c, ci ∈ ai ∩ ai+1, 0 ≤ i ≤ n. Thus by Γ10) there exist lines bi = ai ∩ ai+1 such
that c, ci ∈ bi, 0 ≤ i ≤ n. The lines b0, . . . , bn−1 are pairwise distinct, because
if bi = bj , 0 ≤ i < j ≤ n − 1, then ci ∈ bi = bj = aj ∩ aj+1 in contradiction to
Assumption 2. By the same argument the lines b1, . . . , bn are pairwise distinct.
Additionally, Assumption 3 yields b0 6= bn, hence all of b0, . . . , bn are pairwise
distinct. Therefore we get an AB-circle (a, b0, a1, b1, . . . , bn−1, an, bn, a) in con-
tradiction to Γ11). Hence Assumptions 1 to 3 cannot hold simultaneously, and
the proof is complete. ⊓⊔

This enables us to prove the validity of Σ4)(a) in Γ.

Theorem 5.5 Every model of Γ′ satisfies Σ4)(a).

Proof. Let X = (a, b, . . . , b′, a) be an ABC-circle. We have to construct a BC-
path Y connecting b and b′ and consisting only of points from X which are in
a. To apply the previous lemma we transform X to a circle X ′ that contains
no lines except b and b′. To achieve this we apply the following steps a) to c)
to the inner part b, . . . , b′ of X:

a) Every sequence of the form a1, b1, c1 is replaced by a1, c1. Similarly, every
sequence c1, b1, a1 is shortened to c1, a1.

b) Every sequence c1, b1, c2 is substituted by c1, a1, c2, where the plane a1

contains the line b1 and does not occur in X.

c) Finally, every sequence of the form a1, b1, a2 is changed to a1, c1, a2 with
an arbitrary point c1 from b1 that does not occur in X.

After these steps have been performed on X we apply the following rule:

d) If the circle X obtained after the steps a) to c) starts with a, b, a1, then we
choose some point c0 from b, not contained in X, and replace a, b, a1 by
a, b, c0, a1. Similarly, if X ends with an, b

′, a, then we insert a new point
cn ∈ b′, obtaining an, cn, b

′, a.

The circle X ′ thus obtained has the form X ′ = (a, b, c0, a1, c1, . . . , an, cn, b
′, a)

and contains only planes, the lines b and b′, and all points from X as well as
new points inserted by the rules c) and d). Applying Lemma 5.4 to X ′ yields
a BC-path Y between b and b′ with points from X ′ and lines from a. The new
points introduced by the rules c) and d) can be chosen arbitrarily from infinitely
many possibilities. Therefore, as BC-paths are unique, these new points cannot
appear in Y . Hence the path Y is in accordance with the requirements from
axiom Σ4)(a). ⊓⊔

It remains to derive axiom Σ4)(b) from Γ. This requires a similar result as
Lemma 5.4, but with a considerably simpler proof.

Lemma 5.6 In a model of Γ′ let X = (c, b, a0, c0, . . . , cn−1, an, b
′, c) be a cir-

cle consisting of planes a0, . . . , an, lines b, b′, and points c0, . . . , cn−1. Then

there exists an AB-path Y = (b, a′0, b
′

0, . . . , b
′

m−1, a
′

m, b
′) with {a′0, . . . , a

′

m} ⊆
{a0, . . . , an} and c ∈ a′i, 0 ≤ i ≤ m. Additionally, we have c ∈ b′i, 0 ≤ i ≤ m−1.
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Proof. The last assertion c ∈ b′i follows from c ∈ a′i ∩ a
′

i+1 = b′i. We will show
the first part of the claim by induction on n.

Base case. For n = 0 we have X = (c, b, a0, b
′, c), and the claim holds.

For n = 1 we have X = (c, b, a0, c0, a1, b
′, c). Because c, c0 ∈ a0 ∩ a1 there is

a line b0 = a0 ∩ a1, and hence we get the sequence (b, a0, b0, a1, b
′).

For n = 2 we have X = (c, b, a0, c0, a1, c1, a2, b
′, c). By Γ12) there exists a

point c′ ∈ a0 ∩ a1 ∩ a2. We will distinguish four cases.
Case 1. c′ = c0. Then c0 ∈ a2, and there exists the circle (c, b, a0, c0, a2, b

′, c).
We can therefore continue as in the case n = 1.

Case 2. The case c′ = c1 is analogous to case 1.
Case 3. c′ = c, and therefore in particular c′ 6= c0 and c′ 6= c1. Then there

exist lines b0 = a0∩a1 and b1 = a1∩a2, yielding the path (b, a0, b0, a1, b1, a2, b
′).

Case 4. c′ 6= c, c′ 6= c0, and c′ 6= c1. Then there exist lines b0 = a0 ∩ a1,
b1 = a1∩a2, and b2 = a2∩a0, i.e., we have the sequence (a0, b0, a1, b1, a2, b2, a0).
From this we infer b0 = b1 = b2 (cf. the resp. part of the proof of Lemma 5.4),
and thus we obtain the path (b, a0, b0, a2, b

′).
Induction step. Let the claim be true for k < n, n ≥ 3. By Γ13) there exists

an index i, 0 ≤ i ≤ n− 2 such that ai ∩ ai+2 6= ∅. Let c′ ∈ ai ∩ ai+2. Applying
the induction hypothesis to (c, b, a0, . . . , ci−1, ai, c

′, ai+2, ci+2, . . . , an, b
′, c) yields

the desired AB-path Y . ⊓⊔

Theorem 5.7 Every model of Γ′ satisfies Σ4)(b).

Proof. Let X = (c, b, . . . , b′, c) be an ABC-circle. We search for an AB-path
between b and b′ with planes fromX that contain c. As the proof of Theorem 5.5
we transform X to a circle X ′ that does not contain any lines except b and b′.
This is achieved by first applying the rules a) to c) from the proof of Theorem 5.5
to the inner part b, . . . , b′ of X. Rule d) is replaced by:

d’) If the path X obtained by rules a) to c) starts with c, b, c0, then we choose
a plane a0 with b ⊂ a0 and replace c, b, c0 by c, b, a0, c0. Similarly, if the
path ends with cn−1, b

′, c, then we insert a new plane an ⊃ b′.

The path X ′ obtained from X by the rules a) to c) and d’) is now of the form
X ′ = (c, b, a0, c0, . . . , an−1, cn−1, an, b

′, c). Applying Lemma 5.6 to X ′ yields
an AB-path Y between b and b′ with planes from X ′ and lines containing c.
The planes inserted by rules b) and d’) cannot appear in Y , because AB-paths
are unique, and for the new planes from b) and d’) there exist infinitely many
different choices. Therefore Y meets the requirements of Σ4)(b). ⊓⊔

These preparations enable us to characterize the relationship between Σ and
Γ as follows:

Theorem 5.8 Σ and Γ′ are equivalent.

Proof. In the last section we have already shown that Σ implies the axioms
Γ3),Γ4), and Γ8) to Γ13). The remaining axioms of Γ′ are also easily seen to
be valid in models of Σ, and therefore Σ |= Γ′.
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Concerning the converse Γ′ |= Σ, axiom Σ0) follows from Γ0′) and Γ2′).
To derive Σ1) and Σ2)(a) from Γ′ we have to check the axioms ∆ for the
respective pseudoplanes. Axioms ∆1) and ∆2) defining the incidence relations
are apparently fulfilled. ∆3) is easily checked to follow from Γ4), Γ5′), and
Γ7′). For ∆4) we have to verify the absence of circles. AB-circles do not exist
by Γ10) and Γ11). By Γ3) and Γ8) there are also no BC-circles. Clearly, then
there are also no circles in the pseudoplanes mentioned in Σ2)(a).

Σ3)(a) is equivalent to Γ10). By Lemmas 5.1 and 5.2 the axioms Σ2)(b)
and Σ3)(b) hold in Γ′. Finally, Σ4) was proved in Theorems 5.5 and 5.7. ⊓⊔

Corollary 5.9 Σ is the L-reduct of Γ, i.e., if M is an L′-structure such that

M |= Γ, then M |L is a model of Σ.

This corollary also clarifies the duality between points and lines in models of
Γ, namely, if the colors are removed, then points and planes can be interchanged.
In fact, this duality is a very natural concept, that does not even have to be
required axiomatically. This is the content of the next corollary.

Corollary 5.10 Every model of Σ0),Σ1),Σ2)(a),Σ3)(a), and Σ4)(a) fulfills all

axioms of Σ.

Proof. Let M be an L-structure satisfying Σ0),Σ1),Σ2)(a),Σ3)(a), and Σ4)(a).
By Lemmas 5.1 and 5.2 M also satisfies Σ2)(b) and Σ3)(b). In the proof of
Σ |= Γ′ we only used the above mentioned axioms of Σ. In particular, the
proofs of Lemmas 4.3 and 4.4 do not involve Σ4)(b). Therefore M |= Γ′, and
with Theorem 5.8 we get M |= Σ. ⊓⊔

6 On the Non-Equationality of Γ

Baudisch and Pillay proved in [BP00] that the pseudospace Σ is a complete
and ω-stable theory. Once we know that Γ is a reduct of Σ, the same line
of arguments can be also used to show the completeness and ω-stability of Γ.
This involves in particular exploring the fine structure of sufficiently saturated
models of Γ and a detailed type analysis together with the computation of
Morley ranks. In comparison to [BP00], however, the details are somewhat
more tedious due to the richer language of Γ. We will omit this altogether
and proceed to explain the original purpose of Γ as an example of a stable and
non-equational theory.

Computing Morley ranks in Γ it turns out that, as in Σ, the Morley rank
of a plane a is ω. However, in contrast to Σ, where we have MD(a) = 1,
the Morley degree of a increases to 2 in Γ, owing to the fact that a splits into
a white and a red section. For these we get MR(ar) = MR(aw) = ω and
MD(ar) = MD(aw) = 1. Building on this analysis the next result from [HS89]
is the key lemma for showing the non-equationality of Γ. In fact, it is the only
place in the whole argument where equations come into play.
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Lemma 6.1 (Hrushovski, Srour [HS89]) Let ϕ(x, ȳ) be an equation and

D = ϕ(x, d̄) be an instance of this equation. Then for every line b and ev-

ery plane a the following holds:

1. Let b be almost in D, i.e., all points of b except finitely many are in D.

Then already all points of b are in D.

2. If MR(ar \D) < ω, then a ⊆ D.

Proof. For the first item let us assume that there exists a point c ∈ b \D, and
let c′ be an arbitrary point from b. In the type analysis of Γ it turns out that
points are indiscernible over lines, i.e., there exists an automorphism f mapping
c to c′ and fixing b. We will denote f(D) by Dc′ . Because c 6∈ D we also have
c′ 6∈ Dc′ . As b is almost in D and is fixed by f , the line b is also almost in Dc′ .
Varying the point c′ we get

⋂

c′∈bDc′ = ∅, because c′ 6∈ Dc′ . The sets Dc′ are
all instances of the equation ϕ, hence there exist points c1, . . . , cn from b such
that

n
⋂

i=1

Dci
=

⋂

c′∈b

Dc′ = ∅ .

But by assumption b is almost in Dci
for 1 ≤ i ≤ n and therefore also almost

in
⋂n

i=1Dci
, which gives a contradiction.

For part 2 we first prove ar ⊆ D by a similar argument as in part 1. Assume
that there exists a point c ∈ ar \D, and let c′ ∈ ar be arbitrary. As before there
exists an automorphism f such that f(c) = c′ and f(a) = a. Let again Dc′

denote f(D). By c 6∈ D we get c′ 6∈ Dc′ . As f also fixes the red section ar we
have f(ar \D) = ar \Dc′ . Morley ranks are preserved by automorphisms, hence
MR(ar \Dc′) is finite. As Dc′ are instances of the equation ϕ, there exist points
c1, . . . , cn such that

⋂n
i=1Dci

=
⋂

c′∈ar
Dc′ = ∅. Therefore

⋃n
i=1 ar \ Dci

= ar

and MR(ar \Dci
) < ω, contradicting MR(ar) = ω. This shows ar ⊆ D.

It remains to show aw ⊆ D. For this let c ∈ aw. There exists a red line b in
a that contains c, i.e., c is the exceptional point of b in a. Then b is contained
almost in ar, hence also almost in D. By part 1 we conclude that the whole
line b lies in D, hence in particular c ∈ D. ⊓⊔

This lemma enables us to give the full proof of the main theorem of [HS89]
stating the non-equationality of the pseudospace Γ.

Theorem 6.2 (Hrushovski, Srour [HS89]) Γ is not equational. More pre-

cisely, if a is a plane, then the formula Ir(x, a), defining the red section ar of

a, is not equivalent to a Boolean combination of equations.

Proof. Assume that ar can be described by a Boolean combination of equations,
and let

ar =
n
∨

i=1





ni
∧

j=1

ψij ∧

n′

i
∧

j=1

¬ψ′

ij



 ,
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where ψij and ψ′

ij are instances of equations. Finite conjunctions and finite
disjunctions of equations are again equations (cf. [Jun00]). Using the abbrevi-

ations ψi =
∧ni

j=1 ψij and ψ′

i =
∨n′

i

j=1 ψ
′

ij we can therefore write ar as

ar =
n
∨

i=1

ψi ∧ ¬ψ′

i

with equations ψi and ψ′

i.
Because MR(ar) = ω, there exists an index j, 1 ≤ j ≤ n, such thatMR(ψj∧

¬ψ′

j) = ω. Let Y = ψj ∧ ¬ψ′

j. From MD(ar) = 1 and MR(ar) = MR(Y ) = ω

we conclude MR(ar \ Y ) < ω.
Because ar \ ψj ⊆ ar \ Y we get MR(ar \ ψj) ≤ MR(ar \ Y ), hence in

particular MR(ar \ ψj) is finite. Part 2 of Lemma 6.1 then yields a ⊆ ψj . As
Y ⊆ ar this implies aw ⊆ ψ′

j . As in the proof of part 2 of Lemma 6.1 this
extends to a ⊆ ψ′

j . Namely, if c ∈ ar, then there exists a white line b in a such
that c is the exceptional point of b in a. As b is almost in ψ′

j we get by part 1
of Lemma 6.1 b ⊆ ψ′

j and hence c ∈ ψ′

j. Now we have Y ⊆ ar and a ⊆ ψ′

j which
implies Y = ∅. But this means MR(ar) = MR(ar \ Y ) < ω in contradiction to
MR(ar) = ω. ⊓⊔

The free pseudospace Γ is so far the only known example of a stable and
non-equational theory. Already Hrushovski and Srour remark in [HS89] that,
although Γ is not equational, it is almost equational, a weakening of equational-
ity where the forking relation is controlled by equations (cf. [JK02]). It remains
as an open problem to construct a theory that is simple (or even stable) but
not almost equational.
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