
 

 1 

Ontologies improve cross-species phenotype analysis 
Philip Groth1,*, Bertram Weiss1 and Ulf Leser2 
1 Research Laboratories of Bayer Schering Pharma AG, 13442 Berlin, Germany  
2 Knowledge Management in Bioinformatics, Humboldt-University of Berlin, 12489 Berlin, Germany 

 
ABSTRACT 
As phenotype data analysis has become an important 
component of functional genomics, many methods for 
analyzing these data have been published in the recent past. 
For example, RNA interference (RNAi) in mice has 
significantly improved our understanding of gene regulation, 
even for human disease. However, as phenotypes are 
obtained through species-specific experiments, they are 
usually described with unstructured text using very specific 
terminology. Such descriptions lack a common vocabulary, 
i.e. a universal phenotype ontology. This heterogeneity 
considerably hampers the analysis of phenotypes across 
species. 
We have shown recently that clustering the free-text 
descriptions of phenotypes (phenoclustering) induces a 
clustering of genes that leads to gene function prediction 
with high precision. However, the method suffered from the 
fact that phenotypes of different species are rarely clustered 
together, impeding the power of comparative phenomics. 
Here, we describe how matching terms from textual 
phenotype descriptions to biomedical ontologies like the 
Medical Subject Headings (MeSH), the Gene Ontology (GO) 
and the Mammalian Phenotype Ontology (MP) can 
significantly help to overcome heterogeneity in species-
specific terminology. Using ontologies, the percentage of 
mixed-species clusters could be raised from 14.8% to 
25.0%. Also, both precision and recall of gene function 
prediction could be improved. This shows that ontologies 
lead to a shift from a mere methodical (i.e. descriptive) 
towards a functional homogeneity of vocabulary. 

1 INTRODUCTION 
For over a century, phenotypes have been studied with 
regard to health and disease in order to reveal genotype-
phenotype relationships. In the past few years, especially 
with the advent of RNA interference (Tuschl and Borkhardt, 
2002), phenotype analysis has become an acknowledged 
and widely used tool for functional genomics. Mostly, these 
data are interpreted for a gene-by-gene functional 
annotation, since genotype-phenotype relationships are the 
most immediate results of such screens. However, this type 
of evaluation is also commonly applied using model 
organisms, e.g. mice, for generating hypotheses in humans 
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with the goal to uncover the involvement of genes in 
diseases which may lead to novel therapeutic approaches. 

The number of available methods to generate such data 
has grown significantly, leading to the availability of large 
amounts of phenotype-related data, scattered over a 
multitude of heterogeneous data sources that are mostly 
dedicated to single species or diseases (see the review by 
Groth and Weiss (Groth and Weiss, 2006) for an overview). 
Several ad-hoc integration methods were developed for 
pursuing meta-analyses of phenotypes across species or 
studies, thus gaining insights into the genetic origins of 
health and disease (Lussier and Li, 2004). Also, systematic 
approaches to phenotype integration have emerged, such as 
PhenomicDB (Groth, et al., 2007). 

However, it is an evident obstacle of such cross-species 
phenotype analyses that many phenotype descriptions are 
highly heterogeneous (in concept and in content). Also, 
researchers often use domain-specific terminology. In our 
recent comparative phenomics study (Groth, et al., 2008), 
we could show that using the common denominator of most 
phenotypes, i.e. their textual descriptions, can overcome in 
part the diversity of these data, and that a clustering of 
phenotype descriptions (phenoclustering) can be used to 
predict gene function from the groups of associated genes 
with high precision. Still, in our cross-species setting, 
almost 90% of the phenotypes were grouped into single-
species clusters due to the highly species-specific 
terminology used to describing phenotypes. One of our 
goals in cross-species clustering was to generate cross-
species clusters. Such clusters should be homogeneous with 
regard to the biological function of the phenotypes (and the 
responsible genes) as compared to a clustering in which 
species-specific clusters merely indicate a common 
descriptive vocabulary due to terminology usage within a 
specific community. The use of such species-specific 
terminology can only be partly justified. Many observations 
in phenotypes are valid across species, e.g. in regard to 
survival, fertility, motility, growth, etc. and any 
discrepancies of similar terms will lead to artifacts, i.e. 
phenotypes being clustered separately which in fact describe 
a very similar observation but not in the same organism – or 
laboratory. Here, ontologies can help. 

Recently, Washington et al. have shown that rigorous 
application of ontology-based phenotype descriptions to 11 
gene-linked human diseases from the Online Mendelian 
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Inheritance in Man (OMIM) (McKusick, 2007) can be used 
as a means to identify gene candidates of human diseases by 
utilizing similarities to phenotypes from animal models, 
showing that ontologies applied to cross-species phenotypes 
can significantly improve results in comparative phenotype 
studies (Washington, et al., 2009). 

In this paper, we describe an improved approach to 
phenotype clustering built on the usage of ontologies. 
Therein, we first identify terms of phenotype-related 
ontologies, such as MeSH (Nelson, et al., 2004), GO 
(GeneOntologyConsortium, 2010) and MP (Smith, et al., 
2005). Occurrences of such terms are overweighted when 
computing document similarity to increase the number of 
mixed-species clusters. We show that with the use of 
biomedical ontologies, the percentage of mixed-species 
clusters raised from 14.8% to 25.0%. Also, the precision for 
gene function prediction, i.e. the percentage of predicted 
terms that are correct, could be raised from 65.5% to 70.9%. 
At the same time, recall, i.e. the percentage of terms that 
should have been predicted, could be raised from 20.0% to 
21.3%. We hypothesize that a universal cross-species 
ontology, such as it has been finally announced by Mungall 
et al. (Mungall, et al., 2010), could yield even better results. 

2 METHODS  
First, phenotype descriptions are extracted from the cross-
species genotype/phenotype database PhenomicDB (Groth, 
et al., 2007). Herein, 347,689 phenotypes of species ranging 
from yeast to human have been assembled from their 
original repositories, e.g. OMIM (Hamosh, et al., 2005) for 
H. sapiens, the Mouse Genome Database (Bult, et al., 2008) 
for M. musculus, WormBase (Stein, et al., 2001) for C. 
elegans, FlyBase (Drysdale, 2008) for D. melanogaster, the 
Comprehensive Yeast Genome Database (Guldener, et al., 
2005) for S. cerevisiae, the Zebrafish Information Network 
(Sprague, et al., 2008) for D. rerio, DictyBase (Chisholm, et 
al., 2006) for D. discoideum and the MIPS Arabidopsis 
thaliana database (Schoof, et al., 2004). 

These descriptions are converted into feature vectors, in 
which each feature represents a token of a phenotype 
description. Features are weighted according to their 
importance within the description and within the entire set 
of phenotype descriptions, applying the term frequency-
inverse document frequency (TFIDF) weighting. The 
multiplication of the term frequency by inverse document 
frequency (=TFIDF) ‘discounts frequent words with little 
discriminating power’ (Steinbach, et al., 2000). We then 
artificially over-weighted those features believed to have a 
high importance on the study goal, i.e., comparison of 
phenotypes. To this end, we extracted 224,387 ontology 
terms and 446,449 synonyms to these terms from GO, MP 
and MeSH. We searched occurrences of those in the set of 
38,656 relevant phenotype descriptions by exact matching. 

Each ontology term with such a match in the phenotype 
description was ten-fold over-weighted with regard to its 
original score (TFx10). 

The resulting feature vectors were clustered using 
CLUTO version 2.1.1 (Zhao and Karypis, 2005). The 
clusters were used for predicting gene functions using the 
method described in our study (Groth, et al., 2008). 
Evaluation of accuracy of predictions was carried out using 
cross-validation. We computed results with and without 
overweighting and compared them according to the 
percentage of cross-species clusters and the number and 
precision of predicted gene functions. 

3 RESULTS 
The percentages of terms from the different ontologies that 
could be matched to phenotype descriptions (‘hits’) varied 
between 44.66% and 0.55% (see ‘ontology usage’ in Table 
1). 

The most terms (in absolute numbers) that could be 
matched came from the MeSH Descriptors vocabulary. 
However, since this a very large dictionary, the coverage of 
matches was small (only 7.50%). The largest ontology 
usage was observed with the MeSH Qualifiers vocabulary, a 
small vocabulary (only 318 terms and synonyms) of rather 
broad concepts. However, as almost 45% of the phenotypes 
used here derived from either human or mouse, it was 
surprising that only slightly more than a third (37.66%) of 
all terms from MP could be found in at least one phenotype 
description. The reason for this may be that most annotators 
commonly use leaf terms for annotations, thus (possibly 
unintentionally) disregarding many terms in the upper levels 
of the ontology; as a consequence, those terms do not show 
up in our analysis. 

Table 1. Result of matching terms from controlled vocabularies to 
phenotype descriptions. 

Terms: Number of terms in the vocabulary. Synonyms: Number of synonyms to 

terms in the vocabulary. Hits: Number of unique terms or synonyms found in at least 

one phenotype description. Ontology usage: Percentage of hits in all terms and 

synonyms. Weighted terms: Number of unique concept hits, where hits to a synonym 

are assigned as hits to their corresponding term. 
 

It is noteworthy that the phenotypes can be generally 
regarded as fairly well ‘annotated’ with ontology terms (see 
Figure 1). In almost half of the phenotype descriptions 

  MP 

MeSH 
Supplementary 
Concept Records 

MeSH 
Descriptors 

MeSH 
Qualifiers GO 

Terms 5,606 170,663 24,357 83 23,678
Synonyms 1,980 268,792 152,166 235 23,276
Hits 2,857 2,406 13,242 142 1,792
Ontology usage 37.66% 0.55% 7.50% 44.66% 3.82%
Weighted terms 1,093 1,966 8,412 67 1,642
Mean term length 24.74 27.41 17.57 12.63 38.46
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(17,351 of 38,656) 5-10% of the description consists of 
ontology terms. Only to 5% (1,727 of 38,656) of the 
phenotype descriptions, no ontology term could be matched 
at all. 

Figure 1. The number of phenotypes and the number of ontology 
terms matching to words in the phenotype descriptions as 
percentage of the total number of words in the description. 

 
 
 
 
 
 
 
 
 
 
 

 
After matching the ontology terms, phenotypes were 

processed as described above and features representing an 
ontology term were over-weighted 10-fold in comparison to 
all other features. In the next step, the feature vectors were 
clustered using k-means clustering with k=1,000 (other 
results not shown). The resulting groups of genes were 
evaluated in respect to the distribution of clusters in species 
and precision and recall of the derived functional 
predictions (see Table 2). 

When looking at Table 2, the most obvious result is that 
the percentage of clusters with mixed species is much higher 
in the weighted scheme (25.0%) than in the unweighted 
scheme (14.8%). Thus, weighting helps to overcome to 
some extent the boundary set by the usage of species-
specific vocabulary (e.g. screening methodology). 

However, an increase from 4.6% to 6.7% can also be 
observed for human-specific clusters. This can most likely 
be explained by the fact that human disease descriptions 
from OMIM are by far the longest free-text descriptions. 
With these, an over-weighting of a few keywords will not 
compensate for the sheer number of vocabulary-specific 
mainly clinical descriptions. 

Besides this, over-weighting has not only decreased the 
number of species-specific clusters (improving the clusters 
in regard to common functional terminology). Also, the 
precision for gene function prediction could be raised to 
70.9% and recall could be raised to 21.3%. In consequence, 
the F-measure (the harmonic mean of precision and recall) 
from the over-weighted clustering (0.3271) is higher than 
that from the unweighted clustering (0.3063). 

Table 2. Results of phenotype clustering using the TFIDF weighting. Here, 
the clustering of phenotypes with 10-fold over-weighted ontology terms is 
compared to clustering without over-weighting (k = 1,000). 

Comparison of the results using normal and over-weighted TFIDF scores. Results are 
shown for the distribution of clusters in species, functional predictions of GO-terms 
(counting only unique and exactly matching GO-terms as correctly predicted). Ce = 
Caenorhabditis elegans; Dm = Drosophila melanogaster; Hs = Homo sapiens; Mm = 
Mus musculus; Sc = Saccharomyces cerevisiae; Dr = Danio rerio; Dd = Dictyostelium 
discoideum 
 

These figures clearly show that term overweighting has a 
positive effect on the functional coherence of the clusters. 
Since the total number of predicted terms does not rise, the 
increase in precision and recall is due to an increase in the 
number of true positive predictions, implicitly reducing 
number of false negatives and false positives. Such an 
increase in true positive predictions can only be attributed to 
the fact that there is more congruent functional annotation 
for each member within a cluster. This shows directly the 
usefulness of applying ontologies in such a setting. 

On another note, this method yields a prediction precision 
of almost 71%, which is an outstanding competitive result 
compared to other state-of-the art function prediction 
methods (see e.g. the survey by Pandey et al. (Pandey, et al., 
2006) for precision values from other methods). 

4 DISCUSSION 
Cross-species phenotype clustering is a direct extension of 
other functional genomics methods with the goal to infer 
results for model organisms for hypothesis generation in 
human disease. However, the use of free text as a common 
denominator within phenotype descriptions needs to 
overcome the problems of species-specific vocabulary. Such 
vocabulary can be found in the terminology used to describe 
certain characteristics, but also by the descriptions of 
methodology of examination, which often is different in 
each of the species. We have shown that the problem can be 
addressed by applying a term-weighting that over-weights 
domain-specific terminology, e.g. using terms from 

TFIDF   unweighted weighted 

Mm 15.8% 14.3%

Sc 1.6% 1.3%

Dr 1.5% 1.3%

Ce 11.2% 9.3%

DM 46.8% 40.1%

Hs 4.6% 6.7%

Dd 3.7% 2.0%

Distribution of clusters 
according to species 

Mixed 14.8% 25.0%

# valid clusters 234 201

# predicted terms 417 336

# genes 3,857 3,537

Recall 19.99% 21.26%

Precision 65.48% 70.86%

Gene function 
prediction 

F-measure 0.3063 0.3271
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ontologies like MeSH or the MP, thus implicitly down-
weighting highly species- or method-specific terms. With a 
ten-fold over-weighting, it was possible to push the portion 
of mixed-species clusters by over 40% to almost one third 
of total clusters. Since this overweight was chosen 
arbitrarily, we expect that choosing a slightly lower or any 
higher factor may somewhat alter the numeric outcome, but 
not the general observation. 

On the other hand, applying over-weighting still leaves 
many clusters species-specific, especially for Homo sapiens. 
This tendency of phenotypes to accumulate into species-
specific clusters shows that the terminology used to describe 
a phenotype, especially for humans, depends on the way we 
are used to defining the many complex processes and 
diseases, e.g. in differing fields of medicine like oncology, 
neurology or gynecology. However, such a separation of 
vocabulary is only partly justified, as many phenotypic 
effects are highly similar across species, and must therefore 
be considered an artifact. 

These issues have finally been recognized by a larger 
community, and first efforts towards a more general 
phenotype ontology are underway (Mungall, et al., 2010). 
We strongly believe that such a unified ontology will open 
the door to more powerful ways of analyzing phenotypes, in 
the same manner as the establishment of GO has opened the 
door for many new approaches to analyzing biological 
knowledge in genes. 
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