Learning Low-Wastage Memory Allocations for
Scientific Workflows at IceCube

Carl Witt
Humboldt-Universitiit zu Berlin
Berlin, Germany
wittcarl @informatik.hu-berlin.de

Abstract—In scientific computing, scheduling tasks with het-
erogeneous resource requirements still requires user estimates,
which tend to be inaccurate in spite of laborious manual processes
used to derive them. In this paper, we show that machine learning
outperforms user estimates and models trained at runtime can be
used to improve the resource allocation for workflows. We focus
on allocating main memory in batch systems, which enforce user
estimates by terminating jobs.

The key idea is to train prediction models that minimize the
costs resulting from prediction errors rather than minimizing
prediction errors. In addition, we detect and exploit opportunities
to predict resource usage of individual tasks based on their input
size.

We evaluated our approach on a 10 month production log
from the IceCube South Pole Neutrino Observatory experiment.
We compare our method to the performance of the current
production system and a state-of-the-art method. We show that
memory usage can be increased from 50% to 70%, while at
the same time allowing users to provide only rough estimates of
resource usage.

Index Terms—Machine Learning, Resource Management,
Scheduling, Distributed Computing, Scientific Workflows

I. INTRODUCTION

Scientific workflows [1] are a standard paradigm to orches-
trate large-scale computational experiments or data analyses.
Workflow management systems, e.g., Nextflow [2], Pega-
sus [3], Makeflow [4], or Saasfee [5] commonly implement
large-scale parallelization by mapping workflow tasks to jobs
in batch schedulers like HTCondor, Slurm, PBS, and LSF, or
resource managers like Hadoop Yarn.

A commonality of distributed resource management sys-
tems is the necessity for manually providing resource usage
estimates as a basis for job scheduling within the resource
manager. These estimates, even though they are known to be
notoriously inaccurate [6], [7] are typically interpreted as strict
limits, meaning that resource managers kill jobs that violate
their requested resources. In this case, a workflow management
system typically makes another attempt to run the task with
an increased resource allocation.

To run workflows on batch systems, users must derive
estimates of peak resource usage (memory, storage, etc.) by
carefully benchmarking new workflow configurations. The
problem is to choose estimates that are large enough to avoid
frequent failures due to insufficient resources, but not so large
as to unduly restrict the achievable degree of parallelism.

Jakob van Santen
Deutsches Elektronen-Synchrotron
Zeuthen, Germany
jakob.van.santen @desy.de

UIf Leser
Humboldt-Universitiit zu Berlin
Berlin, Germany
leser@informatik.hu-berlin.de

Striking this balance requires both time and expert knowledge
of the workflow and the current state of the compute pool that
only a few people have.

This problem is also faced by the IceCube Neutrino Ob-
servatory [8]], a cosmic-ray research initiative. The project
runs large amounts of simulations that are implemented as
scientific workflows and executed via the IceProd [9]] workflow
management system. IceCube has dedicated and opportunistic
compute resources at its disposal, which are located at different
compute sites and are managed through HTCondor.

The problem of allocating the right amount of resources is
non-trivial even when historical data is available. For instance,
always requesting the maximum resource usage seen so far is
not a good choice when job resource usage varies strongly.
Although requesting less than the maximum resource usage
necessarily introduces failures due to insufficient resources,
it might reduce excess allocations for a large number of
smaller jobs. The optimal choice depends on the distribution
of resource usage, run times, and the costs of failures.

In this paper, we show how to train machine learning models
for peak memory usage prediction that account for these fac-
tors, which lowers the burden on users to accurately estimate
the memory usage of different steps and configurations before
running a workflow. Instead, users can provide rough estimates
which are used only during a short period of time in which
training data on the actual resource usage of tasks is collected.
Subsequently, user estimates are replaced by more accurate
predictions, improving resource usage efficiency.

In addition, automating resource usage prediction allows
to make predictions at the individual task level, whereas
in IceProd and other workflow management systems, users
provide peak resource usage estimates only for groups of
similar tasks, which further limits the accuracy of estimates.
We evaluate our approach on real-world data from the IceCube
project and compare it to a state-of-the-art resource allocation
strategy.

The paper is structured as follows: Section [II| formalizes the
problem and summarizes prior work. Section [[V]introduces our
machine learning approach. Section |V| provides background
information on scientific workflows at IceCube and validates
the potential for our approach based on the production logs.
Section [VI| presents the results. We conclude with a discussion
and future work in Section [VII}

Record actual
memory usage

Submit job with
memory limits

Job
successful

Estimate memory
’_) usage for job >

Fig. 1: The process of executing jobs on batch resources. The
memory estimation module is key to the resource-efficient
execution of jobs.

II. THE MEMORY ALLOCATION PROBLEM

To execute a workflow using a batch scheduler, a memory
usage estimate has to be provided for every attempt to execute
a job. If the estimate is larger than the actual peak usage of the
job, the attempt succeeds; otherwise, it fails and the job needs
to be submitted again, requesting increased resources. The
process is shown in Figure 1| The goal is to allocate memory
such that resource wastage as defined below is minimized.

In this work, we focus on peak memory usage, although
a job’s memory usage usually varies over time. The reason
is that in practice batch scheduler allocations are rigid, i.e.,
do not change over time. This means that job failures depend
only on whether peak memory usage exceeds the allocation.

A. Problem Definition

Let k; > 1 denote the number of attempts needed to execute
the i-th job. We denote the memory allocated to the j-th
attempt of the ¢-th job as a;;.

The resource usage of the ¢-th job corresponds to the
product of its peak memory usage r; and its run time 7;. The
resource usage of the attempt equals the job resource usage if
it succeeds, and 0O if the attempt fails. This notation is similar
to that in [10]].

T if 427 Z T

)]

usage(rs, 7i, aij) B {O otherwise

ki
U= Z Z usage(7;, i, aij) ()
i j=1

Resource wastage corresponds to the product of excess
allocation and the attempt’s run time. On successful attempts,
we consider the difference between allocated memory a;; and
actual peak usage r; as excess allocation. On failed attempts,
we consider all allocated memory a;; as excess allocation.
We refer to the wastage resulting from the former and latter
as over- and under-sizing wastage, respectively. In case of
insufficient memory, the run time of a job usually differs from
its run time with sufficient resources, and is denoted as 7;".
(’I“,* — C(,ij)T,‘ if A4 Z T3

"
i T,

wastage(r;, T;, a;j) = { 3)

otherwise

ki
W= wastage(r;, 7, a;) (4)
j=1

i
This definition of wastage reflects the asymmetric costs
between allocating too much and too little memory. Usually,

a slight over-prediction is not a problem, but a slight under-
prediction potentially wastes a lot of resources. However, the
amount of under-sizing wastage heavily depends on the time
to failure 7;*.

We refer to the ratio between used and allocated resources as
memory allocation quality (MAQ). The metric relates resource
usage to both over- and under-sizing wastage. Low values
correspond to high relative wastage and 100% corresponds to
perfect memory allocation with no wastage at all. The memory
allocation problem consists in minimizing resource wastage,
or equivalently, maximizing memory allocation quality.

U

MAQ = ——
=W

(&)

MAQ elegantly separates the quality of resource allocation
decisions from the workflow scheduling problem, since differ-
ent length schedules can have the same MAQ, depending on
how the attempt sequences are packed by the scheduler.

IIT. RELATED WORK

Tovar et al. [10] have proposed a strategy to solve the
memory allocation problem. The approach takes an empirical
distribution of peak memory usage as input and computes the
amount of resources a; to assign to the first attempt of each
job. The initial allocation is chosen such that the sum of over-
and under-sizing wastage is minimized, under the assumption
that a job is restarted using a maximum allocation a,,, should
the first allocation be insufficient. To simplify the computation,
independence of run times and peak memory consumption is
assumed. As a result, Tovar’s a; minimizes the amount of
excess allocation as defined in Section [lI-Al rather than the
wastage (which corresponds to excess allocation weighted by
attempt run time).

Witt et al. [11] have reviewed machine learning based
prediction methods for memory usage, run time, and queue
times in the context of batch scheduled workloads. Very few
approaches focus on predicting memory usage, and Tovar et
al. propose the first method with an asymmetric loss function.

Gaussier et al. [I12] have proposed a machine learning
approach with asymmetric loss function for predicting the run
times of batch jobs. This is useful for batch schedulers with
backfilling, i.e., that allow short jobs to skip the queue to
fill currently idle resources that are insufficient for the job at
the head of the queue [13]]. Similar to the memory allocation
problem, over- and under-prediction have asymmetric effects
on backfilling, because jobs with under-predicted run times
may turn out not to fit in a gap between other jobs.

Zhang et al. [14] have proposed a clustering-based approach
that determines groups of jobs with similar resource usage
within a workflow. A disadvantage of this approach is that
there is no means to predict the cluster of a job at runtime
other than from a previous execution. In contrast, we use job
parameters such as input size to predict peak memory usage
prior to the first execution of a job.

IV. LOoW-WASTAGE MEMORY ALLOCATION

Our approach to the memory allocation problem is based
on two ideas. First, we use input sizes, i.e., the amount of
data processed by a job to predict its peak memory usage.
Second, we train the prediction model in a way that minimizes
resource wastage, rather than prediction error. This accounts
for the asymmetric costs of over- and under-sizing.

In the following, we put the memory allocation quality
from Section [lI|in concrete terms for different failure handling
strategies. We then show how to optimize the parameters of
a linear model so as to maximize memory allocation quality
and how the resulting prediction models differ from standard
regression models.

A. Wastage for Exponential Strategies

Since memory usage is usually not reliably predictable, a
strategy to handle under-prediction is needed independently of
how first allocations are chosen. An intuitive approach is to
double the allocated memory upon each failed attempt. We
refer to this strategy as exponential strategy with basis b = 2.

Q5 = b- a,;(j_l) (6)

For an exponential allocation strategy with base b, the number
of failed attempts for the ¢-th job is

k; = max (0, {logb :-D @)
il

The under-sizing wastage U equals the resources allocated to
the k; failed attempts and the oversizing wastage O equals the
excess allocation in the successful final attempt.

ki - bki 1
U:;;ailb] T; = Qi1 - T; (8)
0 => (anb —r)m 9)

7
B. Wastage for Maximum-Strategies

Tovar et al. [[10] use a three-step allocation strategy where
the second attempt of a job is allocated the largest seen
memory usage a,, in the training data. If a new job fails
with the historical maximum allocation size a,,, Tovar et
al. recommend using the amount of resources offered by the
largest available compute node a, for the third attempt. The
assumption is that if the third attempt fails, the workflow is
not executable.

(10)
Y

Determining a, can be problematic in a pool of opportunistic
compute nodes, however, a three-step strategy has the potential
advantage of inducing lesser failures when initial allocations
are far from the true peak memory usage. The under- and
oversizing wastages follow from Equation [3| and have no
special closed form as for exponential strategies.

a;2 = Qm

i3 = Gy

25 4
—— exponential base 1.2
20 A exponential base 2
—— maximum
15 A
10 |

3 4 5 6 7
First Allocation

Wastage

Fig. 2: Exemplary wastage for different failure handling
strategies as a function of first allocation. This example is
constructed for a single task with a peak memory usage of 5
units. The maximum strategy uses a,, = 4.9 and a, = 20.

Figure 2] shows an example of the combined wastage (over-
sizing + under-sizing) resulting from different first allocations
under three failure-handling strategies. A smaller basis for
exponential strategies leads to more failures for a strong
under-prediction, but produces less over-sizing wastage for a
small under-prediction. For the maximum strategy, the costs
of under-prediction heavily depend on how tight the second
allocation a,,, and final allocation a, is chosen.

C. Low-Wastage Regression

The wastage criteria from Sections and both
depend on the amount a;; of memory allocated to the first
attempt of a job. We derive this amount from a job’s input
size s;, replacing negative values with a minimum allocation
size a;.

a;1 = max(0ys; + 0o, a;) (12)

Substituting this into the wastage expressions (e.g., Equa-
tions 8 and 9) for a failure handling strategy gives a loss
function that states the resource wastage when choosing first
allocations as a linear function of input size with slope #; and
intercept 6. Note that Tovar’s allocation method is a special
case of this approach with 6; = 0.

The slope and intercept parameters can be optimized using
a training set of (input size, peak memory consumption) tuples
by using standard approaches such as grid search, evolutionary
algorithms, or gradient descent. However, due to the zigzag
shape of the loss function for a single task (Figure [2), the loss
function for a set of tasks also has many local optima, which
makes it difficult for gradient-based methods to find a good
solution.

The globally optimal parameters always describe a line that
passes through two of the training data points, because a line in
between points just increases the under-sizing wastage for the
points above and the over-sizing wastage for the points below
the line. However, testing all O(n2) lines is rather costly, since
evaluating each line takes O(n) time to compute the wastage.
Where historical data comprises thousands of tasks, this is
inconveniently slow.

We found that testing different quantile regression lines
provides an accurate and fast alternative. In addition, the

optimal solution to the optimization problem usually does
not generalize well, because it passes exactly through two
data points, often leading to impractically tight predictions.
We thus test quantile regression lines with quantiles ranging
from the median up to the 99.99% percentile. One could also
include smaller quantiles, but having more than half of the
jobs fail on their first attempt is not advisable in practice.
We do not select evenly spaced quantiles but use a quadratic
approach that generates more candidate quantiles towards the
end of the range. Across all candidate quantiles, we select the
one that yields the least wastage when using it for predicting
memory usage. In the experiments, we tested £ = 25 quantile
candidates. The approach is summarized in Algorithm [I}

Result: Slope #; and intercept 6y for computing the first
allocation according to Equation [12}
Wmin < OO}
0* + (00, 00);
| < interpolate k values linearly between 0.01 and 0.7;
for quantile ¢ € {1 —a® | a €1} do
01,00 + fit a quantile regression line for ¢;
a;jn = 015; + bo;
if MAQ(azl) < Win then
‘ 0* (91,00);
end
end
Algorithm 1: Low-Wastage Regression: Selecting model
parameters for peak memory prediction by testing different
quantile regression lines on the amount of resulting resource
wastage.

V. CASE STUDY: ICECUBE WORKFLOWS

We evaluated our method on production logs from scien-
tific workflows at the IceCube project. This section provides
background information on the IceCube project, its scientific
computing workloads, the IceProd workflow management sys-
tem, and an analysis of the memory usage efficiency during a
ten month period in the production system.

A. IceCube Neutrino Observatory

The IceCube Neutrino Observatory is an array of 5160
Digital Optical Modules (DOMs) buried 1.5-2.5 km below
the surface of the glacial ice at the geographic South Pole.
Each DOM records the arrivals of individual Cherenkov pho-
tons as they pass through the 1 km? instrumented volume.
Interpretation of the experimental data requires a model of
the detector’s response to the stimuli under consideration.
Because the particles IceCube observes can have energies far
beyond those that can be produced artificially, it is impossible
to measure the model directly. Instead, it must be computed
by Monte Carlo simulation of individual particles. These
simulations must be produced in large quantity to generate a
detector response model that is sufficiently precise to analyze
the experimental data.

generate
hits
detector
filtering
Corsika
0 20 40 60
Resources [GiB-Years]
. Used . Oversized Undersized

Fig. 3: Total resource allocation per task type. Green, pink,
and gray areas indicate the fraction of used and unused re-
sources due to oversized allocation and undersized allocation,
respectively.

B. Simulation Production Workflow for IceCube

IceCube’s simulation production workload is divided into
datasets; each dataset consists of a set of abstract tasks and
a number of jobs. The abstract tasks can be arranged in an
arbitrary DAG, but tend to be linear in practice. Each job is
a concrete instance of an abstract task graph with concrete
parameters, e.g. the pseudo-random number sequence used to
drive the simulation of particles. Jobs are independent of each
other, compute- and memory- rather than I/O-bound, and tend
to not be especially time-critical.

Figure [3] shows the most resource consuming abstract tasks
in the workload, as captured by production logs on resource
usage (see Section [V-D). Gray indicates memory allocated to
failed tasks, pink indicates excessively allocated memory in
successful tasks, and green indicates the amount of memory
that was actually used. The combined height equals the total
allocated memory.

In the generate task, high-energy particles are propagated
through the detector medium. Particle interactions trigger
cascades in which single high-energy particles produce many
lower-energy particles. The stochastic nature of the process
also causes variance in peak memory usage. This task is
typically followed by hits, in which the induced Cherenkov
photons are tracked from their sources to the DOMs. De-
tector simulates the response of the detection electronics and
produces the same kind of data as the real detector. Finally,
filter applies the same event selection and reconstruction as for
experimental data. Corsika is a variant of generate that uses
the CORSIKA air-shower simulation program [13], which uses
static memory allocation.

C. IceProd Workflow Management System

Workflows are executed by IceProd [9], a custom middle-
ware running on top of HTCondor [16], [17]]. An IceProd pilot
runs in an HTCondor slot and claims tasks from a central
manager that fit within the slot’s allocation of CPUs, GPUs,
main memory, storage space, and wall-clock time. Because

Memory Allocation Quality _
0

.08 0.50 0.90

64.00
32.00
16.00 7

8.00 4

4.00

2.00

1.00

Value [GiB]

0.50

0.25

0.10

s\'\ﬂ\a\e

Use’ 1= \\j\ed‘a“ DR

e

Fig. 4: Memory usage as estimated by IceProd users compared
to actual peak, median, and interdecile memory usage of the
25 abstract tasks with the highest accumulated run time.

the slots are distributed over both dedicated and opportunistic
resources at multiple sites, the allocations can vary greatly,
from e.g. a single CPU core with 4 GB of main memory to
24-core, whole-machine slots with 12 GB per core.

Each task’s initial resource requirements are based on a user
estimate for the abstract task. IceProd monitors the execution
of each task, and aborts a task if its resource usage exceeds
its request. The task is then restarted with twice the requested
resource whose constraint was violated. For main memory
constraints, the time to failure tends to be uniformly distributed
fraction of the time it would take the task to run to completion.

D. Insights from Production Logs

In this section, we analyze the resource usage and allocation
during a 10 months period in the production system. We first
focus on the quality of the user estimates and then analyze the
predictive potential of input sizes and predecessor task metrics.

The log covers 727,220 tasks with a total memory usage of
1.06 PiB and a total CPU usage of 76 Core—Yearsﬂ The total
area, i.e., product of CPU time and memory usage, amounts
to 133 GiB-Core-Years. The median task resource usage is 32
Core-Minutes and 1.4 GiB.

1) User Estimate Accuracy: Figure[d]shows the relationship
between user estimates and actual memory usage for the
25 most time-consuming abstract tasks. These abstract tasks
account for 73% of the total GiB-Year usage.

1997,947 tasks with a total CPU usage of 136 Core-Years were excluded
due to missing memory usage information

Rho I

Usage [GiB-Yr] @ 5 ’ 15

0.25 0.50 0.75

e} (]
O, 16401
>
c . ~
S [¢
o o
o 1e+00 "
= 9 R ° ®
3 e ®
o (]
—_ 30 -
(0] _ o
£ 1e01 oo _ob g-@" ® o0 o
[[] ® o
(o)) ' . ° .
8 oo ® L ‘ 8. .5
o] e® 0 : [
g‘ "
E []
g 1e-03 .

1e-04 1e-03 1e-02 1e-01 1e+00

Input Size Interdecile Range [GiB]

Fig. 5: Variability of input size and memory usage per abstract
task. Regression based memory allocation has the highest
potential where input sizes and memory usage vary strongly
(top-right corner) and are highly correlated (red).

It is striking that all user estimates are located between 2
and 6 GiB, whereas true peak memory usage ranges from 0.25
to 49 GiB. In addition, the variability of memory usage varies
strongly. The interdecile range, i.e., the difference between
the 90% percentile and 10% percentile can be as small as
0.06 GiB and as large as 7.93 GiB.

The memory allocation quality also varies strongly across
abstract tasks. Among the top 25 abstract tasks the lowest
MAQ is 8% and the highest MAQ is 91%. Interestingly, the
tasks with the best MAQ are not necessarily the ones with least
variability. The rank correlation (Kendall) between MAQ and
interdecile range is only 0.29.

The total oversizing wastage amounts to 136 GiB-Years,
whereas only 12 GiB-Years are allocated to tasks that failed
due to insufficient memory. This shows that user estimates are
conservative, and confirms the known tendency of users to
overestimate resource usage [6]]. Dividing the total 133 used
GiB-Years by the 133+136+12 allocated GiB-Years, we find
that the overall MAQ is 47%.

2) Predictive Potential of Input Size: A feature of scientific
workflows is the availability of intermediate result set sizes
for tasks, as given by the sum of a job’s input files. In
the workflows considered here, tasks consume at most one
input file and produce one output file. In this section, we
analyze the potential of input size to predict peak memory
usage. Compared to the baseline method of Tovar et al., which
computes a single allocation per abstract task, using input
sizes allows to predict memory usage per individual task. This
makes sense for abstract tasks with heterogeneous memory

]

Train on 10%

Train on 5%

100%
75%
G
< 50%
=
25%

0%
. olo N olo . olo
& g I B @t o8

«\ed\’&(\ 160\0 ((\"}*((i\“ (L%c\o ((\ed\‘a(\ 1‘30‘0 ((\,(;L ((i\(\ (L%o\o

Train on 50% Train on 90%

Method
LWR
—— Tovar et al.

User Estimate

Failure Handling
— Exponential

===+ Maximum
«\ed‘?’(\ 5P ot

Fig. 6: Comparison of the memory allocation quality (MAQ) cumulative distributions (higher is better) achieved by different
combinations of allocation method and failure handling strategy. MAQ is computed per abstract task, where the first k% (with
respect to a job’s finish time in the logs) of the data are used for training and the rest for and evaluation. The green line shows
the performance of the estimates per abstract task as provided by IceProd users.

consumption, for which a single allocation size does not fit
well. If memory usage is related to some other variable, such
as input size, predictions can be improved.

Figure [5| shows the heterogeneity in memory usage (y-axis)
and input size (x-axis) as measured by interdecile range. For
a regression-based approach, the abstract tasks in the top-
right corner are most interesting, since there is variance in
memory usage that can potentially be explained by input size.
To measure the correlation between input size and memory
consumption, we computed the Pearson correlation coefficient
between both variables for each abstract task, as displayed
by the color of the points. There is potential for a regression
based-approach, since several resource-intensive abstract tasks
expose relatively high correlation (> 0.7).

We also checked the predictive potential of other features,
such as the peak memory usage of a task’s predecessor task.
Although in some cases, a high correlation (> 0.8) exists, only
a small fraction of resources are allocated to these tasks.

VI. EVALUATION

We evaluate our method using the resource usage logs
described in Section The focus of our analysis is the
memory allocation quality achieved by different combinations
of allocation methods and failure handling strategies. For
training the allocation methods, we use the first k% of the
data per abstract task, ordering jobs by the time they finished
in the production system. We considered only the 142 abstract
tasks that comprise at least 100 jobs, to make sure the training
split contains at least five jobs. This retains 99.7% of the
overall log file. We refer to user estimates as they have been
provided by IceProd users as the baseline method. We refer to
Tovar’s state-of-the-art method [10]] as Tovar et al., where not
otherwise stated, this assumes the maximum failure handling
strategy. We refer to Tovar’s method with an exponential
failure handling strategy as Modified Tovar et al.; our method
is referred to as Low-Wastage Regression (LWR).

First, we show the memory allocation quality that is
achieved on an abstract task level. Abstract tasks are a natural

unit of analysis since we train one prediction model per ab-
stract task. However, since abstract tasks differ in the amount
of resources allocated to them, we subsequently conduct an
aggregate analysis that weights the memory allocation qualities
by an abstract task’s share of the overall resource allocation.

In our experiments, we assume a time to failure 7* = 0.5.
In the log files, job time to failure follows an approximately
uniform distribution with support [0, 1].

The parameters of Tovar’s maximum-strategy are chosen
such that a,,, equals the largest observed memory usage within
the training set and a, equals the largest observed memory
usage across all jobs in the log. As described earlier, the
IceProd workflow management system uses variable size job
pilots which can be even larger than a,. However, further
increasing a,, only increases the over-sizing wastage generated
by this strategy. We thus select a value that is as large
as necessary and as small as possible, although in practice
a, needs to be choosen according to the resource pool. As
minimum allocation size, we set a; to 100 Megabytes.

A. Comparing MAQ Distributions

Figure [6] shows the cumulative distribution of memory
allocation quality across abstract tasks. User estimates score
a median MAQ of 49%. The state-of-the-art method as dis-
cussed in [10] uses the maximum failure handling strategy
and achieves only a median MAQ of 43% but improves to
55% and 83% when trained on 10% and 50% of the data,
respectively. Our method achieves 83% median MAQ using
only 5% of the data for training. However, it turns out that
the state-of-the-art method improves to 81.7% median MAQ
when applying the exponential failure handling strategy rather
than the maximum-strategy proposed by Tovar et al. Overall,
the maximum-strategy is not recommendable, as it becomes
competitive only when using at least 90% of the log data for
training.

Our advantage in MAQ stems mainly from avoiding failures,
as shown in Figure [/} Comparing the cumulative distributions
for over- and under-sizing wastage, we have a larger advantage

Method LWR Modified Tovar et al. Tovar et al.

Relative Oversizing Relative Undersizing

1 000%

100.0%

100%
10.0%

10% 1.0%

Wastage Relative to Usage

<o

'I,bo lo «\’b*

R (ﬁ\o ((\ed\"’(\ 16°‘° ((\Gd\a“ 16"“’

Fig. 7: Cumulative distribution of over-sizing and under-sizing
wastage (lower is better), relative to the amount of used
resources. This shows that the improvements of our method
stem mainly from reducing under-sizing wastage.

on under-sizing wastage than on over-sizing wastage, although
scoring slightly better in both aspects. The potential to reduce
under-sizing wastage is most apparent in scenarios where input
size correlates to peak memory usage, as shown in Figure [§]
Here, a large constant allocation size produces large amounts
of over-sizing wastage. The only way to reduce over-sizing
wastage is to introduce job failures by allocating less than
the largest observed memory usage. Here, our linear model
can save significant amounts of resources by assigning less
memory to jobs with smaller inputs.

Regarding robustness, i.e., the worst observed memory
allocation qualities, the state-of-the-art method produces the
lowest overall MAQ of only 0.3%. The worst observed MAQ
when applying user estimates is 3.3%. In contrast, our lowest
produced MAQ is 26%.

B. Effective Memory Allocation Quality

In this section, we evaluate the effective memory allocation
quality obtained when relying on user estimates during the
collection of training data and subsequently replacing user
estimates with the predictions from the trained model. We split
the data again according to job finish times, using the first k%
for training and the rest for evaluation. This time however, we
charge a cost for the training period by computing the resource
wastage resulting from allocating memory according to user
estimates during the training period.

Since the goal is to relieve users from the burden of having
to determine the memory requirements of abstract tasks, we do
not directly use the estimates provided by IceProd users. These
estimates include user knowledge about the resource usage of
an abstract task. To simulate a scenario without detailed user
estimates, we compute coarse grained user estimates by taking
the median user estimate per task type (e.g., generate, hits,
detector, etc.). This reduces the 321 user estimates (for each
abstract task) to one user estimate for each of 16 task types.

Abstract Task: Detector, Dataset ID: 20068

30 70% MAQ
Method .
/7
o — IceProd User Estimate L
o g
- LWR ’
8 20 g L
[0 4
n Tovar et al. ¢ ’
D 2 7
>
o
e
()]
=
=< o
@ 54% MAQ
d‘f 10

1.0
Input Size [GiB]

1.5

10 Tovar et al.
?,— 5 User Estimates
(&]
-
2
g0

-5

0 10 20 30
slope

Fig. 8: Top: Relationship between input sizes and peak
memory consumption on an exemplary abstract task. Tovar’s
methods assign each job a fixed amount of memory (orange
line). We assign memory proportional to input size (purple
line). Compared to a linear regression (dashed line) or quantile
regression, our allocations minimize the resource wastage
resulting from prediction errors, rather than prediction errors.
Bottom: The exponential wastage resulting from different
slope and intercept values for first allocation. The dots indicate
the tested positions corresponding to different quantiles for
quantile regression. The cross marks the best quantile regres-
sion line, corresponding to the 96.7 percentile. The global
optimum on the surface (which does not necessarily generalize
as well) scores a MAQ of 73.3%.

o
®

o
o

Effective MAQ
o o
n S

o
=}

0.05 0.1 0.5 0.9
Fraction of Data used for Training

Method LWR Modified Tovar et al. Tovar et al.

Fig. 9: Effective MAQ when using coarse grained user esti-
mates during training and trained models afterwards. Modified
Tovar refers to the state-of-the-art approach with our exponen-
tial failure handling strategy, Tovar refers to the unchanged
state-of-the-art, and Witt refers to our method.

Figure [0 shows the MAQ that can be achieved when training
models during workflow execution. When using 90% of the
data for training, the overall achievable MAQ is roughly the
same as relying completely on user estimates, since the learned
models are applied only to 10% of the jobs. By waiting
for 5% of the jobs of each abstract task to finish before
replacing user estimates with predictions from the trained
models, overall MAQ can be improved to 70%. The relatively
small advantage of our method over the modified state-of-the-
art method (replacing the proposed maximum-strategy with
our exponential failure handling strategy) is explained by our
log analysis in Section [V-D] Although some tasks, such as the
one in Figure [§] strongly benefit from per-job allocations, the
overall share of resources allocated to such predictable tasks
is not as large as expected for the IceCube workflows.

VII. CONCLUSION

We have proposed a machine-learning based resource al-
location strategy that minimizes resource wastage. Evaluation
on real-world data has shown that failure handling strategies
have a strong impact on overall system performance and that
doubling allocated resources after each failed attempt performs
much better than the falling back to maximum observed values
so far, as proposed by the state-of-the-art method.

By replacing user estimates after measuring input sizes and
memory usage for each abstract task for a small amount of
time, overall memory allocation quality can be improved from
50% to 70%.

As future work, similar prediction models could be used
to predict the usage of other resource types, such as wall-
clock time or disk storage. Peak memory prediction could
also be extended to a multivariate model by taking into
account additional job parameters. Additional job information
at the IceCube project includes software versions, different
implementations, and generator settings that control, e.g.,
particle energies.

In conclusion, we have shown how to learn memory al-
locations for jobs that significantly reduce resource wastage
compared to user estimates and a state-of-the-art method.

ACKNOWLEDGMENTS

Carl Witt received funding by Deutsche Forschungsgemein-
schaft through the SOAMED graduate school (GRK 1651).
We thank David Schultz and the IceCube Collaboration for
providing access to IceProd monitoring data.

REFERENCES

[1] C. S. Liew, M. P. Atkinson, M. Galea, T. F. Ang, P. Martin, and
J. 1. V. Hemert, “Scientific Workflows: Moving Across Paradigms,” ACM
Computing Surveys (CSUR), vol. 49, no. 4, pp. 66-39, Feb. 2017.

[2] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame, “Nextflow enables reproducible computational work-
flows.” Nature Biotechnology, vol. 35, no. 4, pp. 316-319, Apr. 2017.

[3] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus, a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, pp. 17-35, May 2015.

[4] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A Portable
Abstraction for Data Intensive Computing on Clusters, Clouds, and
Grids,” in the Ist ACM SIGMOD Workshop. New York, New York,
USA: ACM Press, 2012, pp. 1-13.

[5] M. Bux, J. Brandt, C. Lipka, K. Hakimzadeh, J. Dowling, and U. Leser,
“SAASFEE: Scalable Scientific Workflow Execution Engine.” PVLDB,
vol. &, no. 12, pp. 1892-1903, 2015.

[6] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and QoS-
aware cluster management.” ASPLOS, pp. 127-144, 2014.

[7]1 C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale,” in ACM Symposium
on Cloud Computing. New York, New York, USA: ACM Press, 2012,
pp. 1-13.

[81 M. G. Aartsen et al., “The IceCube Neutrino Observatory: Instrumen-
tation and Online Systems,” JINST, vol. 12, no. 03, p. P03012, 2017.

[9]1 D. Schultz, “IceProd 2: A Next Generation Data Analysis Framework

for the IceCube Neutrino Observatory,” J. Phys. Conf. Ser., vol. 664,

no. 6, p. 062056, 2015.

B. Tovar, R. Ferreira da Silva, G. Juve, E. Deelman, W. Allcock,

D. Thain, and M. Livny, “A Job Sizing Strategy for High-Throughput

Scientific Workflows,” IEEE Transactions on Parallel and Distributed

Systems, vol. 29, no. 2, pp. 240-253, 2018.

C. Witt, M. Bux, W. Gusew, and U. Leser, “Predictive performance

modeling for distributed batch processing using black box monitoring

and machine learning,” Information Systems, Jan. 2019.

E. Gaussier, D. Glesser, V. Reis, and D. Trystram, “Improving backfilling

by using machine learning to predict running times.” SC, pp. 64-10,

2015.

D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling Using System-

Generated Predictions Rather than User Runtime Estimates.” [EEE

Transactions on Parallel and Distributed Systems, vol. 18, no. 6, pp.

789-803, 2007.

Q. Zhang, N. Kremer-Herman, B. Tovar, and D. Thain, “Reduction

of Workflow Resource Consumption Using a Density-based Clustering

Model,” in 2018 IEEE/ACM Workflows in Support of Large-Scale

Science (WORKS). 1EEE, 2018, pp. 1-9.

[15] D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw,

CORSIKA: a Monte Carlo code to simulate extensive air showers., Feb.

1998.

D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in

practice: the condor experience.” Concurrency - Practice and Experi-

ence, vol. 17, no. 2-4, pp. 323-356, 2005.

D. Schultz, B. Riedel, and G. Merino, “Pyglidein — A Simple HTCondor

Glidein Service,” J. Phys. Conf. Ser., vol. 898, no. 9, p. 092018, 2017.

[10]

(11]

[12]

[13]

[14]

[16]

[17]

	Introduction
	The Memory Allocation Problem
	Problem Definition

	Related Work
	Low-Wastage Memory Allocation
	Wastage for Exponential Strategies
	Wastage for Maximum-Strategies
	Low-Wastage Regression

	Case Study: IceCube Workflows
	IceCube Neutrino Observatory
	Simulation Production Workflow for IceCube
	IceProd Workflow Management System
	Insights from Production Logs
	User Estimate Accuracy
	Predictive Potential of Input Size

	Evaluation
	Comparing MAQ Distributions
	Effective Memory Allocation Quality

	Conclusion
	References

