Vorlesungsskript Einführung in die Kryptologie

Sommersemester 2022

Prof. Dr. Johannes Köbler Humboldt-Universität zu Berlin Lehrstuhl Komplexität und Kryptografie

18. Mai 2022

Inhaltsverzeichnis

1	Klas	ssische Kryptoverfahren	1
	1.1	Einführung	1
	1.2	Kryptosysteme	2
	1.3	Die additive Chiffre	3
	1.4	Die affine Chiffre	5
	1.5	Die Eulersche Phi-Funktion	9
	1.6	Der chinesische Restsatz	11
	1.7	Die Hill-Chiffre	12
	1.8	Die Vigenère-Chiffre und andere Stromsysteme	13
	1.9	Der One-Time-Pad	15
	1.10	Die Skytale-Chiffre	16
	1.11	Die Blocktransposition	17
	1.12	Klassifikation von Substitutionen	19
	1.13	Die Porta-Chiffre	19
	1.14	Block- und Stromchiffren	20
	1.15	Gespreizte und homophone Substitutionen	21
	1.16	Realisierung von Transpositionen und Substitutionen	24
2	Ana	lyse der klassischen Verfahren	26
	2.1	Klassifikation von Angriffen gegen Kryptosysteme	26
	2.2	Kryptoanalyse von einfachen Substitutionschiffren	27
	2.3	Kryptoanalyse von Blocktranspositionen	30
	2.4	Kryptoanalyse von polygrafischen Chiffren	33
	2.5	Kryptoanalyse von polyalphabetischen Chiffren	33
3	Sich	erheit von Kryptosystemen	40
	3.1	Informationstheoretische Sicherheit	40
	3.2	Der Entropiebegriff	42
	3.3	Redundanz von Sprachen	45
	3.4	Die Eindeutigkeitsdistanz	46
	3.5	Weitere Sicherheitsbegriffe	49
4	Mod	derne symmetrische Kryptosysteme & ihre Analyse	53
		Produktchiffren	

1 Klassische Kryptoverfahren

1.1 Einführung

Kryptografische Verfahren schaffen Vertrauen in ungeschützten Umgebungen. Sie ermöglichen sichere Kommunikation über unsichere Kanäle und können verhindern, dass sich ein Kommunikationspartner unfair verhält. In unsicheren Umgebungen wie dem Internet können sie die aus direkter Interaktion gewohnte Sicherheit herstellen. Und auch die Interaktion in sicheren Umgebungen wird um Möglichkeiten erweitert, die ohne Kryptografie nicht denkbar wären.

In diesem Modul werden wir uns mit den mathematischen Grundlagen von kryptografischen Verfahren beschäftigen, wobei (symmetrische und asymmetrische) Verschlüsselungsverfahren im Vordergrund stehen. Im Mastermodul Kryptologie werden wir dann auch kryptografische Verfahren und Protokolle für andere Schutzziele betrachten wie z.B. Hashverfahren und digitale Signaturen sowie Pseudozufallsgeneratoren.

Kryptosysteme (Verschlüsselungsverfahren) dienen der Geheimhaltung von Nachrichten bzw. Daten. Hierzu gibt es auch andere Methoden wie z.B.

Physikalische Maßnahmen: Tresor etc.

Organisatorische Maßnahmen: einsamer Waldspaziergang etc.

Steganografische Maßnahmen: unsichtbare Tinte etc.

Andererseits können durch kryptografische Verfahren weitere **Schutzziele** realisiert werden.

- Vertraulichkeit
 - Geheimhaltung
 - Anonymität (z.B. Mobiltelefon)
 - Unbeobachtbarkeit (von Transaktionen)
- Integrität
 - von Nachrichten und Daten
- Zurechenbarkeit
 - Authentikation
 - Unabstreitbarkeit
 - Identifizierung
- Verfügbarkeit
 - von Daten
 - von Rechenressourcen
 - von Informationsdienstleistungen

In das Umfeld der Kryptografie fallen auch die folgenden Begriffe.

Kryptografie: Lehre von der Geheimhaltung von Informationen durch Verschlüsselung. Im weiteren Sinne: Wissenschaft von der Übermittlung, Speicherung und Verarbeitung von Daten in einer von potentiellen Gegnern bedrohten Umgebung.

◁

Kryptoanalysis: Erforschung der Methoden eines unbefugten Angriffs gegen ein Kryptoverfahren (Zweck: Vereitelung der mit seinem Einsatz verfolgten Ziele)

Kryptoanalyse: Analyse eines Kryptoverfahrens zum Zweck der Bewertung seiner kryptografischen Stärken bzw. Schwächen.

Kryptologie: Wissenschaft vom Entwurf, der Anwendung und der Analyse von kryptografischen Verfahren (umfasst Kryptografie und Kryptoanalyse).

1.2 Kryptosysteme

Es ist wichtig, Kryptosysteme von Codesystemen zu unterscheiden.

Codesysteme

- operieren auf semantischen Einheiten,
- starre Festlegung, welche Zeichenfolge wie zu ersetzen ist.

Beispiel 1 (Ausschnitt aus einem Codebuch der deutschen Luftwaffe).

```
xve Bis auf weiteres Wettermeldung gemäß Funkbefehl testen
yde Frage
sLk Befehl
fin beendet
eom eigene Maschinen
```

Kryptosysteme

- operieren auf syntaktischen Einheiten
- flexibler Mechanismus durch Schlüsselvereinbarung

Definition 2. Ein **Alphabet** $A = \{a_0, \ldots, a_{m-1}\}$ ist eine geordnete endliche Menge von **Zeichen** a_i . Eine Folge $x = x_1 \ldots x_n \in A^n$ heißt **Wort** (der **Länge** n). Die Menge aller Wörter über dem Alphabet A ist $A^* = \bigcup_{n>0} A^n$.

Beispiel 3. Das lateinische Alphabet A_{lat} enthält die 26 Zeichen A,..., Z. Bei klassischen Verfahren wurde in Klartexten meist auf den Gebrauch von Interpunktionsund Leerzeichen sowie auf Groß- und Kleinschreibung verzichtet (\rightsquigarrow Verringerung der Redundanz im Klartext).

Definition 4. Ein **Kryptosystem** wird durch folgende Komponenten beschrieben:

- A, das **Klartextalphabet**,
- B, das Kryptotextalphabet,
- K, der **Schlüsselraum** (key space),
- $-M \subseteq A^*$, der **Klartextraum** (message space),
- $-C \subseteq B^*$, der **Kryptotextraum** (ciphertext space),
- $-E: K \times M \rightarrow C$, die **Verschlüsselungsfunktion** (encryption function),

1.3 Die additive Chiffre 3

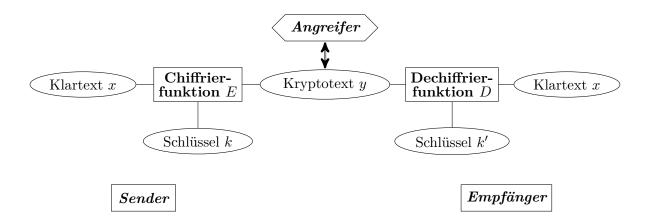


Abbildung 1.1: Schematische Darstellung der Funktionsweise eines Kryptosystems

- $-D: K \times C \to M$, die **Entschlüsselungsfunktion** (decryption function) und
- $-S \subseteq K \times K$, eine Menge von Schlüsselpaaren (k, k') mit der Eigenschaft, dass für jeden Klartext $x \in M$ folgende Beziehung gilt:

$$D(k', E(k, x)) = x \tag{1.1}$$

Bei symmetrischen Kryptosystemen ist $S = \{(k, k) \mid k \in K\}$, weshalb wir in diesem Fall auf die Angabe von S verzichten können. Zu jedem Schlüssel $k \in K$ korrespondiert also eine Chiffrierfunktion $E_k: x \mapsto E(k, x)$ und eine Dechiffrierfunktion $D_k: y \mapsto$ D(k,y). Die Gesamtheit dieser Abbildungen wird auch **Chiffre** (englisch *cipher*) genannt. (Daneben wird der Begriff "Chiffre" auch als Bezeichnung für einzelne Kryptotextzeichen oder kleinere Kryptotextsequenzen verwendet.)

Lemma 5. Für jedes Paar $(k, k') \in S$ ist die Chiffrierfunktion E_k injektiv.

Beweis. Angenommen, für zwei Klartexte x_1 und x_2 gilt $E(k,x_1)=E(k,x_2)$. Dann folgt

$$x_1 \stackrel{\text{(1.1)}}{=} D(k', \underbrace{E(k, x_1)}_{E(k, x_2)}) = D(k', E(k, x_2)) \stackrel{\text{(1.1)}}{=} x_2$$

1.3 Die additive Chiffre

Die Moduloarithmetik erlaubt es uns, das Klartextalphabet mit einer Addition und Multiplikation auszustatten.

Definition 6 (teilt-Relation, modulare Kongruenz). Seien a, b, m ganze Zahlen $mit \ m \geq 1$. Die Zahl a **teilt** b (kurz: a|b), falls ein $d \in \mathbb{Z}$ existiert mit b = ad. Teilt m die Differenz a - b, so schreiben wir hierfür

$$a \equiv_m b \ oder \ a \equiv b \pmod{m}$$

(in Worten: a ist kongruent zu b modulo m). Weiterhin bezeichne

$$a \mod m = \min\{a - dm \ge 0 \mid d \in \mathbb{Z}\}\$$

Tabelle 1.1: Werte der additiven Chiffrierfunktion ROT13 (Schlüssel k = 13).

$$\begin{array}{c|c} x & \text{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\ E(13,x) & \textit{nopqrstuvwxyzabcdefghijklm} \end{array}$$

den bei der Ganzzahldivision von a durch m auftretenden **Rest**, also diejenige ganze Zahl $r \in \{0, ..., m-1\}$, für die eine ganze Zahl $d \in \mathbb{Z}$ existiert mit a = dm + r. Sowohl r als auch d sind hierbei eindeutig bestimmt (siehe Übungen) und die Zahl d wird auch mit a div m bezeichnet.

Die auf \mathbb{Z} definierten Operationen

$$a \oplus_m b := (a+b) \mod m \text{ und } a \odot_m b := ab \mod m$$

sind abgeschlossen auf $\mathbb{Z}_m = \{0, \ldots, m-1\}$ und bilden auf dieser Menge einen kommutativen Ring mit Einselement, den sogenannten **Restklassenring** modulo m. Für $a \oplus_m -b$ schreiben wir auch $a \ominus_m b$. Wenn aus dem Kontext klar ist, dass $a, b \in \mathbb{Z}_m$ sind, schreiben wir anstelle von $a \oplus_m b$, $a \ominus_m b$ und $a \odot_m b$ auch einfach a + b, a - b bzw. ab. Durch Identifikation der Zeichen a_i eines Alphabets $A = \{a_0, \ldots, a_{m-1}\}$ mit ihren Indizes können wir die auf \mathbb{Z}_m definierten Rechenoperationen auf Buchstaben übertragen.

Definition 7 (Buchstabenrechnung). Sei $A = \{a_0, \ldots, a_{m-1}\}$ ein Alphabet. Für Indizes $i, j \in \{0, \ldots, m-1\}$ und eine ganze Zahl $z \in \mathbb{Z}$ ist

$$a_i + a_j = a_{i+j}, \quad a_i - a_j = a_{i-j}, \quad a_i a_j = a_{ij},$$

 $a_i + z = a_{i+z}, \quad a_i - z = a_{i-z}, \quad z a_j = a_{zj \bmod m}.$

Mit Hilfe dieser Notation lässt sich die additive Chiffre , die auch als Verschiebechiffre oder Caesar-Chiffre bezeichnet wird, leicht beschreiben.

Definition 8. Bei der additiven Chiffre ist A = B = M = C ein beliebiges Alphabet mit m := |A| und $K = \{0, ..., m-1\}$. Für $k \in K$, $x \in M$ und $y \in C$ gilt

$$E(k, x) = x + k$$
 und $D(k, y) = y - k$.

Im Fall des lateinischen Alphabets führt der Schlüssel k=13 auf eine interessante Chiffrierfunktion, die in UNIX-Umgebungen auch unter der Bezeichnung ROT13 bekannt ist (siehe Tabelle 1.1). Natürlich kann mit dieser Chiffrierfunktion nicht ernsthaft die Vertraulichkeit von Nachrichten gewahrt werden. Vielmehr soll durch sie ein unbeabsichtigtes Mitlesen – etwa von Rätsellösungen – verhindert werden.

ROT13 ist eine *involutorische* (also zu sich selbst inverse) Abbildung, d.h. für alle $x \in A$ gilt

$$ROT13(ROT13(x)) = x.$$

Da ROT13 zudem keinen Buchstaben auf sich selbst abbildet, ist sie sogar *echt involutorisch*.

1.4 Die affine Chiffre 5

1.4 Die affine Chiffre

Die Buchstabenrechnung legt folgende Modifikation der Caesar-Chiffre nahe. Anstatt auf jedes Klartextzeichen den Schlüsselwert k zu addieren, können wir die Klartextzeichen auch mit k multiplizieren. Allerdings erhalten wir hierbei nicht für jeden Wert von k eine injektive Chiffrierfunktion. So bildet etwa die Funktion $g:A_{lat}\to A_{lat}$ mit g(x)=2x sowohl A als auch N auf das Zeichen g(A)=g(N)=a ab. Um eine hinreichende und notwendige Bedingung für die Zulässigkeit eines Schlüsselwerts k formulieren zu können, führen wir folgende Begriffe ein.

Definition 9 (ggT, kgV, teilerfremd). Seien $a, b \in \mathbb{Z}$. Für $(a, b) \neq (0, 0)$ ist

$$ggT(a,b) = max\{d \in \mathbb{Z} \mid d \text{ teilt die beiden Zahlen a und b}\}$$

der größte gemeinsame Teiler von a und b und für $a \neq 0, b \neq 0$ ist

$$kgV(a, b) = min\{d \in \mathbb{Z} \mid d \geq 1 \text{ und die beiden Zahlen a und b teilen d}\}$$

das **kleinste gemeinsame Vielfache** von a und b. Ist ggT(a,b) = 1, so nennt man a und b **teilerfremd** oder man sagt, a ist **relativ prim** zu b.

Lemma 10. Seien $a, b, c \in \mathbb{Z}$ mit $(a, b) \neq (0, 0)$. Dann gilt ggT(a, b) = ggT(b, a + bc) und somit $ggT(a, b) = ggT(b, a \mod b)$, falls $b \geq 1$ ist.

Beweis. Jeder Teiler d von a und b ist auch ein Teiler von b und a+bc und umgekehrt. \square

Euklidischer Algorithmus: Der größte gemeinsame Teiler zweier Zahlen a und b lässt sich wie folgt bestimmen.

O. B. d. A. sei a > b > 0. Bestimme die natürlichen Zahlen (durch Division mit Rest*):

$$r_0 = a > r_1 = b > r_2 > \dots > r_s > r_{s+1} = 0$$
 und $d_1, d_3, \dots d_s$

 $_{
m mit}$

$$r_{i-1} = d_i r_i + r_{i+1} \text{für } i = 1, \dots, s.$$

Hierzu sind s Divisionsschritte erforderlich. Wegen

$$ggT(r_{i-1}, r_i) = ggT(r_i, \underbrace{r_{i-1} - d_i r_i}_{r_{i+1}})$$

folgt $ggT(a, b) = ggT(r_s, r_{s+1}) = r_s$.

Beispiel 11. Für a = 693 und b = 147 erhalten wir

$$i \quad r_{i-1} = d_i \cdot r_i + r_{i+1}$$

$$1 \quad 693 = 4 \cdot 147 + 105$$

$$2 \quad 147 = 1 \cdot 105 + 42$$

$$3 \quad 105 = 2 \cdot 42 + 21$$

$$4 \quad 42 = 2 \cdot \mathbf{21} + 0$$

◁

und damit $ggT(693, 147) = r_4 = 21$.

^{*}Also: $d_i = r_{i-1} \text{ div } r_i \text{ und } r_{i+1} = r_{i-1} \text{ mod } r_i$.

Der euklidische Algorithmus lässt sich sowohl iterativ als auch rekursiv implementieren.

1 repeat	if $b = 0$ then
$r := a \bmod b$	$_{2}$ return $\left(a ight)$
a := b	3 else
b := r	$_{4}$ return(Euklid _{rek} $(b, a \mod b))$
5 until $r=0$	
6 $\mathbf{return}(a)$	

Zur Abschätzung von s verwenden wir die Folge der Fibonacci-Zahlen F_n .

$$F_n = \begin{cases} 0, & \text{falls } n = 0 \\ 1, & \text{falls } n = 1 \\ F_{n-1} + F_{n-2}, & \text{falls } n \ge 2 \end{cases}$$

Durch Induktion über $i=s+1,s,\ldots,0$ folgt $r_i\geq F_{s+1-i}$ und somit $a=r_0\geq F_{s+1}$. Weiterhin lässt sich durch Induktion über $n\geq 0$ zeigen, dass $F_{n+1}\geq \phi^{n-1}$ ist, wobei $\phi=(1+\sqrt{5})/2$ der **goldene Schnitt** ist. Der Induktionsanfang (n=0 oder 1) ist klar, da $F_2=F_1=1=\phi^0\geq \phi^{-1}$ ist. Unter der Induktionsannahme $F_{i+1}\geq \phi^{i-1}$ für $i\leq n-1$ folgt wegen $\phi^2=\phi+1$

$$F_{n+1} = F_n + F_{n-1} \ge \phi^{n-2} + \phi^{n-3} = \phi^{n-3}(\phi + 1) = \phi^{n-1}.$$

Somit ist $a \ge \phi^{s-1}$, d. h. $s \le 1 + \lfloor \log_{\phi} a \rfloor$.

Satz 12. Seien a > b > 0 ganze Zahlen und sei n die Länge von a in Binärdarstellung. Dann führt der euklidische Algorithmus O(n) Divisionsschritte zur Berechnung von ggT(a,b) durch. Dies führt auf eine Zeitkomplexität von $O(n^3)$, da jede Ganzzahldivision in Zeit $O(n^2)$ durchführbar ist.

Erweiterter euklidischer bzw. Berlekamp-Algorithmus: Der euklidische Algorithmus kann so modifiziert werden, dass er eine lineare Darstellung

$$ggT(a,b) = \lambda a + \mu b \text{ mit } \lambda, \mu \in \mathbb{Z}$$

des ggT liefert (Zeitkomplexität ebenfalls $O(n^3)$). Hierzu werden neben r_i und d_i weitere Zahlen p_i und q_i bestimmt:

$$p_0 = 1, p_1 = 0, p_i = p_{i-2} - d_{i-1}p_{i-1}$$
 und
 $q_0 = 0, q_1 = 1, q_i = q_{i-2} - d_{i-1}q_{i-1}$ für $i = 2, \dots, s$.

Dann gilt die Gleichung $ap_i + bq_i = r_i$ für i = 0 und i = 1, und wegen

$$ap_{i+1} + bq_{i+1} = a(p_{i-1} - d_i p_i) + b(q_{i-1} - d_i q_i)$$

$$= ap_{i-1} + bq_{i-1} - d_i (ap_i + bq_i)$$

$$= (r_{i-1} - d_i r_i)$$

$$= r_{i+1}$$

folgt induktiv über i = 2, ..., s, dass sie auch für i = s gilt:

$$ap_s + bq_s = r_s = ggT(a, b).$$

1.4 Die affine Chiffre 7

Korollar 13 (Lemma von Bezout). Der größte gemeinsame Teiler von a und b ist in der Form

$$ggT(a, b) = \lambda a + \mu b \ mit \ \lambda, \mu \in \mathbb{Z}$$

darstellbar.

Beispiel 14. Für a = 693 und b = 147 erhalten wir wegen

i	$r_{i-1} = d_i \cdot r_i + r_{i+1}$	$p_i \cdot 693 +$	$q_i \cdot 147 = r_i$
0		$1 \cdot 693 +$	$0 \cdot 147 = 693$
1	$693 = 4 \cdot 147 + 105$	0.693 +	$1 \cdot 147 = 147$
2	$147 = 1 \cdot 105 + 42$	$1 \cdot 693 +$	$(-4) \cdot 147 = 105$
3	$105 = 2 \cdot 42 + 21$	$-1 \cdot 693 +$	$5 \cdot 147 = 42$
4	$42 = 2 \cdot 21 + 0$	$3 \cdot 693 + ($	$(-14) \cdot 147 = 21$

die lineare Darstellung $3 \cdot 693 - 14 \cdot 147 = 21$.

Aus der linearen Darstellbarkeit des größten gemeinsamen Teilers ergeben sich eine Reihe von nützlichen Schlussfolgerungen.

Korollar 15. Der größte gemeinsame Teiler von a und b wird von allen gemeinsamen Teilern von a und b geteilt,

$$x|a \wedge x|b \implies x|\operatorname{ggT}(a,b).$$

Beweis. Seien $\mu, \lambda \in \mathbb{Z}$ mit $\mu a + \lambda b = \operatorname{ggT}(a, b)$. Falls x sowohl a als auch b teilt, dann teilt x auch die Produkte μa und λb und somit auch deren Summe.

Korollar 16. $ggT(a, b) = min\{\lambda a + \mu b \ge 1 \mid \lambda, \mu \in \mathbb{Z}\}.$

Beweis. Sei $M = \{\lambda a + \mu b \ge 1 \mid \lambda, \mu \in \mathbb{Z}\}$, $m = \min M$ und $g = \operatorname{ggT}(a, b)$. Dann folgt $g \ge m$, da g in der Menge M enthalten ist, und $g \le m$, da g jede Zahl in M teilt. \square

Korollar 17. Zwei Zahlen a und b sind genau dann zu einer Zahl $m \in \mathbb{Z}$ teilerfremd, wenn ihr Produkt ab teilerfremd zu m ist,

$$ggT(a, m) = ggT(b, m) = 1 \Leftrightarrow ggT(ab, m) = 1.$$

Beweis. Da a und b teilerfremd zu m sind, existieren Zahlen $\mu, \lambda, \mu', \lambda' \in \mathbb{Z}$ mit $\mu a + \lambda m = \mu' b + \lambda' m = 1$. Somit ergibt sich aus der Darstellung

$$1 = (\mu a + \lambda m)(\mu' b + \lambda' m) = \underbrace{\mu \mu'}_{\mu''} ab + \underbrace{(\mu a \lambda' + \mu' b \lambda + \lambda \lambda' m)}_{\lambda''} m$$

und Korollar 16, dass auch ab teilerfremd zu m ist.

Gilt umgekehrt ggT(ab, m) = 1, so existieren Zahlen $\mu, \lambda \in \mathbb{Z}$ mit $\mu ab + \lambda m = 1$. Mit Korollar 16 folgt sofort ggT(a, m) = ggT(b, m) = 1.

Korollar 18 (Lemma von Euklid). Sind a und b teilerfremd und teilt a das Produkt bc, so teilt a auch c,

$$ggT(a,b) = 1 \land a|bc \Rightarrow a|c.$$

Beweis. Wegen ggT(a, b) = 1 existieren Zahlen $\mu, \lambda \in \mathbb{Z}$ mit $\mu a + \lambda b = 1$. Falls a das Produkt bc teilt, muss a auch die Zahl $\mu ac + \lambda bc = c$ teilen.

Damit nun eine Abbildung $g:A\to A$ der Form g(x)=bx auf einem Alphabet A injektiv (oder gleichbedeutend, surjektiv) ist, muss es zu jedem Zeichen $y\in A$ genau einen Zeichen $x\in A$ mit bx=y geben. Wie der folgende Satz zeigt, ist dies genau dann der Fall, wenn b und m teilerfremd sind.

Satz 19. Seien b, y, m ganze Zahlen mit $m \ge 1$. Die lineare Kongruenzgleichung $bx \equiv_m y$ besitzt genau dann eine eindeutige Lösung $x \in \{0, \ldots, m-1\}$, wenn ggT(b, m) = 1 ist.

Beweis. Angenommen, ggT(b,m) = g > 1. Dann ist mit x auch x' = x + m/g eine Lösung von $bx \equiv_m y$ mit $x \not\equiv_m x'$. Folglich ist die Kongruenz $bx \equiv_m y$ nicht eindeutig lösbar.

Gilt umgekehrt ggT(b, m) = 1, so folgt aus den Kongruenzen

$$bx_1 \equiv_m y$$

und

$$bx_2 \equiv_m y$$

sofort $b(x_1-x_2) \equiv_m 0$, also $m|b(x_1-x_2)$. Wegen $\operatorname{ggT}(b,m)=1$ folgt mit dem Lemma von Euklid $m|(x_1-x_2)$, also $x_1 \equiv_m x_2$. Folglich hat die Kongruenz $bx \equiv_m y$ für jedes $y \in \mathbb{Z}_m$ höchstens eine Lösung $x \in \{0,\ldots,m-1\}$. Zudem folgt, dass die Abbildung $f:\mathbb{Z}_m \to \mathbb{Z}_m$ mit $f(x) = bx \mod m$ injektiv ist. Da aber der Definitions- und der Wertebereich von f die gleiche Mächtigkeit haben, muss f dann auch surjektiv sein. Somit hat die Kongruenz $bx \equiv_m y$ für jedes $y \in \mathbb{Z}_m$ sogar genau eine Lösung $x \in \{0,\ldots,m-1\}$.

Korollar 20. Im Fall ggT(b, m) = 1 hat die Kongruenz $bx \equiv_m 1$ genau eine Lösung, die das **multiplikative Inverse** von b modulo m genannt und mit b^{-1} mod m (oder einfach mit b^{-1}) bezeichnet wird.

Korollar 17 zeigt, dass die Menge

$$\mathbb{Z}_m^* = \{ b \in \mathbb{Z}_m \mid ggT(b, m) = 1 \}$$

aller invertierbaren Elemente von \mathbb{Z}_m unter der Operation \odot_m abgeschlossen ist. Mit Korollar 20 folgt daher, dass $(\mathbb{Z}_m^*, \odot_m, 1)$ eine multiplikative Gruppe bildet. Allgemeiner zeigt man, dass die Multiplikation eines beliebigen Rings $(R, +, \cdot, 0, 1)$ mit Eins auf der Menge $R^* = \{a \in R \mid \exists b \in R : ab = 1 = ba\}$ aller **Einheiten** von R eine Gruppe bildet (siehe Übungen). Diese Gruppe $(R^*, \cdot, 1)$ wird als **Einheitengruppe** von R bezeichnet. Das multiplikative Inverse von k modulo k0 ergibt sich aus der linearen Darstellung k1 ab k2 multiplikative Inverse k3 mod k4. Die folgende Tabelle gibt für jedes k5 multiplikative Inverse k6 an.

b	1	3	5	7	9	11	15	17	19	21	23	25
b^{-1}	1	9	21	15	3	19	7	23	11	5	17	25

Bei Kenntnis von b^{-1} kann die Kongruen
z $bx\equiv_m y$ leicht zu $x=yb^{-1} \bmod m$ gelöst werden.

Nun lässt sich die additive Chiffre leicht zur affinen Chiffre erweitern.

◁

Definition 21. Bei der **affinen Chiffre** ist A = B = M = C ein beliebiges Alphabet mit m := |A| und $K = \mathbb{Z}_m^* \times \mathbb{Z}_m$. Für $k = (b, c) \in K$, $x \in M$ und $y \in C$ gilt

$$E(k, x) = bx + c$$
 und $D(k, y) = b^{-1}(y - c)$.

In diesem Fall liefert die Schlüsselkomponente b = -1 für jeden Wert von $c \in \mathbb{Z}_m$ eine involutorische Chiffrierfunktion $x \mapsto E_{(-1,c)}(x) = c - x$ (verschobenes komplementäres Alphabet). Wählen wir für c ebenfalls den Wert -1, so ergibt sich die Chiffrierfunktion $x \mapsto -x - 1$, die auch als revertiertes Alphabet bekannt ist. Offenbar ist diese Funktion genau dann echt involutorisch, wenn m gerade ist.

$$\begin{array}{c|c} x & \mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\ -x & \mathsf{azyxwvutsrqponmlkjihgfedcb} \\ -x-1 & \mathsf{zyxwvutsrqponmlkjihgfedcba} \end{array}$$

Als nächstes illustrieren wir die Ver- und Entschlüsselung mit der affinen Chiffre an einem kleinen Beispiel.

Beispiel 22 (affine Chiffre). Sei $A = \{A, ..., Z\} = B$, also m = 26. Weiter sei k = (9, 2), also b = 9 und c = 2. Um das Klartextzeichen x = F zu verschlüsseln, berechnen wir

$$E(k, x) = bx + c = 9F + 2 = v,$$

da der Index von F gleich 5, der von V gleich 21 und $9 \cdot 5 + 2 = 47 \equiv_{26} 21$ ist. Um ein Kryptotextzeichen wieder entschlüsseln zu können, benötigen wir das multiplikative Inverse von b = 9, das sich wegen

i	$r_{i-1} = d_i \cdot r_i + r_{i+1}$	$p_i \cdot 26 +$	$q_i \cdot 9 =$	r_i
0		$1 \cdot 26 +$	$0 \cdot 9 =$	26
1	$26 = 2 \cdot 9 + 8$	$0 \cdot 26 + $	$1 \cdot 9 =$	9
2	$9 = 1 \cdot 8 + 1$	$1 \cdot 26 + (-$	$-2) \cdot 9 =$	8
3	$8 = 8 \cdot 1 + 0$	$(-1) \cdot 26 +$	$3 \cdot 9 =$	1

zu $b^{-1}=q_3=3$ ergibt. Damit erhalten wir für das Kryptotextzeichen $y=\mathbf{v}$ das ursprüngliche Klartextzeichen

$$D(k,y) = b^{-1}(y-c) = 3(\mathbf{v}-2) = \mathbf{F}$$

zurück, da $3 \cdot 19 = 57 \equiv_{26} 5$ ist.

1.5 Die Eulersche Phi-Funktion

Zur Berechnung der Schlüsselzahl bei der multiplikativen und affinen Chiffre benötigen wir die Funktion

$$\varphi: \mathbb{N} \to \mathbb{N} \quad \text{mit } \varphi(m) = |\mathbb{Z}_m^*| = |\{a \in \mathbb{Z}_m \mid \operatorname{ggT}(a, m) = 1\}|,$$

die sogenannte **Eulersche** φ -**Funktion**. Die folgende Tabelle zeigt die Werte $\varphi(m)$ für $m = 1, \ldots, 10$ (für die Menge $\{1, \ldots, n\}, n \in \mathbb{N}$, schreiben wir auch kurz [n]).

Für primes p gilt offensichtlich $\varphi(p)=p-1,$ da $\mathbb{Z}_p^*=[p-1]$ ist. Wegen

$$\mathbb{Z}_{p^k} - \mathbb{Z}_{p^k}^* = \{0, p, 2p, \dots, (p^{k-1} - 1)p\}$$

folgt zudem

$$\varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$$
 für $k \ge 1$.

Um hieraus für beliebige Zahlen $n \in \mathbb{N}$ eine Formel für $\varphi(n)$ zu erhalten, genügt es, $\varphi(ml)$ im Fall ggT(m,l) = 1 in Abhängigkeit von $\varphi(m)$ und $\varphi(l)$ zu bestimmen. Hierzu betrachten wir die Abbildung $f : \mathbb{Z}_{ml} \to \mathbb{Z}_m \times \mathbb{Z}_l$ mit

$$f(x) = (x \bmod m, x \bmod l).$$

Beispiel 23. Sei m = 5 und l = 6. Dann erhalten wir die Funktion $f : \mathbb{Z}_{30} \to \mathbb{Z}_5 \times \mathbb{Z}_6$ mit

Man beachte, dass f eine Bijektion zwischen \mathbb{Z}_{30} und $\mathbb{Z}_5 \times \mathbb{Z}_6$ ist. Zudem fällt auf, dass ein x-Wert genau dann in \mathbb{Z}_{30}^* liegt, wenn der Funktionswert f(x) = (y, z) zu $\mathbb{Z}_5^* \times \mathbb{Z}_6^*$ gehört (die Werte $x \in \mathbb{Z}_{30}^*$, $y \in \mathbb{Z}_5^*$ und $z \in \mathbb{Z}_6^*$ sind **fett** gedruckt). Folglich bildet f die Argumente in \mathbb{Z}_{30}^* bijektiv auf die Werte in $\mathbb{Z}_5^* \times \mathbb{Z}_6^*$ ab. Für f^{-1} erhalten wir somit folgende Tabelle:

f^{-1}	0	1	2	3	4	5
0	0	25 1 7 13 19	20	15	10	5
1	6	1	26	21	16	11
2	12	7	2	27	22	17
3	18	13	8	3	28	23
4	24	19	14	9	4	29

Die fett gedruckten Einträge bilden dann die Tabelle der Einschränkung \hat{f}^{-1} von f^{-1} auf die Menge $\mathbb{Z}_5^* \times \mathbb{Z}_6^*$. Das Bild dieser Einschränkung ist genau die Menge \mathbb{Z}_{30}^* .

Der chinesische Restsatz, den wir im nächsten Abschnitt beweisen, besagt, dass f im Fall $ggT(m, \ell) = 1$ bijektiv und damit invertierbar ist. Wegen

$$\operatorname{ggT}(x, m\ell) = 1 \iff \operatorname{ggT}(x, m) = \operatorname{ggT}(x, \ell) = 1$$

 $\Leftrightarrow \operatorname{ggT}(x \bmod m, m) = \operatorname{ggT}(x \bmod \ell, \ell) = 1$

11

ist daher die Einschränkung \hat{f} von f auf den Bereich $\mathbb{Z}_{m\ell}^*$ eine Bijektion zwischen $\mathbb{Z}_{m\ell}^*$ und $\mathbb{Z}_m^* \times \mathbb{Z}_\ell^*$, d.h. es gilt

$$\varphi(m\ell) = |\mathbb{Z}_{m\ell}^*| = |\mathbb{Z}_m^* \times \mathbb{Z}_\ell^*| = |\mathbb{Z}_m^*| \cdot |\mathbb{Z}_\ell^*| = \varphi(m)\varphi(\ell).$$

Satz 24. Die Eulersche φ -Funktion ist multiplikativ, d. h. für teilerfremde Zahlen m und ℓ gilt $\varphi(m\ell) = \varphi(m)\varphi(\ell)$.

Korollar 25. Sei $m = \prod_{i=1}^{\ell} p_i^{k_i}$ die Primfaktorzerlegung von m. Dann gilt

$$\varphi(m) = \prod_{i=1}^{\ell} p_i^{k_i - 1}(p_i - 1) = m \prod_{i=1}^{\ell} (p_i - 1)/p_i.$$

Beweis. Es gilt $\varphi(\prod_{i=1}^{\ell} p_i^{k_i}) = \prod_{i=1}^{\ell} \varphi(p_i^{k_i}) = \prod_{i=1}^{\ell} (p_i^{k_i} - p_i^{k_i-1}) = \prod_{i=1}^{\ell} p_i^{k_i-1}(p_i-1).$

1.6 Der chinesische Restsatz

Die beiden linearen Kongruenzen

$$\begin{array}{ccc} x & \equiv_3 & 0 \\ x & \equiv_6 & 1 \end{array}$$

besitzen je eine Lösung, es gibt aber kein x, das beide Kongruenzen gleichzeitig erfüllt. Der nächste Satz zeigt, dass unter bestimmten Voraussetzungen gemeinsame Lösungen existieren, und wie sie berechnet werden können.

Satz 26 (Chinesischer Restsatz (CRS)). Falls m_1, \ldots, m_k paarweise teilerfremd sind, dann hat das System

$$\begin{array}{rcl}
x & \equiv_{m_1} & b_1 \\
& \vdots \\
x & \equiv_{m_k} & b_k
\end{array} \tag{1.2}$$

für beliebige Zahlen $b_1, \ldots, b_k \in \mathbb{Z}$ genau eine Lösung modulo $m = \prod_{i=1}^k m_i$.

Beweis. Zu jeder Zahl $n_i = m/m_i$ existieren wegen $ggT(n_i, m_i) = 1$ Zahlen μ_i und λ_i mit

$$\mu_i n_i + \lambda_i m_i = ggT(n_i, m_i) = 1$$

Für i = 1, ..., k löst daher die Zahl $s_i = \mu_i n_i$ das System

$$x \equiv_{m_j} \begin{cases} 0, & j \neq i \quad (a) \\ 1, & j = i \quad (b) \end{cases}$$
 (1.3)

Folglich gelten für $s = \sum_{i=1}^k b_i s_i$ die Kongruenzen $s \stackrel{\text{(1.3a)}}{\equiv} {}_{m_j} b_j s_j \stackrel{\text{(1.3b)}}{\equiv} {}_{m_j} b_j$, d.h. s löst das System (1.2). Dies zeigt, dass die Funktion

$$f: \mathbb{Z}_m \to \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k} \text{ mit } f(x) = (x \text{ mod } m_1, \dots, x \text{ mod } m_k)$$

surjektiv ist. Da der Definitions- und der Wertebereich von f gleich groß sind, muss f auch injektiv sein und (1.2) ist eindeutig lösbar.

Man beachte, dass der Beweis des chinesischen Restsatzes konstruktiv ist und die Lösung x unter Verwendung des erweiterten euklidischen Algorithmus' effizient berechnet werden kann.

Man verifiziert auch leicht, dass f ein Isomorphismus zwischen dem Ring $(\mathbb{Z}_m, \oplus_m, \odot_m)$ und dem direkten Produkt der Ringe $(\mathbb{Z}_{m_i}, \oplus_{m_i}, \odot_{m_i})$, $1 \leq i \leq k$, ist. Dies ist nicht nur für theoretische Überlegungen nützlich, sondern hat auch praktische Konsequenzen. Beispielsweise lässt sich dadurch die Laufzeit von bestimmten Berechnungen im Ring \mathbb{Z}_m deutlich reduzieren, sofern die Primzahlzerlegung von m bekannt ist.

1.7 Die Hill-Chiffre

Die von Hill im Jahr 1929 publizierte Chiffre ist eine Erweiterung der multiplikativen Chiffre auf Buchstabenblöcke. Der Klartext wird also nicht zeichen- sondern blockweise verarbeitet. Die Blöcke haben eine feste Länge l und sowohl Klar- als auch Kryptotextraum bestehen aus allen Wörtern $x \in A^l$. Als Schlüssel dient eine $(l \times l)$ -Matrix $k = (k_{ij})$ mit Koeffizienten in \mathbb{Z}_m . Diese transformiert einen Klartext $x = x_1 \dots x_l \in A^l$ in den Kryptotext $y = y_1 \dots y_l$ mit $y_i = x_1 k_{1i} + \dots + x_l k_{li}$ für $i = 1, \dots, l$:

$$(y_1 \cdots y_l) = (x_1 \cdots x_l) \begin{pmatrix} k_{11} & \dots & k_{1l} \\ \vdots & \ddots & \vdots \\ k_{l1} & \dots & k_{ll} \end{pmatrix}$$

Wir bezeichnen die Menge aller $(l \times l)$ -Matrizen (k_{ij}) mit Koeffizienten $k_{ij} \in \mathbb{Z}_m$ mit $\mathbb{Z}_m^{l \times l}$. Als Schlüssel können nur invertierbare Matrizen k benutzt werden, da sonst der Chiffriervorgang nicht injektiv ist. Ob eine Matrix $k \in \mathbb{Z}_m^{l \times l}$ invertierbar ist, lässt sich an ihrer Determinante erkennen.

Definition 27 (**Determinante**). Sei R ein kommutativer Ring mit Eins und sei $n \ge 1$. Eine Funktion $f: R^{n \times n} \to R$ heißt **Determinantenfunktion**, falls sie für jede Matrix $A = (a_{ij}) \in R^{n \times n}$ mit Zeilen $a_1, \ldots, a_n \in R^n$ folgende Eigenschaften erfüllt:

- f ist multilinear, d.h. für jeden Vektor $b \in R^n$ und jedes Element $r \in R$ gilt

$$f\begin{pmatrix} a_1 \\ \vdots \\ r \cdot a_i + b \\ \vdots \\ a_n \end{pmatrix} = r \cdot f\begin{pmatrix} a_1 \\ \vdots \\ a_i \\ \vdots \\ a_n \end{pmatrix} + f\begin{pmatrix} a_1 \\ \vdots \\ b \\ \vdots \\ a_n \end{pmatrix}$$

- f ist **alternierend**, d.h. im Fall $a_i = a_j$ für $i \neq j$ gilt f(A) = 0
- f ist **normiert**, d.h. f(E) = 1, wobei $I_n \in \mathbb{R}^{n \times n}$ die Einheitsmatrix ist.

Tatsächlich ist f durch diese drei Eigenschaften eindeutig festgelegt und wir bezeichnen f(A) wie üblich mit det(A).

Eine explizite Darstellung für die Determinantenfunktion liefert der Laplacesche Entwicklungssatz. Für $i, j \in [n]$, $n \geq 2$, sei A_{ij} die Matrix, die aus A durch Streichen der i-ten Zeile und j-ten Spalte entsteht, und $\tilde{a}_{ij} = (-1)^{i+j} det(A_{ij})$ sei der zugehörige **Kofaktor** (im Fall n = 1 setzen wir $\tilde{a}_{11} = 1$). Dann gelten für beliebige $i, j \in [n]$ die Gleichungen

$$det(A) = \sum_{k=1}^{n} a_{ik} \tilde{a}_{ik} = \sum_{k=1}^{n} a_{kj} \tilde{a}_{kj},$$
 "Entwicklung nach der *i*-ten Zeile bzw. *j*-ten Spalte"

Aus diesen Formeln lässt sich zwar ein Algorithmus zur Berechnung der Determinante ableiten, allerdings hat dieser eine exponentielle Laufzeit. Mit dem Gaußschen Eliminationsverfahren lässt sich die Determinante dagegen effizient berechnen (siehe Übungen).

Für die Dechiffrierung eines mit dem Schlüssel k berechneten Kryptotextes wird die inverse Matrix k^{-1} benötigt. Invertierbare Matrizen werden auch als **regulär** bezeichnet. Eine Matrix $k \in \mathbb{Z}_m^{l \times l}$ ist genau dann regulär, wenn $\operatorname{ggT}(\det(k), m) = 1$ ist. In diesem Fall lässt sich k^{-1} mit dem Gauß-Jordan-Algorithmus effizient berechnen (siehe Übungen).

Definition 28. Sei $A = \{a_0, \dots, a_{m-1}\}$ ein beliebiges Alphabet und für eine ganze Zahl $\ell \geq 2$ sei $M = C = A^{\ell}$. Bei der **Hill-Chiffre** ist $K = \{k \in \mathbb{Z}_m^{\ell \times \ell} \mid \operatorname{ggT}(\det(k), m) = 1\}$ und es gilt

$$E(k, x) = xk$$
 und $D(k, y) = yk^{-1}$.

Beispiel 29 (Hill-Chiffre). Benutzen wir zur Chiffrierung von Klartextblöcken der Länge l=4 über dem lateinischen Alphabet A_{lat} die Schlüsselmatrix

$$k = \begin{pmatrix} 11 & 13 & 8 & 21 \\ 24 & 17 & 3 & 25 \\ 18 & 12 & 23 & 17 \\ 6 & 15 & 2 & 15 \end{pmatrix},$$

so erhalten wir beispielsweise für den Klartext HILL wegen

$$(\texttt{HILL}) \begin{pmatrix} 11 & 13 & 8 & 21 \\ 24 & 17 & 3 & 25 \\ 18 & 12 & 23 & 17 \\ 6 & 15 & 2 & 15 \end{pmatrix} = (\textit{nerx}) \quad \textit{bzw}. \quad \begin{aligned} & 11\,\texttt{H} + 24\,\texttt{I} + 18\,\texttt{L} + \ 6\,\texttt{L} = \textit{n} \\ & 13\,\texttt{H} + 17\,\texttt{I} + 12\,\texttt{L} + 15\,\texttt{L} = \textit{e} \\ & 8\,\texttt{H} + \ 3\,\texttt{I} + 23\,\texttt{L} + \ 2\,\texttt{L} = \textit{r} \\ & 21\,\texttt{H} + 25\,\texttt{I} + 17\,\texttt{L} + 15\,\texttt{L} = \textit{x} \end{aligned}$$

den Kryptotext $E(k, \mathsf{HILL}) = \mathsf{nerx}$. Für die Entschlüsselung wird die inverse Matrix k^{-1} benötigt. Diese wird in den Übungen berechnet.

1.8 Die Vigenère-Chiffre und andere Stromsysteme

Die nach dem Franzosen Blaise de Vigenère (1523–1596) benannte Chiffre ersetzt den Klartext zeichenweise, allerdings je nach Position im Klartext unterschiedlich.

Definition 30. Sei A = B ein beliebiges Alphabet. Die **Vigenère-Chiffre** chiffriert unter einem Schlüssel $k = k_0 \dots k_{d-1} \in K = A^*$ einen Klartext $x = x_0 \dots x_{n-1}$ beliebiger Länge zu

$$E(k,x) = y_0 \dots y_{n-1} \text{ mit } y_i = x_i + k_{(i \mod d)} \text{ für } i = 0, \dots, n-1$$

und dechiffriert einen Kryptotext $y = y_0 \dots y_{n-1}$ zu

$$D(k, y) = x_0 \dots x_{n-1}$$
 mit $x_i = y_i - k_{(i \mod d)}$ für $i = 0, \dots, n-1$.

Beispiel 31 (Vigenère-Chiffre). Verwenden wir das lateinische Alphabet A_{lat} als Klartextalpabet und wählen wir als Schlüssel das Wort k = WIE, so ergibt sich für den Klartext VIGENERE beispielsweise der Kryptotext

$$E(\textit{WIE}, \textit{VIGENERE}) = \underbrace{\textit{V} + \textit{W}}_{r} \underbrace{\textit{I} + \textit{I}}_{q} \underbrace{\textit{G} + \textit{E}}_{k} \underbrace{\textit{E} + \textit{W}}_{a} \underbrace{\textit{N} + \textit{I}}_{v} \underbrace{\textit{E} + \textit{E}}_{i} \underbrace{\textit{R} + \textit{W}}_{n} \underbrace{\textit{E} + \textit{I}}_{m} = \textit{rqkavinm}$$

Um einen Klartext x zu verschlüsseln, wird also das Schlüsselwort $k=k_0\dots k_{d-1}$ so oft wiederholt, bis der dabei entstehende **Schlüsselstrom** $\hat{k}=k_0k_1\dots k_{d-1}k_0\dots$ die Länge von x erreicht. Dann werden x und \hat{k} zeichenweise addiert, um den zugehörigen Kryptotext y zu bilden. Aus diesem kann der ursprüngliche Klartext x zurückgewonnen werden, indem man den Schlüsselstrom \hat{k} wieder subtrahiert.

Beispiel 32. Vigenère-Chiffre

Die Chiffrierarbeit lässt sich durch Benutzung einer Additionstabelle erleichtern (auch als Vigenère-Tableau bekannt).

```
ABCDEFGHIJKLMNOPQRSTUVWXYZ
    A\ B\ C\ D\ E\ F\ G\ H\ I\ J\ K\ L\ M\ N\ O\ P\ Q\ R\ S\ T\ U\ V\ W\ X\ Y
    B C D E F G H I J K L M N O P Q R S T U V W X
С
    C\ D\ E\ F\ G\ H\ I\ J\ K\ L\ M\ N\ O\ P\ Q\ R\ S\ T\ U\ V\ W\ X
    DEFGHIJKLMNOPQRSTUVWXY
D
     E \ F \ G \ H \ I \ J \ K \ L \ M \ N \ O \ P \ Q \ R \ S \ T \ U \ V \ W \ X \ Y \ Z \ A 
Ε
    F \hspace{0.1cm} G \hspace{0.1cm} H \hspace{0.1cm} I \hspace{0.1cm} J \hspace{0.1cm} K \hspace{0.1cm} L \hspace{0.1cm} M \hspace{0.1cm} N \hspace{0.1cm} O \hspace{0.1cm} P \hspace{0.1cm} Q \hspace{0.1cm} R \hspace{0.1cm} S \hspace{0.1cm} T \hspace{0.1cm} U \hspace{0.1cm} V \hspace{0.1cm} W \hspace{0.1cm} X \hspace{0.1cm} Y
\mathbf{F}
G
    G\ H\ I\ J\ K\ L\ M\ N\ O\ P\ Q\ R\ S\ T\ U\ V\ W\ X\ Y\ Z\ A\ B\ C
    Η
    I J K L M N O P Q R S T U V W X Y Z A B C D E
Ι
    J K L M N O P Q R S T U V W X Y Z A B C D E F
J
    Κ
    \begin{smallmatrix} L \end{smallmatrix} M \end{smallmatrix} N \begin{smallmatrix} O \end{smallmatrix} P \begin{smallmatrix} Q \end{smallmatrix} R \begin{smallmatrix} S \end{smallmatrix} T \begin{smallmatrix} U \end{smallmatrix} V \end{smallmatrix} W X Y Z A B C D E F G H
    M\ N\ O\ P\ Q\ R\ S\ T\ U\ V\ W\ X\ Y
                                             Z A B
                                                     CDEFGH
    N O P Q R S
                      T U V W
                                   Χ
                                      Y
                                          \mathbf{Z}
                                             АВ
                                                  С
                                                      DЕ
                                                            \mathbf{F}
                                                               G H
                                                                      Ι
                                                                         J
Ν
O
                   {\rm T}
                                Χ
                                   Y
                                             B C D
                                                      E F G
                       U V W
                                      \mathbf{Z}
                                         Α
                                                               Η
                                                                  Ι
                                                                      J K
Ρ
    PQRSTU
                      V W X
                                Y
                                   ZABCDE
                                                     F G H
                                                               Ι
                                                                   J K L
    QRSTUVWXYZABCDEF
Q
                                                     G H
                                                            I
                                                               J K L M
\mathbf{R}
    R\ S\ T\ U\ V\ W\ X\ Y\ Z\ A\ B\ C\ D\ E\ F\ G\ H\ I
                                                            J K L M N O P
    S\ T\ U\ V\ W\ X\ Y\ Z\ A\ B\ C\ D\ E\ F\ G\ H\ I\ J\ K\ L\ M\ N\ O\ P
S
\mathbf{T}
    T\ U\ V\ W\ X\ Y\ Z\ A\ B\ C\ D\ E\ F\ G\ H\ I\ J\ K\ L\ M\ N\ O\ P
U
    U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V
    \begin{smallmatrix} V & W & X & Y & Z & A & B & C & D & E & F & G & H & I & J & K & L & M & N & O & P & Q & R & S & T & U \end{smallmatrix}
W
    W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
    X\ Y\ Z\ A\ B\ C\ D\ E\ F\ G\ H\ I\ J\ K\ L\ M\ N\ O\ P\ Q\ R\ S\ T\ U\ V\ W
Χ
       Z A B C D E F G H I J K L M N O P Q R S T U V W X
Y
    Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
```

Um eine involutorische Chiffre zu erhalten, schlug Sir Francis Beaufort, ein Admiral der britischen Marine, vor, den Schlüsselstrom nicht auf den Klartext zu addieren, sondern letzteren von ersterem zu subtrahieren.

Beispiel 33 (Beaufort-Chiffre). Verschlüsseln wir den Klartext BEAUFORT beispielsweise unter dem Schlüsselwort k = WIE, so erhalten wir den Kryptotext xmeqnsnb. Eine erneute Verschlüsselung liefert wieder den Klartext BEAUFORT:

Bei den bisher betrachteten Chiffren wird aus einem Schlüsselwort $k = k_0 \dots k_{d-1}$ ein **periodischer Schlüsselstrom** $\hat{k} = \hat{k}_0 \dots \hat{k}_{n-1}$ erzeugt, das heißt, es gilt $\hat{k}_i = \hat{k}_{i+d}$ für alle $i = 0, \dots, n-d-1$. Da eine kleine Periode das Brechen der Chiffre erleichtert, sollte entweder ein Schlüsselstrom mit sehr großer Periode oder noch besser ein **fortlaufender Schlüsselstrom** zur Chiffrierung benutzt werden. Ein solcher nichtperiodischer Schlüsselstrom lässt sich beispielsweise ohne großen Aufwand erzeugen, indem man an das Schlüsselwort den Klartext oder den Kryptotext anhängt (sogenannte **Autokey-Chiffrierung**).

Beispiel 34 (Autokey-Chiffre). Benutzen wir wieder das Schlüsselwort WIE, um den Schlüsselstrom durch Anhängen des Klar- bzw. Kryptotextes zu erzeugen, so erhalten wir für den Klartext VIGENERE folgende Kryptotexte:

Auch die Dechiffrierung ist in beiden Fällen einfach. Bei der ersten Alternative kann der Empfänger durch Subtraktion des Schlüsselworts den Anfang des Klartextes bilden und gleichzeitig den Schlüsselstrom verlängern, so dass sich auf diese Weise Stück für Stück der gesamte Kryptotext entschlüsseln lässt. Noch einfacher gestaltet sich die Dechiffrierung im zweiten Fall, da sich hier der Schlüsselstrom vom Kryptotext nur durch das vorangestelle Schlüsselwort unterscheidet.

1.9 Der One-Time-Pad

Eine weitere Möglichkeit ist, eine Textstelle in einem Buch als Schlüssel zu vereinbaren und den dort beginnenden Text als aperiodischen Schlüsselstrom zu benutzen (Lauftextverschlüsselung). Besser ist es jedoch, mithilfe von Pseudozufallsgeneratoren aus einem relativ kurzen Schlüssel einen deutlich längeren Schlüsselstrom zu erzeugen. Noch besser ist es, den Schlüsselstrom wirklich zufällig zu erzeugen. Dies führt auf eine absolut sichere Verschlüsselung, sofern der Schlüsselstrom nicht mehrmals benutzt wird. Ein solcher "Wegwerfschlüssel" (engl. One-Time-Pad oder kurz OTP; im Deutschen auch als individueller Schlüssel bezeichnet) lässt sich für längere Klartexte allerdings nur mit großem Aufwand generieren und auf einem sicheren Kanal zwischen Sender und Empfänger verteilen, weshalb diese Chiffre nur wenig praktikabel ist.

Beispiel 35 (One-Time-Pad). Sei $A = \{a_0, \ldots, a_{m-1}\}$ ein beliebiges Klartextalphabet. Um einen Klartext $x = x_0 \ldots x_{n-1}$ zu verschlüsseln, wird auf jedes Klartextzeichen x_i ein neuer, zufällig generierter Schlüsselbuchstabe k_i addiert,

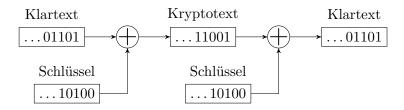
$$y = y_0 \dots y_{n-1}, wobei y_i = x_i + k_i.$$

[†]Die Idee, den Schlüsselstrom durch Anhängen des Klartextes an ein Schlüsselwort zu bilden, stammt von Vigenère, während er mit der Erfindung der nach ihm benannten Vigenère-Chiffre "nichts zu tun" hatte. Diese wird vielmehr Giovan Batista Belaso (1553) zugeschrieben.

[‡]Diese Methode schlug der amerikanische Major Joseph O. Mauborgne im Jahr 1918 vor, nachdem ihm ein von Gilbert S. Vernam für den Fernschreibverkehr entwickeltes Chiffriersystem vorgestellt wurde.

[§]Diese Methode wurde beispielsweise beim "heißen Draht", der 1963 eingerichteten, direkten Fernschreibverbindung zwischen dem Weißen Haus in Washington und dem Kreml in Moskau, angewandt.

Der Klartext wird also wie bei einer additiven Chiffre verschlüsselt, nur dass der Schlüssel nach einmaligem Gebrauch gewechselt wird. Wie diese ist der One-Time-Pad im Binärfall involutorisch.



1.10 Die Skytale-Chiffre

Anders als Substitutionen, bei denen Klartextsegmente durch Kryptotextsegmente ersetzt werden, verändern **Transpositionen** lediglich die *Reihenfolge* der einzelnen Klartextzeichen.

Beispiel 36 (Skytale-Chiffre). Die älteste bekannte Verschlüsselungstechnik stammt aus der Antike und wurde im 5. Jahrhundert v. Chr. von den Spartanern entwickelt: Der Sender wickelt einen Papierstreifen spiralförmig um einen Holzstab (die sogenannte Skytale) und beschreibt ihn in Längsrichtung mit der Geheimbotschaft.

Besitzt der Empfänger eines auf diese Weise beschrifteten Papierstreifens einen Stab mit dem gleichen Umfang, so kann er ihn auf dieselbe Art wieder entziffern.

Als Schlüssel fungiert hier also der Stabumfang bzw. die Anzahl k der Zeilen, mit denen der Stab beschrieben wird. Findet der gesamte Klartext x auf der Skytale Platz und beträgt seine Länge ein Vielfaches von k, so geht x bei der Chiffrierung in den Kryptotext

$$E(k, x_1 \cdots x_{km}) = x_1 x_{m+1} \cdots x_{(k-1)m+1} x_2 x_{m+2} \cdots x_{(k-1)m+2} \cdots x_m x_{2m} \cdots x_{km}$$

über. Dasselbe Resultat erhält man, wenn x zeilenweise in eine $k \times m$ -Matrix geschrieben und spaltenweise wieder ausgelesen wird (sogenannte **Spaltentransposition**):

x_1	x_2		x_m
x_{m+1}	x_{m+2}	• • •	x_{2m}
:	• • • • • • • • • • • • • • • • • • • •	٠.	÷
$x_{(k-1)m+1}$	$x_{(k-1)m+2}$	• • •	x_{km}

Ist die Klartextlänge kein Vielfaches von k, so kann der Klartext durch das Einbzw. Anfügen von sogenannten **Blendern** (Füllzeichen) verlängert werden. Damit der Empfänger diese Füllzeichen nach der Entschlüsselung wieder entfernen kann, ist lediglich darauf zu achten, dass sie im Klartext leicht als solche erkennbar sind.

17

Von der Methode, die letzte Zeile nur zum Teil zu füllen, ist dagegen abzuraten. In diesem Fall würden nämlich auf dem abgewickelten Papierstreifen Lücken entstehen, aus deren Anordnung man Schlüsse auf den benutzten Schlüssel k ziehen könnte. Andererseits ist nichts dagegen einzuwenden, dass der Sender die letzte Spalte der Skytale nur zum Teil beschriftet.

Eng verwandt mit der Skytale-Chiffre ist die Zick-Zack-Transposition.

Beispiel 37. Bei Ausführung einer Zick-Zack-Transposition wird der Klartext in eine Zick-Zack-Linie geschrieben und horizontal wieder ausgelesen. Die Höhe der Zick-Zack-Linie kann als Schlüssel vereinbart werden.

1.11 Die Blocktransposition

Bei einer Zick-Zack-Transposition werden Zeichen im vorderen Klartextbereich bis fast ans Ende des Kryptotextes verlagert und umgekehrt. Dies hat den Nachteil, dass für die Generierung des Kryptotextes der gesamte Klartext gepuffert werden muss. Daher werden meist **Blocktranspositionen** verwendet, bei denen die Zeichen nur innerhalb fester Blockgrenzen transponiert werden.

Definition 38. Sei A = B ein beliebiges Alphabet und für eine natürliche Zahl $l \ge 2$ sei $M = C = A^{\ell}$. Bei einer **Blocktranspositionschiffre** wird durch jeden Schlüssel $k \in K$ eine Permutation π auf $[\ell]$ beschrieben, so dass für alle Zeichenfolgen $x_1 \cdots x_{\ell} \in M$ und $y_1 \cdots y_{\ell} \in C$

$$E(k, x_1 \cdots x_\ell) = x_{\pi(1)} \cdots x_{\pi(\ell)}$$

und

$$D(k, y_1 \cdots y_\ell) = y_{\pi^{-1}(1)} \cdots y_{\pi^{-1}(\ell)}$$

gilt.

Eine Blocktransposition mit Blocklänge ℓ lässt sich durch eine Permutation $\pi \in S_{\ell}$ (also auf der Menge $\{1, \ldots, \ell\}$) beschreiben.

Beispiel 39. Eine Skytale, die mit 4 Zeilen der Länge 6 beschrieben wird, realisiert beispielsweise folgende Blocktransposition:

Für die Entschlüsselung muss die zu π inverse Permutation π^{-1} benutzt werden. Wird π durch eine Folge von Zyklen $(i_1 \ i_2 \ i_3 \ \dots \ i_n)$ dargestellt, wobei i_1 auf i_2 , i_2 auf i_3 usw. und schließlich i_n auf i_1 abgebildet wird, so ist π^{-1} sehr leicht zu bestimmen.

Beispiel 40.

$i \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6$	$\overline{}$	1	2	3	4	5	6
$\pi(i) 4 6 1 3 5 2$	$\pi^{-1}(i)$	3	6	4	1	5	2

Obiges π hat beispielsweise die Zyklendarstellung

$$\pi = (1 \ 4 \ 3) \ (2 \ 6) \ (5) \ oder \ \pi = (1 \ 4 \ 3) \ (2 \ 6),$$

wenn, wie allgemein üblich, Einerzyklen weggelassen werden. Daraus erhalten wir unmittelbar π^{-1} zu

$$\pi^{-1} = (3\ 4\ 1)\ (6\ 2)\ oder\ (1\ 3\ 4)\ (2\ 6),$$

wenn wir jeden Zyklus mit seinem kleinsten Element beginnen lassen und die Zyklen nach der Größe dieser Elemente anordnen.

Beispiel 41. Bei der Matrix-Transposition wird der Klartext zeilenweise in eine $k \times l$ -Matrix eingelesen und der Kryptotext spaltenweise gemäß einer Spaltenpermutation $\pi \in S_l$, die als Schlüssel dient, wieder ausgelesen. Für $\pi = (1 \ 4 \ 3) \ (2 \ 6)$ wird also zuerst Spalte $\pi(1) = 4$, dann Spalte $\pi(2) = 6$ und danach Spalte $\pi(3) = 1$ usw. und zuletzt Spalte $\pi(6) = 2$ ausgelesen.

3	6	4	1	5	2
D	Ι	Е	S	Е	R
K	L	Α	R	Т	Ε
Χ	Т	Ι	S	Т	N
Ι	C	Н	Т	S	Ε
Н	R	L	Α	Ν	G

DIESER KLARTEXT IST NICHT SEHR LANG

→ srsta reneg dkxih eaihl ettsn iltcr

◁

Beispiel 42. Bei der Weg-Transposition wird als Schlüssel eine Hamiltonlinie in einem Graphen mit den Knoten $1, \ldots, l$ benutzt. (Eine Hamiltonlinie ist eine Anordnung aller Knoten, in der je zwei aufeinanderfolgende Knoten durch eine Kante verbunden sind.) Der Klartextblock $x_1 \cdots x_l$ wird gemäß der Knotennumerierung in den Graphen eingelesen und der zugehörige Kryptotext entlang der Hamiltonlinie wieder ausgelesen.

Es ist leicht zu sehen, dass sich jede Blocktransposition durch eine Hamiltonlinie in einem geeigneten Graphen realisieren lässt. Der Vorteil, eine Hamiltonlinie als Schlüssel zu benutzen, besteht offenbar darin, dass man sich den Verlauf einer Hamiltonlinie bildhaft vorstellen und daher besser einprägen kann als eine Zahlenfolge.

Sehr beliebt ist auch die Methode, sich eine Permutationen in Form eines Schlüsselworts (oder einer aus mehreren Wörtern bestehenden Schlüsselphrase) ins Gedächtnis einzuprägen. Aus einem solchen Schlüsselwort lässt sich die zugehörige Permutation σ leicht rekonstruieren, indem man das Wort auf Papier schreibt und in der Zeile darunter für jedes einzelne Zeichen seine Position i innerhalb des Wortes vermerkt.

Schlüsselwort für σ	CAESAR
i	1 2 3 4 5 6
$\sigma(i)$	3 1 4 6 2 5
Schlüsselwort für σ i $\sigma(i)$ Zyklendarstellung von σ	$(1\ 3\ 4\ 6\ 5\ 2)$

DIE BLOCKLAENGE IST SECHS \sim edboil lcanke igsset excsyh

Die Werte $\sigma(i)$, die σ auf diesen Nummern annimmt, werden nun dadurch ermittelt, dass man die Schlüsselwort-Buchstaben in alphabetischer Reihenfolge durchzählt. Dabei werden mehrfach vorkommende Zeichen gemäß ihrer Position im Schlüsselwort an die Reihe genommen. Alternativ kann man auch alle im Schlüsselwort wiederholt vorkommenden Zeichen streichen, was im Fall des Schlüsselworts *CAESAR* auf eine Blocklänge von 5 führen würde.

1.12 Klassifikation von Substitutionen

Bei den bisher betrachteten Chiffrierfunktionen handelt es sich um **Substitutionen**, d.h. sie bilden den Kryptotext aus dem Klartext, indem sie Klartextzeichen – einzeln oder in Gruppen – durch Kryptotextzeichen *ersetzen*. Dagegen verändern **Transpositionen** lediglich die *Reihenfolge* der einzelnen Klartextzeichen. Beispiele für Transpositionen werden wir in den Abschnitten 1.10 und 1.11 kennenlernen.

Wir wenden uns nun der Klassifikation von Substitutionen zu. Ein wichtiges Unterscheidungsmerkmal ist z.B. die Länge der Klartexteinheiten, auf denen die Chiffre operiert.

Monografische Substitutionen ersetzen Einzelbuchstaben.

Polygrafische Substitutionen ersetzen dagegen aus mehreren Zeichen bestehende Klartextsegmente auf einmal.

Eine Substitution heißt **monopartit**, falls sie die Klartextsegmente durch Einzelzeichen ersetzt, sonst **multipartit**. Eine polygrafische Substitution, die auf Zeichenpaaren operiert, wird **digrafisch** genannt. Wird der Kryptotext aus Zeichenpaaren zusammengesetzt, so spricht man von einer **bipartiten** Substitution.

Die Frage, ob bei der Ersetzung der einzelnen Segmente des Klartextes eine einheitliche Strategie verfolgt wird oder ob diese von Segment zu Segment verändert wird, führt uns auf ein weiteres wichtiges Unterscheidungsmerkmal bei Substitutionen.

Monoalphabetische Substitutionen ersetzen jedes einzelne Klartextsegment unabhängig von seiner Position im Klartext auf dieselbe Weise.

Polyalphabetische Substitutionen verwenden eine Ersetzungsregel, die in Abhängigkeit von den bereits verarbeiteten Klartextsegmenten varieren kann.

Die Bezeichnung "monoalphabetisch" bringt zum Ausdruck, dass der Ersetzungsmechanismus im monografischen Fall für jeden Schlüssel auf einem festen Alphabet beruht. Die von Caesar benutzte Chiffriermethode mit dem Schlüssel k=3 kann beispielsweise vollständig durch Angabe des Ersetzungsalphabets $\{d,e,f,g,w,\ldots,y,z,a,b,c\}$ beschrieben werden.

Polyalphabetische Substitutionen greifen im Wechsel auf verschiedene Ersetzungsalphabete zurück, so dass unterschiedliche Vorkommen eines Zeichens (oder einer Zeichenkette) auch auf unterschiedliche Art ersetzt werden können. Welches Ersetzungsalphabet wann an der Reihe ist, wird dabei in Abhängigkeit von der Länge oder der Gestalt des bereits verarbeiteten Klartextes bestimmt.

1.13 Die Porta-Chiffre

Das älteste bekannte polygrafische Chiffrierverfahren wurde von Giovanni Porta im Jahr 1563 veröffentlicht. Dabei werden je zwei aufeinanderfolgende Klartextzeichen durch ein

einzelnes Kryptotextzeichen ersetzt.

Beispiel 43. Bei der Porta-Chiffre werden 400 (!) unterschiedliche von Porta für diesen Zweck entworfene Kryptotextzeichen verwendet. Diese sind in einer 20×20 -Matrix $M = (y_{ij})$ angeordnet, deren Zeilen und Spalten mit den 20 Klartextzeichen A,..., I, L,..., T, V, Z indiziert sind. Zur Ersetzung des Zeichenpaars $a_i a_j$ wird das in Zeile i und Spalte j befindliche Kryptotextzeichen

$$E(M, a_i a_i) = y_{ii}$$

benutzt.

Ein frühes (monografisches) Beispiel einer bipartiten Chiffriermethode geht auf Polybios (circa 200–120 v. Chr.) zurück:

	0	1	2	3	4
0	Α	В	С	D I N S X/Y	Е
1	F	G	Н	I	J
2	K	L	Μ	N	0
3	Р	Q	R	S	Τ
4	U	V	W	$X/_{Y}$	Ζ

POLYBIOS → 3024214301132433

Die **Polybios-Chiffre** benutzt als Schlüssel eine 5×5 -Matrix, die aus sämtlichen Klartextzeichen gebildet wird. Die Verschlüsselung des Klartextes erfolgt zeichenweise, indem man einen in Zeile i und Spalte j eingetragenen Klartextzeichen durch das Koordinatenpaar ij ersetzt. Der Kryptotextraum besteht also aus den Ziffernpaaren $\{00, 01, \dots, 44\}$.

1.14 Block- und Stromchiffren

Monoalphabetische Substitutionen ersetzen meist Texteinheiten einer festen Länge $l \ge 1$ durch Kryptotextsegmente derselben Länge.

Definition 44. Sei A ein beliebiges Alphabet und es gelte $M = C = A^{\ell}$, $\ell \geq 1$. Eine **Blockchiffre** realisiert für jeden Schlüssel $k \in K$ eine bijektive Abbildung g auf A^{ℓ} und es gilt für alle $x \in M$ und $y \in C$,

$$E(k, x) = g(x)$$
 und $D(k, y) = g^{-1}(y)$.

Im Fall $\ell = 1$ spricht man auch von einer einfachen Substitutionschiffre.

Fast alle polyalphabetischen Chiffrierverfahren operieren – genau wie monoalphabetische Substitutionen – auf Klartextblöcken einer festen Länge l, die sie in Kryptotextblöcke einer festen Länge l' überführen, wobei meist l=l' ist. Da diese Blöcke jedoch vergleichsweise kurz sind, kann der Klartext der Chiffrierfunktion ungepuffert zugeführt werden. Man nennt die einzelnen Klartextblöcke in diesem Zusammenhang auch nicht "Blöcke" sondern "Zeichen" und spricht von **sequentiellen Chiffren** oder von **Stromchiffren**.

[¶]Da nur 25 Plätze zur Verfügung stehen, muss bei Benutzung des lateinischen Alphabets entweder ein Buchstabe weggelassen oder ein Platz mit zwei Zeichen besetzt werden.

Definition 45. Sei A ein beliebiges Alphabet und sei $M = C = A^l$ für eine natürliche $Zahl\ l \geq 1$. Weiterhin seien K und \hat{K} Schlüsselräume. Eine **Stromchiffre** wird durch eine Verschlüsselungsfunktion $E: \hat{K} \times M \to C$ und einen Schlüsselstromgenerator $g: K \times A^* \to \hat{K}$ beschrieben. Der Generator g erzeugt aus einem externen Schlüssel $k \in K$ für einen Klartext $x = x_0 \dots x_{n-1}, x_i \in M$, eine Folge $\hat{k}_0, \dots, \hat{k}_{n-1}$ von internen Schlüsseln $\hat{k}_i = g(k, x_0 \dots x_{i-1}) \in \hat{K}$, unter denen x in den Kryptotext

$$E_g(k,x) = E(\hat{k}_0, x_0) \dots E(\hat{k}_{n-1}, x_{n-1})$$

überführt wird.

Der interne Schlüsselraum kann also wie bei der Blockchiffre eine maximale Größe von $(m^l)!$ annehmen (im häufigen Spezialfall l=1 also m!). Die Aufgabe des Schlüsselstromgenerators g besteht darin, aus dem externen Schlüssel k und dem bereits verarbeiteten Klartext $x_0 \dots x_{i-1}$ den aktuellen internen Schlüssel \hat{k}_i zu berechnen. Die bisher betrachteten Stromchiffren benutzen z.B. die folgenden Schlüsselstromgeneratoren.

Chiffre	Chiffrierfunktion	Schlüsselstromgenerator
Vigenère	$E(\hat{k}, x) = x + \hat{k}$	$g(k_0 \dots k_{d-1}, x_0 \dots x_{i-1}) = k_{(i \mod m)}$
Beaufort	$E(\hat{k}, x) = \hat{k} - x$	$g(k_0 \dots k_{d-1}, x_0 \dots x_{i-1}) = k_{(i \bmod m)}$
Autokey mit Klartext- Schlüsselstrom	$E(\hat{k}, x) = x + \hat{k}$	$g(k_0 \dots k_{d-1}, x_0 \dots x_{i-1}) = \begin{cases} k_i, & i < d \\ x_{i-d}, & i \ge d \end{cases}$
Autokey mit Kryptotext-	$E(\hat{k}, x) = x + \hat{k}$	$g(k_0 \dots k_{d-1}, x_0 \dots x_{i-1}) = \begin{cases} k_i, & i < d \\ y_{i-d}, & i \ge d \end{cases}$
Schlüsselstrom		$= k_{(i \bmod d)} + \sum_{j=1}^{\lfloor i/d \rfloor} x_{i-jd}$

Bei der Vigenère- und Beaufortchiffre hängt der Schlüsselstrom nicht vom Klartext, sondern nur vom externen Schlüssel k ab, d.h. sie sind **synchron**. Die *Autokey*-Chiffren sind dagegen **asynchron** (und aperiodisch).

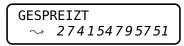
1.15 Gespreizte und homophone Substitutionen

Bei den bisher betrachteten Substitutionen haben die einzelnen Blöcke, aus denen der Kryptotext zusammengesetzt wird, eine einheitliche Länge. Es liegt nahe, einem Gegner die unbefugte Rekonstruktion des Klartextes dadurch zu erschweren, dass man Blöcke unterschiedlicher Länge verwendet. Man spricht hierbei auch von einer **Spreizung** (straddling) des Kryptotextalphabets. Ein bekanntes Beispiel für diese Technik ist die sogenannte Spionage-Chiffre, die vorzugsweise von der ehemaligen sowjetischen Geheimpolizei NKWD (Naródny Komissariàt Wnutrennich Del; zu deutsch: Volkskommissariat des Innern) benutzt wurde.

Beispiel 46. Bei der Spionage-Chiffre wird in die erste Zeile einer 3×10 -Matrix ein Schlüsselwort w geschrieben, welches kein Zeichen mehrfach enthält und eine Länge von 6 bis 8 Zeichen hat (also zum Beispiel SPIONAGE). Danach werden die anderen beiden Zeilen der Matrix mit den restlichen Klartextzeichen (etwa in alphabetischer Reihenfolge) gefüllt.

<

	4	1	9	6	0	3	2	7	5	8
	S B R	Ρ	Ι	0	N	Α	G	Ε		
8	В	C	D	F	Η	J	Κ	L	Μ	Q
5	R	Т	U	٧	W	Χ	Υ	Z		



Man überzeugt sich leicht davon, dass sich die von der Spionage-Chiffre generierten Kryptotexte wieder eindeutig dechiffrieren lassen, da die Kryptotextsegmente 1, 2,..., 8, 01, 02, ..., 08, 91, 92, ..., 98, die für die Klartextzeichen eingesetzt werden, die Fano-Bedingung erfüllen: Keines von ihnen bildet den Anfang eines anderen. Da die Nummern 5 und 8 der beiden letzten Spalten der Matrix auch als Zeilennummern verwendet werden, liefert dies auch eine Erklärung dafür, warum keine Schlüsselwortzeichen in die beiden letzten Spalten eingetragen werden dürfen.

Verwendung von Blendern und Homophonen

Die Verwendung von gespreizten Chiffren zielt offenbar darauf ab, die "Fuge" zwischen den einzelnen Kryptotextsegmenten, die von unterschiedlichen Klartextzeichen herrühren, zu verdecken, um dem Gegner eine unbefugte Dechiffrierung zu erschweren. Dennoch bietet die Spionage-Chiffre noch genügend Angriffsfläche, da im Klartext häufig vorkommende Wortmuster auch im Kryptotext zu Textwiederholungen führen.

Eine Möglichkeit, diese Muster aufzubrechen, besteht darin, Blender in den Klartext einzustreuen. Abgesehen davon, dass das Entfernen der Blender auch für den rechtmäßigen Empfänger mit Mühe verbunden ist, muss für den Zugewinn an Sicherheit auch mit einer Expansion des Kryptotextes bezahlt werden.

Ist man bereit, dies in Kauf zu nehmen, so gibt es auch noch eine wirksamere Methode, die Übertragung struktureller und statistischer Klartextmerkmale auf den Kryptotext abzumildern. Die Idee dabei ist, zur Chiffrierung der einzelnen Klartextzeichen a nicht nur jeweils eines, sondern eine Menge H(a) von Chiffrezeichen vorzusehen, und daraus für jedes Vorkommen von a im Klartext eines auszuwählen (am besten zufällig). Da alle Zeichen in H(a) für dasselbe Klartextzeichen stehen, werden sie auch **Homophone** genannt.

Definition 47. Sei A ein Klartextalphabet und sei M = A. Weiter sei C ein Kryptotextraum der Größe |C| > |A| = m. In einer **homophonen Substitutionschiffre** beschreibt jeder Schlüssel $k \in K$ eine Zerlegung von C in m disjunkte Mengen H(a), $a \in A$.

Um ein Zeichen $a \in A$ unter k zu chiffrieren, wird nach einer bestimmten Methode ein Homophon y aus der Menge H(a) gewählt und für a eingesetzt.

Durch den Einsatz einer homophonen Substitution wird also erreicht, dass verschiedene Vorkommen eines Klartextzeichens auch auf unterschiedliche Weise ersetzt werden können. Damit der Empfänger den Kryptotext auch wieder eindeutig dechiffrieren kann, dürfen sich die Homophonmengen zweier verschiedener Klartextzeichen aber nicht überlappen. Daher kann es nicht vorkommen, dass zwei verschiedene Klartextzeichen durch dasselbe Geheimtextzeichen ersetzt werden. Man beachte, dass der Chiffriervorgang $x \mapsto E(k, x)$ nicht durch eine Funktion beschreibbar ist, da derselbe Klartext x in mehrere verschiedene Kryptotexte y übergehen kann.

Durch eine geringfügige Modifikation der Polybios-Chiffre lässt sich die folgende bipartite homophone Chiffre erhalten.

Beispiel 48 (homophone Substitution). Sei $A = \{A, ..., Z\}$, $B = \{0, ..., 9\}$ und $C = \{00, ..., 99\}$.

	1,0	2,9	3,8	4,7	5,6	
1,6	5 A	F	K	Р	U	
2,7	7 B	G	L	Q	٧	
3,8	3 C	Н	М	R	W	(
4,9	9 D	I	N	S	X/ _Y	HOMOPHON → 82 03 88 53 17 32 08 98
5,6	9 E	J	0	T	Z	

Genau wie bei Polybios wird eine 5×5 -Matrix M als Schlüssel benutzt. Die Zeilen und Spalten von M sind jedoch nicht nur mit jeweils einer, sondern mit zwei Ziffern versehen, so dass jeder Klartextbuchstabe x über vier verschiedene Koordinatenpaare ansprechbar ist. Der Kryptotextraum wird durch M also in 25 Mengen H(a), $a \in A$, mit je 4 Homophonen partitioniert.

Wie wir noch sehen werden, sind homophone Chiffrierungen auch deshalb schwerer zu brechen, weil durch sie die charakteristische Häufigkeitsverteilung der Klartextzeichen zerstört wird. Dieser Effekt kann dadurch noch verstärkt werden, dass man für häufig vorkommende Klartextzeichen a eine entsprechend größere Menge H(a) an Homophonen vorsieht. Damit lässt sich erreichen, dass die Verteilung der im Geheimtext auftretenden Zeichen weitgehend nivelliert wird.

Beispiel 49 (homophone Substitution, verbesserte Version). Ist p(a) die Wahrscheinlichkeit, mit der ein Zeichen $a \in A$ in der Klartextsprache auftritt, so sollte $|H(a)| \approx 100 \cdot p(a)$ sein.

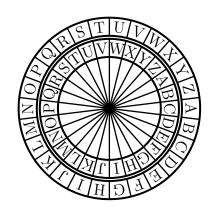
\overline{a}	p(a)	H(a)
Α	0.0647	{15, 26, 44, 59, 70, 79}
В	0.0193	$\{01, 84\}$
C	0.0268	{13, 28, 75}
D	0.0483	$\{02, 17, 36, 60, 95\}$
Е	0.1748	$\{04, 08, 12, 30, 43, 46, 47, 53, 61, 67, 69, 72, 80, 86, 90, 92, 97\}$
÷	:	:

Da der Buchstabe A im Deutschen beispielsweise mit einer Wahrscheinlichkeit von p(A) = 0.0647 auftritt, sind für ihn sechs verschiedene Homophone vorgesehen.

Um den Suchaufwand bei der Dechiffrierung zu reduzieren, empfiehlt es sich, eine 10×10 -Matrix anzulegen, in der jeder Klartextbuchstabe a an allen Stellen vorkommt, deren Koordinaten in H(a) enthalten sind.

	1	2	3	4	5	6	7	8	9	0
1	N	Е	С	S	Α	0	D	Χ	Ι	N
2	R	G	S	Ν	N	Α	U	C		
3	Т	L	Ι	0	U	D	Ζ	М	N	Ε
	Н		Ε						Ι	Т
5	N									R
	Ε		М	F	R	J	Ε	Ν	Ε	D
7	N	Ε	K	S	C	Τ	Ι	Τ	Α	Α
8	Н	Ν	Ι	В	R	Ε	U	G	٧	Ε
9	Т	Ε	L	S	D	R	Ε	0	S	Ε
0	В	D	W	Ε	Q	Ι	F	Ε	Ι	R

HOMOPHON → 56 98 63 34 55 29 16 68



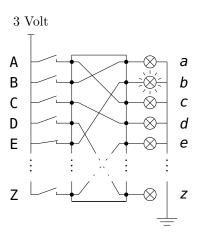
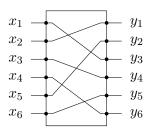


Abbildung 1.2: Realisierung von einfachen Substitutionen mit einer Drehscheibe und mit Hilfe von Steckverbindungen

Offenbar kann man diese Matrix auch zur Chiffrierung benutzen, was sogar den positiven Nebeneffekt hat, dass dadurch eine zufällige Wahl der Homophone begünstigt wird.

1.16 Realisierung von Transpositionen und Substitutionen

Blocktranspositionen, die auf binär kodierten Klartexten operieren (d.h. $A = \{0, 1\}$) lassen sich wie folgt elektronisch realisieren. Um einen Binärblock $x_1 \cdots x_l$ der Länge l zu permutieren, müssen die einzelnen Bits lediglich auf l Leitungen gelegt und diese gemäß π in einer sogenannten **Permutationsbox** (kurz **P-Box**) vertauscht werden.



Die Implementierung einer solchen P-Box kann beispielsweise auf einem VLSI-Chip erfolgen. Allerdings kann hierbei für größere Werte von l aufgrund der hohen Zahl von Überkreuzungspunkten ein hoher Flächenbedarf anfallen.

Blocktranspositionen können auch leicht durch Software als eine Folge von Zuweisungen

$$y1 := x2; y2 := x5; \dots y6 := x4;$$

implementiert werden. Bei großer Blocklänge und sequentieller Abarbeitung erfordert diese Art der Implementierung jedoch einen relativ hohen Zeitaufwand.

Von Alberti stammt die Idee, das Klartext- und Kryptotextalphabet auf zwei konzentrischen Scheiben unterschiedlichen Durchmessers anzuordnen. In Abbildung 1.2 ist gezeigt, wie sich mit einer solchen Drehscheibe beispielsweise die additive Chiffre realisieren lässt. Zur Einstellung des Schlüssels k müssen die Scheiben so gegeneinander verdreht werden, dass der Schlüsselbuchstabe a_k auf der inneren Scheibe mit dem Klartextzeichen $a_0 = A$ auf der äußeren Scheibe zur Deckung kommt. Auf der Drehscheibe in Abbildung 1.2

ist beispielsweise der Schlüssel k=2 eingestellt, das heißt, $a_k=c$. Die Verschlüsselung geschieht nun durch bloßes Ablesen der zugehörigen Kryptotextzeichen auf der inneren Scheibe, so dass von der Drehfunktion der Scheiben nur bei einem Schlüsselwechsel Gebrauch gemacht wird.

Aufgrund ihrer engen Verwandtschaft mit der Klasse der Blocktranspositionen lassen sich einfache Substitutionen auch mit Hilfe einer P-Box realisieren. Hierfür können beispielsweise zwei Steckkontaktleisten verwendet werden. Der aktuelle Schlüssel wird in diesem Fall durch Verbinden der entsprechenden Kontakte mit elektrischen Kabeln eingestellt (siehe Abbildung 1.2). Um etwa das Klartextzeichen E zu verschlüsseln, drückt man auf die entsprechende Taste, und das zugehörige Kryptotextzeichen b wird im selben Moment durch ein aufleuchtendes Lämpchen signalisiert.

Schließlich lassen sich Substitutionen auch leicht durch Software realisieren. Hierzu wird ein Feld (array) deklariert, dessen Einträge über die Klartextzeichen $x \in A$ adressierbar sind. Das mit x indizierte Feldelement enthält das Kryptotextzeichen, durch welches x beim Chiffriervorgang zu ersetzen ist.

Ein Nachteil hierbei ist, dass das Feld nach jedem Schlüsselwechsel neu beschrieben werden muss. Um dies zu umgehen, kann ein zweidimensionales Feld deklariert werden, dessen Einträge zusätzlich über den aktuellen Schlüsselwert k adressierbar sind. Ist genügend Speicherplatz vorhanden, um für alle $x \in A$ und alle $k \in K$ die zugehörigen Kryptotextzeichen E(k,x) abspeichern zu können, so muss das Feld nur einmal initialisiert und danach nicht mehr geändert werden.

Schlüssel-	K	lar	textb	ıchstabe
\mathbf{wert}	Α	В		Z
0	и	h		С
1	e	h		a
:	:	:	٠	:
63	У	f		W

2 Analyse der klassischen Verfahren

2.1 Klassifikation von Angriffen gegen Kryptosysteme

Die Erfolgsaussichten eines Angriffs gegen ein Kryptosystem hängen sehr stark von der Ausgangslage des Angreifers ab. Prinzipiell sollte man die Fähigkeiten des Gegners genauso wenig unterschätzen wie die Unvorsichtigkeit der Anwender von Kryptosystemen. Bereits vor mehr als einem Jahrhundert postulierte Kerckhoffs, dass die Frage der Sicherheit nicht von irgendwelchen obskuren Annahmen über den Wissensstand des Gegners abhängig gemacht werden darf.

Goldene Regel für Kryptosystem-Designer (Kerckhoffs' Prinzip)

Unterschätze niemals den Kryptoanalytiker. Gehe insbesondere immer von der Annahme aus, dass dem Gegner das angewandte System bekannt ist.*

In der folgenden Liste sind eine Reihe von Angriffsszenarien mit zunehmender Gefährlichkeit aufgeführt. Auch wenn nicht alle Eventualitäten eines Angriffs vorhersehbar sind, so vermittelt diese Aufstellung doch eine gute Vorstellung von den unterschiedlichen Bedrohungen, denen ein Kryptosystem im praktischen Einsatz ausgesetzt sein kann.

Angriff bei bekanntem Kryptotext (ciphertext-only attack)

Der Gegner fängt Kryptotexte ab und versucht, allein aus ihrer Kenntnis Rückschlüsse auf die zugehörigen Klartexte oder auf die benutzten Schlüssel zu ziehen.

Angriff bei bekanntem Klartext (known-plaintext attack)

Der Gegner ist im Besitz von einigen zusammengehörigen Klartext-Kryptotext-Paaren. Hierdurch wird erfahrungsgemäß die Entschlüsselung weiterer Kryptotexte oder die Bestimmung der benutzten Schlüssel wesentlich erleichtert.

Angriff bei frei wählbarem Klartext (chosen-plaintext attack)

Der Angriff des Gegners wird zusätzlich dadurch erleichtert, dass er in der Lage ist (zumindest vorübergehend), sich zu Klartexten seiner Wahl die zugehörigen Kryptotexte zu besorgen. Kann hierbei die Wahl der Klartexte in Abhängigkeit von zuvor erhaltenen Verschlüsselungsergebnissen getroffen werden, so spricht man von einem Angriff bei adaptiv wählbarem Klartext (adaptive chosenplaintext attack).

Angriff bei frei wählbarem Kryptotext (chosen-ciphertext attack)

Vor der Beobachtung des zu entschlüsselnden Kryptotextes konnte sich der Gegner zu Kryptotexten seiner Wahl die zugehörigen Klartexte besorgen, ohne dabei jedoch in den Besitz des Dechiffrierschlüssels zu kommen (Mitternachtsattacke). Das dabei erworbene Wissen steht ihm nun bei der Durchführung seines Angriffs zur Verfügung. Auch in diesem Fall können sich die Erfolgsaussichten des Gegners erhöhen, wenn ein Angriff bei adaptiv wählbarem Kryptotext (adaptive chosen-ciphertext attack) möglich ist, also der Kryptotext in Abhängigkeit von den zuvor erzielten Entschlüsselungsergebnissen wählbar ist.

^{*}Tatsächlich sind die Prinzipien fast aller heute im Einsatz befindlichen Kryptosysteme bekannt. Nur so kann einer Vielzahl von Kryptoanalytikern die Suche nach Schwachstellen ermöglicht werden.

Angriff bei frei (oder adaptiv) wählbarem Text (chosen-text attack)

Sowohl Klartexte als auch Kryptotexte sind frei (oder sogar adaptiv) wählbar.

Ohne Frage ist ein Kryptosystem, das bereits bei einem Angriff mit bekanntem Kryptotext Schwächen erkennen lässt, für die meisten Anwendungen ungeeignet. Tatsächlich müssen aber an ein praxistaugliches Kryptosystem noch weit höhere Anforderungen gestellt werden. Denn häufig unterlaufen den Anwendern sogenannte Chiffrierfehler, die einen Gegner leicht in eine sehr viel günstigere Ausgangsposition versetzen können. So ermöglicht beispielsweise das Auftreten stereotyper Klartext-Formulierungen einen Angriff bei bekanntem Klartext, sofern der Gegner diese Formulierungen kennt bzw. errät. Begünstigt durch derartige Unvorsichtigkeiten, die im praktischen Einsatz meist nicht vermeidbar sind, können sich selbst winzige Konstruktionsschwächen eines Kryptosystems sehr schnell zu einer ernsthaften Bedrohung auswachsen. Die Geschichte der Kryptografie belegt sehr eindrucksvoll, dass es häufig die Anwender eines Kryptosystems selbst sind, die – im unerschütterlichen Glauben an seine kryptografische Stärke – einen erfolgreichen Angriff ermöglichen.

Zusammenfassend lässt sich also festhalten, dass die Gefährlichkeit von Angriffen, denen ein Kryptosystem im praktischen Einsatz ausgesetzt ist, kaum zu überschätzen ist. Andererseits kann selbst das beste Kryptosystem keinen Schutz vor einer unbefugten Dechiffrierung bieten, wenn es dem Gegner etwa gelingt, in den Besitz des geheimen Schlüssels zu kommen – sei es aus Unachtsamkeit der Anwender oder infolge von Manipulationsversuchen von Seiten des Gegners (Social Engineering bzw. Social Hacking). Auch Implementierungsangriffe nutzen nicht Schwachstellen des Kryptoverfahrens aus. Vielmehr zielen sie darauf ab, durch physikalische Messungen wie bspw. des Stromverbrauchs oder der Laufzeit von Berechnungen (sog. Seitenkanalangriffe) Informationen über den unbekannten Schlüssel zu gewinnen.

2.2 Kryptoanalyse von einfachen Substitutionschiffren

Manche der bisher betrachteten Chiffrierverfahren verwenden einen so kleinen Schlüsselraum, dass ohne großen Aufwand eine vollständige Schlüsselsuche (auch Brute-Force Angriff genannt) ausgeführt werden kann.

Beispiel 50 (vollständige Schlüsselsuche). Es sei bekannt, dass das Kryptotextstück y =saxp mit einer additiven Chiffre erzeugt wurde ($K = A = B = A_{lat}$). Entschlüsseln wir y probeweise mit allen möglichen Schlüsselwerten, so erhalten wir folgende Zeichenketten.

$\frac{k}{D(k,y)}$	Α	В	С	D	Ε	F	G	Н	I	J	К	L	М
$\frac{D(k,y)}{}$													
	N	0	P	Q	R	5	<i>T</i>	U	V	W	X	Y	<i>Z</i> TBYQ
	FNKC	EMJB	DLIA	CKHZ	BJGY	AIFX	ZHEW	YGDV	XFCU	WEBT	VDAS	UCZR	TBYQ

Unter diesen springen vor allem die beiden Klartextkandidaten x = GOLD (Schlüsselwert k = M) und x = WEBT (k = W) ins Auge.

Ist s = |K| die Größe des Schlüsselraums, so kann der Gegner bei bekanntem Kryptotext y die Suche nach dem zugehörigen Klartext x auf eine Menge von maximal s Texten x_1, \ldots, x_s beschränken. Daneben hat der Gegner ein gewisses a priori Wissen über den Klartext. Weiß er zum Beispiel, dass er in deutscher Sprache verfasst ist, kann er einen Großteil der Texte x_i auszuschließen. Mit jedem Text x_i , der nicht als Klartext infrage

kommt, kann auch mindestens ein Schlüssel ausgeschlossen werden. Sind noch mehrere Schlüsselwerte möglich, so kann weiteres Kryptotextmaterial Klarheit bringen. Manchmal hilft aber auch eine Inspektion der verbliebenen Schlüsselwerte weiter, etwa wenn der Schlüssel nicht rein zufällig erzeugt wurde, sondern aus einem einprägsamen Schlüsselwort ableitbar ist.

Auch wenn der Gegner die Klartextsprache nicht kennt, kann eine Häufigkeitsanalyse erfolgreich sein. Mit zunehmender Länge gleichen sich die Häufigkeitsverteilungen der Buchstaben in natürlichsprachigen Texten einer "Grenzverteilung" an, die in erster Linie von der benutzten Sprache und nur in geringem Umfang von der Art des Textes abhängt. Selbst zwischen unterschiedlichen Sprachen gibt es oft Gemeinsamkeiten. So kommt in fast allen europäischen Sprachen der Buchstabe E sehr häufig vor, während X, Y und Z nur selten auftreten. Diese für natürliche Sprachen typische Ungleichmäßigkeit der Buchstabenhäufigkeiten ist darauf zurückzuführen, dass sie relativ viel Redundanz enthalten.

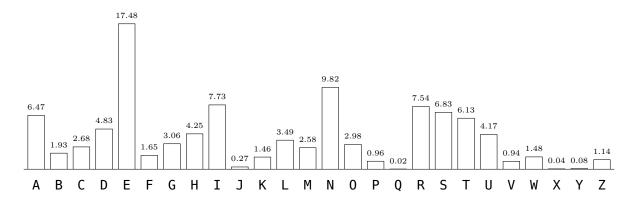


Abbildung 2.1: Häufigkeitsverteilung der Einzelbuchstaben im Deutschen (in %)

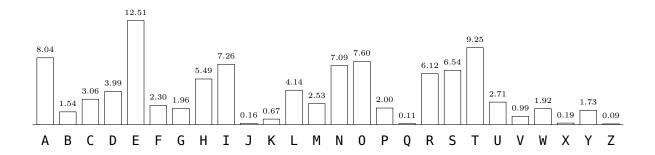


Abbildung 2.2: Häufigkeitsverteilung der Buchstaben im Englischen (in %)

Die Abbildungen 2.1, 2.2 und 2.3, zeigen typische Verteilungen von Einzelbuchstaben in der deutschen, englischen und französischen Sprache (ohne Berücksichtigung von Interpunktions- und Leerzeichen). Ein typischer deutscher Text besteht demnach zu 62% aus den sieben häufigsten Zeichen E, N, I, R, S, A, T (das sind nicht einmal 27% der Klartextzeichen).

Durch eine Häufigkeitsanalyse können insbesondere einfache Substitutionen g leicht gebrochen werden. Der Grund dafür ist, dass die einzelnen Zeichen a in der Klartextsprache meist mit unterschiedlichen Wahrscheinlichkeiten p(a) auftreten (vergleiche Tabelle 2.1).

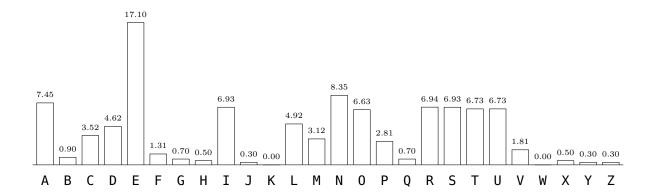


Abbildung 2.3: Häufigkeitsverteilung der Buchstaben im Französischen (in %)

Berechnet man die relativen Häufigkeiten h der Zeichen im Kryptotext, so gilt $p(a) \approx h(g(a))$ (vorausgesetzt der Klartext ist genügend lang). Für die Schilderung einer nach dieser Methode durchgeführten Kryptoanalyse sei auf die Erzählung "Der Goldkäfer" von Edgar Allan Poe verwiesen.

Tabelle 2.1: Einteilung von Buchstaben in Cliquen mit vergleichbaren Häufigkeitswerten

	Deutsch	Englisch	Französisch
sehr häufig	E	Е	Е
häufig	N IRS AT	$T \mid AOIN \mid SRH$	$AS\midTI\midRN\midU$
durchschnittlich	DHU LGO CM	$LD\midCUMF$	$LO \mid DMCP$
selten	BFWKZ PV	$PGWYB \mid VK$	$V \mid HGFBQ \mid J$
sehr selten	JYXQ	XJQZ	$X \mid ZYK \mid W$

Bei additiven Chiffren reicht es oftmals, den häufigsten Buchstaben im Kryptotext zu bestimmen, und davon den häufigsten Buchstaben der Klartextsprache zu subtrahieren, um den Schlüssel k zu erhalten. Bei affinen Chiffren müssen gewöhnlich nur die beiden häufigsten Buchstaben bestimmt werden. Diese führen auf zwei Gleichungen mit zwei Unbekannten für den gesuchten Schlüssel k = (b, c).

Beispiel 51 (Analyse einer affinen Chiffre mittels Buchstabenhäufigkeiten). Es sei bekannt, dass sich hinter dem Kryptotext

laoea ehoap hwvae ixobg jcbho thlob lokhe ixope vbcix ockix qoppo boapo mohqc euogk opeho jhkpl eappj seobe ixoap opmcu

ein deutscher Klartext verbirgt, der mit einer affinen Chiffre verschlüsselt wurde. Berechnen wir für jedes Chiffrezeichen y_i die (absolute) Häufigkeit $H_y(y_i)$ seines Auftretens in obigem Kryptotext y,

y_i																										
$H_y(y_i)$	7	6	5	0	10	0	2	8	5	3	4	4	2	0	19	11	2	0	1	1	2	2	1	5	0	0

◁

so liegt die Vermutung nahe, dass das am häufigsten vorkommende Chiffrezeichen \mathbf{o} für das Klartextzeichen \mathbf{E} und das am zweithäufigsten vorkommende \mathbf{p} für \mathbf{N} steht. Unter dieser Annahme kann der gesuchte Schlüssel k=(b,c) als Lösung der beiden Gleichungen

$$b \cdot \mathbf{E} + c = \mathbf{o}$$

 $b \cdot \mathbf{N} + c = \mathbf{p}$

bestimmt werden. Subtrahieren wir nämlich die erste von der zweiten Gleichung, so erhalten wir die Kongruenz $9 \cdot b \equiv_{26} 1$, woraus sich b = 3 und damit c = 2 ergibt. Tatsächlich weist der Schlüssel k = (3,2) nicht nur für die beiden Paare (\mathbf{E}, \mathbf{o}) und (\mathbf{N}, \mathbf{p}) , sondern auch für alle übrigen Paare $(D(k, y_i), y_i)$ eine gute Übereinstimmung zwischen der Häufigkeit $H_y(y_i)$ im Kryptotext y und der erwarteten Häufigkeit $H_{100}(D(k, y_i))$ auf, mit der das Zeichen $D(k, y_i)$ in einem typischen deutschen Text der Länge 100 vorkommt (die Tabelle zeigt die Werte von H_{100} gerundet):

			e																							
$H_y(y_i)$	19	11	10	8	7	6	5	5	5	4	4	3	2	2	2	2	2	1	1	1	0	0	0	0	0	0
$H_{100}(D(k,y_i))$	17	10	7	6	8	8	6	4	3	5	4	3	3	3	1	1	1	3	0	0	2	2	1	1	0	0
$D(k, y_i)$	E	N	S	T	Ι	R	Α	Н	С	D	U	L	G	М	K	Р	W	0	Χ	Υ	F	В	٧	Z	Q	J

2.3 Kryptoanalyse von Blocktranspositionen

Mit Hilfe von Bigrammhäufigkeiten, die manchmal auch als Kontakthäufigkeiten bezeichnet werden, lassen sich Blocktranspositionen sehr leicht brechen, sofern genügend Kryptotext vorliegt. Ist die Blocklänge ℓ bekannt, so trägt man hierzu den Kryptotext zeilenweise in eine Matrix $S=(s_{ij})=(S_1\dots S_\ell)$ mit ℓ Spalten S_1,\dots,S_ℓ ein. Da jede Zeile dieser Matrix aus dem zugehörigen Klartextblock mit derselben Permutation π erzeugt wurde, müssen die Spalten S_j jetzt nur noch in die "richtige" Reihenfolge gebracht werden, um den gesuchten Klartext zu erhalten. Die Nachfolgespalte S_k von S_j (bzw. die Vorgängerspalte S_j von S_k) kann sehr gut anhand der Werte von $\hat{p}(S_j, S_k) = \sum_i p(s_{ij}, s_{ik})$ bestimmt werden.



Abbildung 2.4: Die häufigsten Bigramme im Deutschen (Angaben in %)

Beispiel 52 (Häufigkeitsanalyse von Bigrammen). Für den mit einer Blocktransposition (mit vermuteter Blocklänge 5) erzeugten Kryptotext

ihehr bwean rneii nrkeu elnzk rxtae vlotr engie

erhalten wir eine Matrix S mit den folgenden fünf Spalten.

31

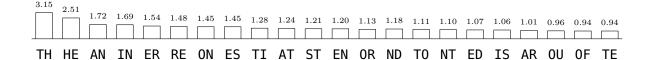


Abbildung 2.5: Die häufigsten Bigramme im Englischen (in %; nach O.P. Meaker, 1939)

Abbildung 2.6: Die häufigsten Trigramme im Deutschen (in %)

S_1	S_2	S_3	S_4	S_5
I	Н	Е	Н	R
В	W	Ε	Α	N
R	N	Ε	Ι	Ι
N	R	Κ	Ε	U
Ε	L	N	Ζ	K
R	Χ	Τ	Α	Ε
٧	L	0	Τ	R
Ε	N	G	Ι	Ε

Um die richtige Vorgänger- oder Nachfolgerspalte von S_1 zu finden, bestimmen wir für jede potentielle Spalte S_j , $j=2,\ldots,5$, wieviele der Bigramme $s_{ij}s_{i1}$ (bzw. $s_{i1}s_{ij}$) zu den 20 häufigsten (aus Abbildung 2.4) gehören.

				\downarrow		\downarrow		
$\overline{S_2}$	S_3	S_4	S_5	$ S_1 $	$ S_2 $	S_3	S_4	S_5
Н	Ε	Н	R	I	Н	Е	Н	R
W	Ε	Α	N	В	W	Ε	Α	N
N	Ε	Ι	Ι	R	N	Ε	Ι	Ι
R	K	Ε	U	N	R	Κ	Ε	U
L	N	Ζ	K	Ε	L	N	Ζ	K
Χ	Τ	Α	Ε	R	Χ	Τ	Α	Ε
L	0	Τ	R	٧	L	0	Τ	R
N	G	Ι	Ε	E	N	G	Ι	Ε
1	4	2	2		1	4	2	1

Da die beiden Spaltenpaare (S_3, S_1) und (S_1, S_3) jeweils vier häufige Bigramme bilden, können wir annehmen, dass im Klartext S_1 auf S_3 oder S_3 auf S_1 folgen muss. Entscheiden wir uns für die zweite Möglichkeit, so sollten wir als nächstes die Spaltenpaare (S_j, S_1) und (S_3, S_j) , j = 2, 4, 5 betrachten.

Abbildung 2.7: Die häufigsten Trigramme im Englischen (in %)

				\downarrow			\downarrow
S_2	S_4	S_5	$ S_1 $	S_3	$ S_2 $	S_4	S_5
Н	Н	R	I	Ε	Н	Н	R
W	Α	N	В	Ε	W	Α	N
N	Ι	Ι	R	Ε	N	Ι	Ι
R	Ε	U	N	Κ	R	Ε	U
L	Ζ	K	Ε	N	L	Ζ	K
Χ	Α	Ε	R	T	Х	Α	Ε
L	Τ	R	٧	0	L	Τ	R
N	Ι	Е	E	G	N	Ι	Е
1	2	2			1	1	5

Aufgrund des hohen Wertes von $\hat{p}(S_3, S_5)$ können wir annehmen, dass auf S_3 die Spalte S_5 folgt. Im nächsten Schritt erhalten wir daher die folgende Tabelle.

	\downarrow	\downarrow		\downarrow	\downarrow	
$\overline{S_2}$	S_4	$ S_1 $	S_3	S_5	S_2	$\overline{S_4}$
Н	Н	I	Е	R	Н	Н
W	Α	В	Ε	N	W	Α
N	Ι	R	Ε	Ι	N	Ι
R	Ε	N	K	U	R	Ε
L	Ζ	Ε	N	K	L	Ζ
Χ	Α	R	Τ	Ε	Χ	Α
L	Τ	٧	0	R	L	Τ
N	Ι	E	G	Ε	N	Ι
1	2				2	1

Diese lässt die Spaltenanordnung S_4, S_1, S_3, S_5, S_2 vermuten, welche tatsächlich auf den gesuchten Klartext führt:

S_4	S_1	S_3	S_5	S_2
Н	Ι	Ε	R	Н
Α	В	Ε	N	W
Ι	R	Ε	Ι	N
Ε	N	K	U	R
Z	Ε	N	Κ	L
Α	R	Τ	Ε	Χ
Τ	٧	0	R	L
I	Е	G	Е	N

2.4 Kryptoanalyse von polygrafischen Chiffren

Blocksysteme mit kleiner Blocklänge ℓ (beispielsweise bigrafische Systeme) lassen sich ähnlich wie einfache Substitutionen durch Häufigkeitsanalysen brechen. Wird bei Hill-Chiffren l sehr groß gewählt, so ist eine solche statistische Analyse nicht mehr möglich. Das Hill-System kann dann zwar einem Kryptotextangriff widerstehen, jedoch kaum einem Angriff mit bekanntem Klartext und schon gar nicht einem Angriff mit gewähltem Klartext.

Angriff mit gewähltem Klartext O. B. d. A. sei $A = \{0, 1, ..., m-1\}$. Bei einem GK-Angriff verschafft sich der Gegner den Kryptotext zu $100...0, 010...0, ..., 0...001 \in A^l$:

$$g(100...0) = k_{11} k_{12}...k_{1l}$$

$$g(010...0) = k_{21} k_{22}...k_{2l}$$

$$\vdots$$

$$g(0...001) = k_{l1} k_{l2}...k_{ll}$$

und erhält damit die Schlüsselmatrix k.

BK-Angriff (bekannter Klartext). Ist bei einem BK-Angriff eine ausreichende Menge von Klartext-Kryptotextpaaren bekannt, so kann das Hill-System folgendermaßen gebrochen werden: Sind x_i , y_i ($i = 1, ..., \mu$) Paare mit $x_i k = y_i$ und gilt ggT(det(X), m) = 1 für eine aus l Blöcken x_i , $i \in I$, als Zeilen gebildete Matrix X, so lässt sich die Schlüsselmatrix k zu $k = YX^{-1}$ bestimmen (Y ist die aus den Blöcken y_i , $i \in I$, gebildete Matrix).

2.5 Kryptoanalyse von polyalphabetischen Chiffren

Die Vigenère-Chiffre galt bis ins 19. Jahrhundert als sicher. Da der Schlüsselstrom bei der Vigenère-Chiffre periodisch ist, lässt sie sich mit statistischen Methoden ebenfalls leicht brechen, insbesondere wenn der Kryptotext im Verhältnis zur Periode d (Länge des Schlüsselwortes) genügend lang ist.

Ist die Periode d bekannt, gibt es mehrere Methoden, eine Vigenère-Chiffre zu brechen. So kann man beispielsweise den Kryptotext zeilenweise in eine d-spaltige Matrix schreiben. Verfahrensbedingt wurden dann die einzelnen Spalten y_1, \ldots, y_d durch eine monoalphabetische Substitution (genauer: durch eine additive Chiffre) verschlüsselt. Sie können daher einzeln durch eine Häufigkeitsanalyse gebrochen werden (siehe Abschnitt 2.2). Hierbei liefert jede Spalte y_i den Buchstaben k_i des Schlüsselwortes. Wir werden auf die Bestimmung des Schlüsselwortes bei bekannter Periode im übernächsten Unterabschnitt noch näher eingehen.

Bestimmung der Schlüsselwortlänge

Zur Bestimmung der Schlüsselwortlänge betrachten wir zwei Vorgehensweisen: den Kasiski-Test und die Koinzidenzindex-Untersuchung.

Der Kasiski-Test. Die früheste generelle Methode zur Bestimmung der Periode bei der Vigenère-Chiffre stammt von Friedrich W. Kasiski (1860). Kommt ein Wort an zwei verschiedenen Stellen im Kryptotext vor, so kann es sein, dass die gleiche Klartextsequenz

zweimal auf die gleiche Weise, d.h. mit der gleichen Schlüsselsequenz, verschlüsselt wurde. In diesem Fall ist die Entfernung δ der beiden Vorkommen ein Vielfaches der Periode d. Werden mehrere Paare mit verschiedenen Entfernungen δ_i gefunden, so liegt die Vermutung nahe, dass d gemeinsamer Teiler aller (oder zumindest vieler) δ_i ist, was die Anzahl der noch in Frage kommenden Werte für d stark einschränkt.

Beispiel 53 (Kasiski-Test).

Da die Textstücke ork, bzw. de im Kryptotext in den Entfernungen $\delta_1 = 15$ und $\delta_2 = 9$ vorkommen, liegt die Vermutung nahe, dass die Periode d = ggT(9, 15) = 3 ist.

Koinzidenzindex-Untersuchungen. Zur Bestimmung der Periode d gibt es neben heuristischen Methoden auch folgenden statistischen Ansatz, der erstmals von William Frederick Friedman im Jahr 1920 beschrieben wurde. Er basiert auf der Beobachtung, dass eine längere Periode eine zunehmende Glättung der Buchstabenhäufigkeiten im Kryptotext bewirkt.

Definition 54. Der **Koinzidenzindex** (engl. index of coincidence) eines Textes y der Länge n über dem Alphabet B ist definiert als

$$IC(y) = \frac{1}{n \cdot (n-1)} \cdot \sum_{a \in B} H_y(a) \cdot (H_y(a) - 1).$$

Hierbei ist $H_y(a)$ die absolute Häufigkeit des Buchstabens a im Text y.

IC(y) gibt also die Wahrscheinlichkeit an, mit der man im Text y an zwei zufällig gewählten Positionen den gleichen Buchstaben vorfindet. Er ist umso größer, je ungleichmäßiger die Häufigkeiten $H_y(a)$ sind (siehe unten).

Um die Periode d einer Vigenère-Chiffre zu bestimmen, schreibt man den Kryptotext y für $d=1,2,3,\ldots$ in eine Matrix mit d Spalten und berechnet für jede Spalte y_i den Koinzidenzindex $IC(y_i)$. Für genügend lange Kryptotexte ist dasjenige d, welches das maximale arithmetische Mittel der Spaltenindizes $IC(y_i)$ liefert mit hoher Wahrscheinlichkeit die gesuchte Periode. Enthält eine Spalte nämlich nur Kryptozeichen, die alle mit demselben Schlüsselbuchstaben k erzeugt wurden, so stimmt der Koinzidenzindex dieser Spalte mit dem Koinzidenzindex des zugehörigen Klartextes überein, nimmt also einen relativ großen Wert an. Wurden dagegen die Kryptozeichen einer Spalte mit unterschiedlichen Schlüsselbuchstaben generiert, so wird hierdurch eine Glättung der Häufigkeitsverteilung bewirkt, weshalb der Spaltenindex kleiner ausfällt.

Ist die Einzelbuchstabenverteilung $p:A\to [0,1]$ der Klartextsprache bekannt, so kann der Suchraum für den Wert der Periode d erheblich eingeschränkt werden. Hierzu berechnet man den erwarteten Koinzidenzindex

$$E_{d,n}(IC) = E(IC(Y)),$$

wobei Y ein mittels einer Vigenère-Chiffre mit einem zufälligen Schlüsselwort der Länge d aus einem zufälligen Klartext der Länge n generierter Kryptotext ist. Im Fall d=1

gilt IC(y) = IC(x). Zudem können wir bei längeren Texten von den gegenseitigen Abhängigkeiten der Zeichen im Text absehen und erhalten

$$E_{1,\infty}(IC) = \sum_{a \in A} p(a)^2.$$

Dieser Wert wird auch als Koinzidenzindex der zugrunde liegenden Sprache bezeichnet.

Definition 55. Der Koinzidenzindex IC_L einer Sprache mit Buchstabenverteilung $p: A \rightarrow [0,1]$ ist definiert als

$$IC_L = \sum_{a \in A} p(a)^2.$$

 IC_L ist zudem ein Maß für die Rauheit der Verteilung p.

Definition 56 (Rauheitsgrad; Measure of Roughness). Der Rauheitsgrad MR_L einer Sprache L mit Einzelbuchstabenverteilung p ist

$$MR_L = \sum_{a \in A} (p(a) - 1/m)^2 = \sum_{a \in A} p(a)^2 - 1/m = IC_L - 1/m,$$

wobei m = |A| ist.

Beispiel 57. Für die englische Sprache (m=26) gilt beispielsweise $IC_{\rm Englisch} \approx 0.0687$ und $MR_{\rm Englisch} \approx 0.0302$.

Übersteigt dagegen die Periode d die Klartextlänge n, so ist der Kryptotext bei zufälliger Wahl des Schlüsselwortes ebenfalls rein zufällig, was auf einen erwarteten Koinzidenzindex von

$$E_{d,n}(IC) = \sum_{a \in A} |A|^{-2} = |A|^{-1} = m^{-1}, \ d \ge n \ge 2$$

führt. Allgemein gilt für hinreichend großes n,

$$E_{d,n}(IC) = \frac{n-d}{d \cdot (n-1)} \cdot IC_L + \frac{n \cdot (d-1)}{d \cdot (n-1)} \cdot m^{-1}, \quad 1 \le d \le n,$$

da von den $\binom{n}{2}$ möglichen Positionspaaren ungefähr $d \cdot \binom{n/d}{2} = n(n-d)/2d$ Paare nur eine Spalte (was einem Anteil von (n-d)/d(n-1) entspricht) und $\binom{d}{2}(n/d)^2 = n^2(d-1)/2d$ Paare zwei unterschiedliche Spalten betreffen (was einem Anteil von n(d-1)/d(n-1) entspricht).

Untenstehende Tabelle gibt den Erwartungswert $E_{d,n}(IC)$ des Koinzidenzindexes für Kryptotexte der Länge n=100 in Abhängigkeit von der Periodenlänge d einer Vigenère-Chiffre wieder (in Promille; Klartext ist ein zufällig gewählter Text der englischen Sprache mit 100 Buchstaben).

Beispiel 58. Berechnet sich der Koinzidenzindex eines Vigenère-Kryptotextes der Länge 100 zu 0.045, so liegt die Vermutung nahe, dass das verwendete Schlüsselwort die Länge vier oder fünf hat, falls y aus einem Klartext der englischen Sprache erzeugt wurde.

Der Koinzidenzindex kann auch Hinweise dafür liefern, mit welchem Kryptoverfahren ein vorliegender Kryptotext erzeugt wurde. Bei Transpositionschiffren sowie bei einfachen Substitutionen bleibt nämlich der Koinzidenzindex im Gegensatz zu polyalphabetischen und polygrafischen Verfahren erhalten. Erstere lassen sich von letzteren zudem dadurch unterscheiden, dass bei ihnen sogar die Buchstabenhäufigkeiten unverändert bleiben.

◁

Bestimmung des Schlüsselwortes

Zur Bestimmung des Schlüsselwortes bei bekannter Periode d kann auch wie folgt vorgegangen werden. Man schreibt den Kryptotext y in eine Matrix mit d Spalten und berechnet für jedes Zeichen $a \in A$ die relative Häufigkeit $h_i(a)$ in jeder Spalte y_i . Da y_i aus dem Klartext durch Addition von k_i entstanden ist, kommt die Verteilung

$$h_i(a+k), a \in A$$

für $k = k_i$ der Klartextverteilung $p(a), a \in A$, näher als für $k \neq k_i$. Da

$$\alpha_i(k) := \sum_{a \in A} p(a)h_i(a+k)$$

ein Maß für die Ähnlichkeit der beiden Verteilungen p(a) und $h_i(a+k)$ ist (siehe Übungen), wird der Wert von $\alpha_i(k)$ wahrscheinlich für $k=k_i$ maximal werden.

Beispiel 59. Der folgende Kryptotext

y = huds kuae zgxr avtf pgws wgws zhtp pbil lrtz pzhw loij vfic vbth lugi lgpr khwm yhti uaxr bhtw ucgx ospw aoch imcs yhwq hwcf yocg ogtz lbil swbf lohx zwsi zvds atgs thwi ssux lmts mhwi kspx ogwi hrpf lsam usuv vail lhgi lhwv vivl avtw ocij ptic mstx vii

der Länge 203 wurde von einer Vigenère-Chiffre mit Schlüssellänge d=4 aus englischem Klartext erzeugt. Schreiben wir den Kryptotext in vier Spalten y_1, \ldots, y_4 der Länge $|y_1| = |y_2| = |y_3| = 51$ und $|y_4| = 50$, so ergeben sich folgende Werte für $\alpha_i(k)$ (in Promille):

	k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
0	$a_1(k)$	36	31	31	45	38	26	42	7 3	44	26	36	47	30	32	36	29	28	39	48	42	42	39	42	42	35	31
0	$ \alpha_2(k) $ $ \alpha_3(k) $	44	41	40	51	41	31	37	43	34	28	36	26	28	43	68	45	35	27	42	43	40	35	30	24	31	45
0	$a_3(k)$	47	41	48	37	49	40	35	30	48	32	25	42	31	26	43	76	37	31	39	45	35	34	37	26	30	25
0	$a_4(k)$	38	40	27	41	65	47	28	34	39	33	35	36	30	30	48	44	35	42	47	38	39	34	27	38	36	37

Da $\alpha_1(k)$ für k = 7 = H, $\alpha_2(k)$ für $k = 14 = \mathbf{0}$, $\alpha_3(k)$ für $k = 15 = \mathbf{P}$ und $\alpha_4(k)$ für $k = 4 = \mathbf{E}$ einen Maximalwert annimmt, lautet das Schlüsselwort HOPE. Damit ergibt sich folgender Klartext (aus der Erzählung "Der Goldkäfer" von Edgar Allan Poe):

A GOOD GLASS IN THE BISHOPS HOSTEL IN THE DEVILS SEAT FORTYONE DEGREES AND THIRTEEN MINUTES NORTH EAST AND BY NORTH MAIN BRANCH SEVENTH LIMB EAST SIDE SHOOT FROM THE LEFT EYE OF THE DEATHS HEAD A BEE LINE FROM THE TREE THROUGH THE SHOT FIFTY FEET OUT

Zur Bestimmung des Schlüsselwortes kann man auch die Methode des gegenseitigen Koinzidenzindexes verwenden. Dabei ist die verwendete Klartextsprache (und somit deren Häufigkeitsverteilung) irrelevant, da die Spalten – wie der Name schon sagt – gegenseitig in Relation gesetzt werden. Aber zuerst die Definition.

Definition 60. Der **gegenseitge Koinzidenzindex** von zwei Texten y und y' mit den Längen n und n' über dem Alphabet B ist definiert als

$$IC(y, y') = \frac{1}{n \cdot n'} \cdot \sum_{a \in B} H_y(a) \cdot H_{y'}(a).$$

IC(y, y') ist also die Wahrscheinlichkeit, dass bei zufälliger Wahl einer Position in y und einer Position in y' der gleiche Buchstabe vorgefunden wird. IC(y, y') ist umso größer, je besser die Häufigkeitsverteilungen von y und y' (d. h. H_y und $H_{y'}$) übereinstimmen.

Ist nun y ein Kryptotext, der mit einem Schlüsselwort bekannter Länge d erzeugt wurde, und sind y_i ($i=1,\ldots,d$) die zugehörigen Spalten, so gibt der gegenseitige Koinzidenzindex der Spalten $y_i+\delta$ und y_j (für $1\leq i< j\leq d$ und $0\leq \delta\leq 25$) die Wahrscheinlichkeit an, dass man bei zufälliger Wahl einer Position in $y_i+\delta$ und in y_j denselben Buchstaben vorfindet. Da die Einzelzeichenverteilungen von y_i-k_i und von y_j-k_j der der Klartextsprache entsprechen, haben $y_i+\delta$ und y_j für $\delta=k_j-k_i$ eine ähnliche Verteilung. Mit großer Wahrscheinlichkeit nimmt also $IC(y_i+\delta,y_j)$ für $\delta=\delta_{ij}=k_j-k_i$ einen relativ großen Wert an, während für $\delta\neq\delta_{ij}$ mit kleinen Werten zu rechnen ist.

Beispiel 61. Betrachten wir den Kryptotext aus vorigem Beispiel, so ergeben sich für $IC(y_i + \delta, y_i)$ die folgenden Werte (in Promille):

δ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	242	5
$\overline{IC(y_1+\delta,y_2)}$	40	31	25	38	25	21	46	74	50	33	31	44	43	34	31	28	24	31	44	45	37	48	64	44	253	1
$IC(y_1+\delta,y_3)$	26	47	25	21	47	32	18	49	91	42	27	51	45	31	29	32	23	29	27	39	45	46	39	58	442	4
$IC(y_1 + \delta, y_4)$	38	40	29	31	35	24	32	58	42	32	44	50	43	39	31	20	34	36	30	40	45	24	42	78	472	22
$IC(y_2 + \delta, y_3)$ $IC(y_2 + \delta, y_4)$	50	85	49	21	28	35	24	34	46	25	24	27	59	50	50	53	51	24	22	26	43	36	35	32	243	4
$IC(y_2+\delta,y_4)$	46	53	40	37	51	42	29	23	24	32	40	55	38	31	32	45	67	49	25	27	29	29	34	37	383	5
$IC(y_3+\delta,y_4)$	49	36	38	60	36	25	34	19	29	42	41	33	54	27	36	7 8	47	25	29	33	27	28	47	32	275	4

Also ist (mit großer Wahrscheinlichkeit)

$$\delta_{12} = 7$$
, $\delta_{13} = 8$, $\delta_{14} = 23$, $\delta_{23} = 1$, $\delta_{24} = 16$, $\delta_{34} = 15$.

Wir können nun alle Spalten relativ zur ersten Spalte so verschieben, dass der ganze Text eine einheitliche Verschiebung δ hat, also die zweite Spalte um -7, die dritte um -8 und die vierte um -23. Für die Bestimmung von δ , muss man nur den häufigsten Buchstaben in dem auf diese Weise erzeugten Text bestimmen (oder eine vollständige Suche durchführen). Dieser ist L (16,3%). Also ist $\delta = L - E = H = 7$ und das Schlüsselwort lautet HOPE (H + 7 = 0, H + 8 = P, H + 23 = E).

Analyse der Lauftextverschlüsselung

Zum Brechen einer Stromchiffre mit Klartextschlüsselstrom kann man wie folgt vorgehen. Man geht zunächst davon aus, dass jedes Kryptotextzeichen durch Summation eines Klartext- und Schlüsselstromzeichens mit jeweils mittlerer bis hoher Wahrscheinlichkeit entstanden ist. Dies sind etwa im Englischen die Zeichen E, T, A, O, I, N, S, R, H. Zu einem

◁

Teilwort w des Kryptotextes bestimmt man dann alle Paare von Wörtern (w_1, w_2) mit $w_1 + w_2 = w$ und $w_1, w_2 \in \{\mathsf{E}, \mathsf{T}, \mathsf{A}, \mathsf{0}, \mathsf{I}, \mathsf{N}, \mathsf{S}, \mathsf{R}, \mathsf{H}\}^*$. In der Regel ergeben sich nur sehr wenige sinnvolle Paare, aus denen durch Kontextbetrachtungen und Erweitern von w nach links und rechts der Kryptotext entschlüsselt werden kann. Wird die Analyse durch ein Computerprogramm durchgeführt, kann an die Stelle der Kontextbetrachtungen auch die Häufigkeitsverteilung von n-Grammen der Sprache treten. Das Programm wählt dann solche Wortpaare (w_1, w_2) , die eine hohe Wahrscheinlichkeit haben.

Beispiel 62. Gegeben ist der Kryptotext moqkthcblmwxf... Wir beginnen die Untersuchung mit einer Wortlänge von vier Buchstaben, also w = moqk. Der erste Buchstabe m kann nur auf eine der folgenden Arten zustande gekommen sein:

Es ergeben sich folgende wahrscheinliche Paare für die Zeichen von w:

Diese führen auf folgende $3 \cdot 3 \cdot 1 \cdot 3 = 27$ Wortpaare (w_1, w_2) :

	EAIR					
w_2	IOIT	IOIS	<i>IOIR</i>	IHIT	 THIS	 TAIR

Als sinnvoll stellt sich aber nur die Wahl $w_1 = w_2 = THIS$ heraus.

Autokey Chiffren

Kryptotextschlüsselstrom. Diese Systeme bieten so gut wie keinen Schutz, da sie ohne Kenntnis des Schlüsselwortes sehr leicht entschlüsselt werden können (falls die Länge des Schlüsselwortes im Verhältnis zur Länge des Kryptotextes relativ kurz ist). Man subtrahiert dazu den Kryptotext y für $\delta=1,2,\ldots$ von dem um δ Positionen verschobenen Kryptotext – also $y_{0+\delta}\,y_{1+\delta}\,y_{2+\delta}\,y_{3+\delta}\,\ldots$ minus $y_0\,y_1\,y_2\,y_3\,\ldots$ –, bis sinnvoller (Klar-) Text erscheint:

$$\begin{array}{cccc} & \textit{dumsqmozkfn...} & \text{Kryptotext } y \\ - & \textit{DUMSQM0...} & \text{Kryptotextschlüsselstrom } ky \\ \hline = & \dots \text{NSCHUTZ...} & \text{Klartext } x \end{array}$$

Klartextschlüsselstrom. Neben der oben beschriebenen Analyse der Lauftextverschlüsselung kann das Brechen der Autokey-Systeme mit Klartextschlüsselstrom auch analog zur Kasiski-Methode erfolgen: Sei d die Länge des Schlüsselwortes $k_0 \dots k_{d-1}$. Falls im

Klartext die gleiche Buchstabenfolge $x_i \dots x_{i+l-1}$ im Abstand 2d auftritt (beispielsweise d=3 und l=2),

so tritt im Kryptotext die gleiche Buchstabenfolge im Abstand d auf, d.h. d kann auf diese Art unter Umständen leicht bestimmt werden. Ist d bekannt, so können die Buchstaben $k_1
ldots k_d$ des Schlüsselwortes der Reihe nach bestimmt werden: Da durch k_i die Klartextzeichen an den Positionen $i, d+i, 2d+i, \ldots$ eindeutig festgelegt sind, kann jedes einzelne k_i unabhängig von den anderen Schlüsselwortbuchstaben durch eine statistische Analyse bestimmt werden. Tatsächlich lässt sich die Kryptoanalyse der Autokey Chiffre mit Klartextschlüsselstrom bei Kenntnis von d auf die Kryptoanalyse einer Vigenère-Chiffre mit Periode d reduzieren (siehe Übungen).

3 Sicherheit von Kryptosystemen

3.1 Informations theoretische Sicherheit

Claude E. Shannon untersuchte die Sicherheit kryptografischer Systeme auf informationstheoretischer Basis (1945, freigegeben 1949). Seinen Untersuchungen liegt das Modell einer Nachrichtenquelle \mathcal{X} zugrunde, die einzelne Klartextnachrichten x aus dem Klartextraum M unter einer bestimmten Wahrscheinlichkeitsverteilung $p(x) = \Pr[\mathcal{X} = x]$ generiert.

Zudem nehmen wir an, dass der zur Verschlüsselung benutzte Schlüssel $k \in K$ von einem Schlüsselgenerator S unter einer bekannten Wahrscheinlichkeitsverteilung $p(k) = \Pr[S = k]$ erzeugt wird. Da der Schlüssel unabhängig vom Klartext gewählt wird, ist p(k,x) = p(k)p(x) die Wahrscheinlichkeit dafür, dass \mathcal{X} den Klartext x generiert und dieser mit dem Schlüssel k verschlüsselt wird. Dabei gehen wir davon aus, dass für jede Nachricht $x \in M$ ein neuer Schlüssel gewählt wird. Dies bedeutet, dass wir beispielsweise bei der additiven Chiffre den Klartextraum auf $M = A^n$ vergrößern müssen, falls der Schlüssel nach n Zeichen gewechselt wird.

Die Zufallsvariablen $\mathcal X$ und $\mathcal S$ induzieren eine Verteilung auf dem Kryptotextraum, die wir durch die Zufallsvariable $\mathcal Y$ beschreiben. Die Wahrscheinlichkeit eines Kryptotextes y berechnet sich zu

$$p(y) = \Pr[\mathcal{Y} = y] = \sum_{k,x:E(k,x)=y} p(k,x)$$

und für einen beobachteten Kryptotext y (mit p(y) > 0) ist

$$p(x|y) = \frac{p(x,y)}{p(y)} = \sum_{k:E(k,x)=y} \frac{p(k,x)}{p(y)}$$

die (bedingte) Wahrscheinlichkeit dafür, dass sich hinter dem Kryptotext y der Klartext x verbirgt. Da der Schlüsselgenerator für die Sicherheit eines Kryptosystems eine wichtige Rolle spielt, nehmen wir bei Sicherheitsbetrachtungen die Schlüsselverteilung \mathcal{S} als sechste Komponente eines Kryptosystems hinzu.

Definition 63. Ein Kryptosystem KS = (M, C, E, D, K, S) mit Schlüsselverteilung S heißt **informationstheoretisch** (oder **absolut**) **sicher**, falls jede Klartextverteilung X auf M unabhängig von der zugehörigen Kryptotextverteilung Y auf C ist.

Bei einem absolut sicheren Kryptosystem ist demnach die A-posteriori-Wahrscheinlichkeit p(x|y) einer Klartextnachricht x gleich der A-priori-Wahrscheinlichkeit p(x), d.h. die Wahrscheinlichkeit von x ändert sich nicht, ob nun der Kryptotext y bekannt ist oder nicht. Die Kenntnis von y erlaubt somit keinerlei Rückschlüsse auf die gesendete Nachricht. Dies bedeutet, dass es dem Gegner nicht möglich ist, das System zu brechen; auch nicht mit unbegrenzten Rechenressourcen. Wie wir sehen werden, lässt sich dieses Maß an Sicherheit nur mit einem sehr hohen Aufwand erreichen.

Sind p(x), p(y) > 0, so gilt wegen p(x|y)p(y) = p(x,y) = p(y|x)p(x) die Gleichheit

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$
 (Satz von Bayes)

und daher ist die Bedingung p(x) = p(x|y) gleichbedeutend mit p(y) = p(y|x), was wiederum mit der Unabhängigkeit der Ereignisse $\mathcal{X} = x$ und $\mathcal{Y} = y$ gleichbedeutend ist.

Beispiel 64. Sei KS = (M, C, E, D, K) ein Kryptosystem mit $M = \{x_1, \ldots, x_4\}$, $K = \{k_1, \ldots, k_4\}$, $C = \{y_1, \ldots, y_4\}$ und Verschlüsselungsfunktion

Unter der Schlüssel- und Klartextverteilung

ergibt sich wegen $p(y) = \sum_{k,x:E(k,x)=y} p(k,x)$ folgende Kryptotextverteilung:

$$p(y_1) = 1/2 \cdot 1/2 + (1/4 + 1/8 + 1/8) \cdot 1/6 = 1/3$$

$$p(y_2) = 1/4 \cdot 1/2 + (1/8 + 1/8 + 1/2) \cdot 1/6 = 1/4$$

$$p(y_3) = 1/8 \cdot 1/2 + (1/8 + 1/2 + 1/4) \cdot 1/6 = 5/24$$

$$p(y_4) = 1/8 \cdot 1/2 + (1/2 + 1/4 + 1/8) \cdot 1/6 = 5/24$$

Die bedingten Wahrscheinlichkeiten $p(x|y_1)$ berechnen sich wie folgt:

$$p(x_1|y_1) = p(k_1, x_1)/p(y_1) = (1/2)(1/2)/(1/3) = 3/4$$

$$p(x_2|y_1) = p(k_2, x_2)/p(y_1) = (1/4)(1/6)/(1/3) = 1/8$$

$$p(x_3|y_1) = p(k_3, x_3)/p(y_1) = (1/8)(1/6)/(1/3) = 1/16$$

$$p(x_4|y_1) = p(k_4, x_4)/p(y_1) = (1/8)(1/6)/(1/3) = 1/16$$

Wegen $p(x_1) = 1/2 \neq 3/4 = p(x_1|y_1)$ ist das Kryptosystem nicht absolut sicher.

Lässt sich das Kryptosystem KS aus obigem Beispiel unter der vorgegebenen Klartextverteilung durch Verwendung eines anderen Schlüsselgenerators absolut sicher machen?

- KS ist genau dann absolut sicher, wenn $p(y_j) = p(y_j|x_i)$ für alle $(x_i, y_j) \in M \times C$ gilt.
- Da es jedoch in KS für jedes Paar (x_i, y_j) genau einen Schlüssel $k = k_{i,j} \in K$ mit $E(k, x_i) = y_j$ gibt, also $p(y_j|x_i) = p(k_{i,j})$ ist, ist dies äquivalent zur Bedingung, dass $p(y_j) = p(k_{i,j})$ für alle $(x_i, y_j) \in M \times C$ gilt.
- Für j=1 bedeutet die Gleichheit $p(y_j)=p(k_{i,j})$ für alle i zum Beispiel, dass alle vier Schlüssel $k_{i,1}=k_i$ $(i=1,\ldots,4)$ die gleiche Wahrscheinlichkeit haben müssen.
- Wegen $p(y_j) = \sum_{i=1}^4 p(x_i) p(y_j|x_i) = 1/4 \sum_{i=1}^4 p(x_i) = 1/4 = p(k_{i,j}) = p(y_j|x_i)$ ist das System in diesem Fall tatsächlich absolut sicher.

Demnach ist das Kryptosystem KS aus Beispiel 64 genau dann absolut sicher, wenn der Schlüssel gleichverteilt ist. In Verallgemeinerung dieses Beispiels lässt sich für eine wichtige Klasse von Kryptosystemen die absolute Sicherheit wie folgt charakterisieren.

Satz 65. Sei KS = (M, C, E, D, K, S) ein Kryptosystem mit |M| = |C| = |K|, dessen Schlüsselraum K für jedes Klartext-Kryptotext-Paar $(x, y) \in M \times C$ genau einen Schlüssel k mit E(k, x) = y enthält. Dann ist KS genau dann absolut sicher, wenn S auf K gleichverteilt ist.

Beweis. Bezeichne $k_{x,y}$ den eindeutigen Schlüssel, der den Klartext x auf den Kryptotext y abbildet. Falls S auf K gleichverteilt ist, folgt wegen $p(k_{x,y}) = |K|^{-1}$ für alle x, y mit p(x) > 0 zunächst

$$p(y|x) = \sum_{k:E(k,x)=y} p(k) = p(k_{x,y}) = |K|^{-1}$$

und

$$p(y) = \sum_{x,p(x)>0} p(x)p(y|x) = |K|^{-1} \sum_{x} p(x) = |K|^{-1},$$

also p(x,y) = p(x)p(y|x) = p(x)p(y), d.h. KS ist absolut sicher. Die Umkehrung wird in den Übungen gezeigt.

Verwendet man beim One-Time-Pad nur Klartexte einer festen Länge n, so ist dieser nach obigem Satz genau dann absolut sicher, wenn der Schlüssel unter Gleichverteilung gewählt wird. Variiert die Klartextlänge, so kann ein Gegner aus y nur die Länge des zugehörigen Klartextes x ableiten. Wird jedoch dieselbe zufällige Schlüsselsequenz k zweimal verwendet, so kann aus den Kryptotexten die Differenz der zugehörigen Klartexte ermittelt werden:

$$y_1 = E(x_1, k) = x_1 + k$$

 $y_2 = E(x_2, k) = x_2 + k$ $\Rightarrow y_1 - y_2 = x_1 - x_2$

Sind die Klartexte natürlichsprachig, so können aus $y_1 - y_2$ die beiden Nachrichten x_1 und x_2 ähnlich wie bei der Analyse einer Lauftextverschlüsselung (siehe Abschnitt 2.5) rekonstruiert werden.

Da in einem absolut sicheren Kryptosystem der Schlüsselraum K mindestens die Größe des Klartextraumes M haben muss (siehe Übungen), erfordert die absolute Sicherheit einen extrem hohen Aufwand. Vor der Kommunikation muss ein Schlüssel, der mindestens so lang wie der zu übertragende Klartext ist, zufällig generiert und zwischen den Partnern auf einem sicheren Kanal ausgetauscht werden.

Für die meisten Anwendungen ist jedoch keine absolute Sicherheit erforderlich. Wie wir bei der Betrachtung von Stromsystemen gesehen haben, kann der Schlüsselstrom auch von einem Pseudo-Zufallsgenerator erzeugt werden. Dieser erhält als Eingabe eine Zufallszahl s_0 (den sogenannten Keim) und erzeugt daraus eine lange Folge $v_0 v_1 \dots$ von Pseudo-Zufallszahlen. Als Schlüssel muss jetzt nur noch der Keim ausgetauscht werden.

3.2 Der Entropiebegriff

In der Informationstheorie wird die Unsicherheit, mit der eine durch eine Zufallsvariable \mathcal{X} beschriebene Quelle ihre Nachrichten aussendet, nach ihrer Entropie bemessen. Dabei entspricht die Unsicherheit über \mathcal{X} genau dem Informationsgewinn, der sich aus der Beobachtung der Quelle \mathcal{X} ziehen lässt. Intuitiv ist die in einer einzelnen Nachricht x

<1

steckende Information umso größer, desto unwahrscheinlicher sie ist. Tritt eine Nachricht x mit einer positiven Wahrscheinlichkeit $p(x) = \Pr[\mathcal{X} = x] > 0$ auf, dann ist

$$Inf_{\mathcal{X}}(x) = \log_2(1/p(x))$$

der Informationsgehalt von x. Ist dagegen p(x) = 0, so sei $Inf_{\mathcal{X}}(x) = 0$. Diese Definition des Informationsgehalts ergibt sich zwangsläufig aus den beiden folgenden Axiomen:

- Der (gemeinsame) Informationsgehalt $Inf_{\mathcal{X},\mathcal{Y}}(x,y)$ von zwei Nachrichten x und y, die aus unabhängigen Quellen \mathcal{X} und \mathcal{Y} stammen, ist $Inf_{\mathcal{X}}(x) + Inf_{\mathcal{Y}}(y)$.
- Eine Nachricht x, die mit Wahrscheinlichkeit $\Pr[\mathcal{X} = x] = 1/2$ auftritt, hat den Informationsgehalt $Inf_{\mathcal{X}}(x) = 1$.

Der Informationsgehalt wird in der Einheit bit (basic indissoluble information unit) gemessen. Die Entropie von \mathcal{X} ist nun der erwartete Informationsgehalt einer von \mathcal{X} generierten Nachricht.

Definition 66. Sei \mathcal{X} eine Zufallsvariable mit Wertebereich $W(\mathcal{X}) = \{x_1, \dots, x_n\}$ und sei $p_i = \Pr[\mathcal{X} = x_i]$. Dann ist die **Entropie** von \mathcal{X} definiert als

$$\mathcal{H}(\mathcal{X}) = \sum_{i=1}^{n} p_i \operatorname{Inf}_{\mathcal{X}}(x_i) = \sum_{i=1}^{n} p_i \log_2(1/p_i) = -\sum_{i=1}^{n} p_i \log_2(p_i).$$

Beispiel 67. Sei X eine Zufallsvariable mit der Verteilung

x_i	sonnig	leicht bewölkt	$bew\"{o}lkt$	stark bewölkt	Regen	Schnee	Nebel
p_i	1/4	1/4	1/8	1/8	1/8	1/16	1/16

Dann ergibt sich die Entropie von \mathcal{X} zu

$$\mathcal{H}(\mathcal{X}) = 1/4 \cdot (2+2) + 1/8 \cdot (3+3+3) + 1/16 \cdot (4+4) = 2,625.$$

Die Entropie nimmt für $p_1 = \cdots = p_n = 1/n$ den Wert $\log_2(n)$ an. Für jede andere Verteilung p_1, \ldots, p_n gilt dagegen $\mathcal{H}(\mathcal{X}) < \log_2(n)$ (Beweis siehe unten). Bei vorgegebener Größe des Wertebereichs von \mathcal{X} ist die Unsicherheit über \mathcal{X} um so größer, je gleichmäßiger \mathcal{X} verteilt ist. Bringt \mathcal{X} dagegen nur einen einzigen Wert mit positiver Wahrscheinlichkeit hervor, dann (und nur dann) nimmt $\mathcal{H}(\mathcal{X})$ den Wert 0 an. Für den Nachweis von oberen Schranken für die Entropie benutzen wir folgende Hilfsmittel aus der Analysis.

Definition 68. Sei $I \subseteq \mathbb{R}$ ein Intervall. Eine Funktion $f: I \to \mathbb{R}$ heißt **konkav** auf I, falls für alle $x \neq y \in I$ und $0 \leq t \leq 1$ gilt:

$$f(tx + (1-t)y) \ge tf(x) + (1-t)f(y).$$

Gilt sogar ",>" anstelle von ", \geq ", so heißt f streng konkav auf I.

Beispiel 69. Die Funktion
$$f(x) = \log_2(x)$$
 ist streng konkav auf $(0, \infty)$.

Für den Beweis des nächsten Satzes benötigen wir die Jensensche Ungleichung, die wir ohne Beweis angeben.

Satz 70 (Jensensche Ungleichung). Sei f eine streng konkave Funktion auf I und seien $0 < a_1, \ldots, a_n < 1$ reelle Zahlen mit $\sum_{i=1}^n a_i = 1$. Dann gilt für alle $x_1, \ldots, x_n \in I$,

$$f\left(\sum_{i=1}^{n} a_i x_i\right) \geq \sum_{i=1}^{n} a_i f(x_i).$$

Hierbei tritt Gleichheit genau dann ein, wenn alle x_i den gleichen Wert haben.

Satz 71. Sei \mathcal{X} eine Zufallsvariable auf einer n-elementigen Menge $\{x_1, \ldots, x_n\}$ mit der Verteilung $p_i = \Pr[\mathcal{X} = x_i]$ für $i = 1, \ldots, n$. Dann ist $\mathcal{H}(\mathcal{X}) \leq \log_2(n)$, wobei Gleichheit genau im Fall $p_i = 1/n$ für $i = 1, \ldots, n$ eintritt.

Beweis. Aufgrund der Jensenschen Ungleichung gilt

$$\mathcal{H}(\mathcal{X}) = \sum_{i=1}^{n} p_i \log_2(1/p_i) \le \log_2 \sum_{i=1}^{n} p_i/p_i = \log_2 n,$$

wobei Gleichheit genau im Fall $1/p_1 = \cdots = 1/p_n$ eintritt. Letzteres ist mit der Bedingung $p_i = 1/n$ für $i = 1, \ldots, n$ gleichbedeutend.

Die Entropie liefert eine sehr gute untere Schranke für die mittlere Codewortlänge von Binärcodes. Ein **Binärcode** für \mathcal{X} ist eine (geordnete) Menge $C = \{y_1, \ldots, y_n\}$ von binären Codewörtern y_i für die Nachrichten x_i mit der Eigenschaft, dass die Abbildung $c: W(\mathcal{X})^* \to \{0,1\}^*$ mit $c(i_1 \cdots i_k) = y_{i_1} \cdots y_{i_k}$ injektiv ist. Die Injektivität von c stellt sicher, dass jede Folge $y_{i_1} \cdots y_{i_k}$ von Codewörtern eindeutig decodierbar ist.

Die mittlere Codewortlänge von C unter \mathcal{X} ist

$$L(C) = \sum_{i=1}^{n} p_i \cdot |y_i|.$$

C heißt **optimal**, wenn kein anderer Binärcode für \mathcal{X} eine kürzere mittlere Codewortlänge besitzt. Für einen optimalen Binärcode C für \mathcal{X} gilt (ohne Beweis)

$$\mathcal{H}(\mathcal{X}) \le L(C) < \mathcal{H}(\mathcal{X}) + 1.$$

Beispiel 72. Sei \mathcal{X} die Zufallsvariable aus dem letzten Beispiel mit der Verteilung $p_1 = p_2 = 1/4$, $p_3 = p_4 = p_5 = 1/8$ und $p_6 = p_7 = 1/16$. Betrachten wir die beiden Codes $C_1 = \{001, 010, 011, 100, 101, 110, 111\}$ und $C_2 = \{00, 01, 100, 101, 110, 1110, 1111\}$, so hat C_1 die mittlere Codewortlänge $L(C_1) = 3$, während $C_2 = \{y_1, \ldots, y_7\}$ wegen $|y_i| = \log_2(1/p_i)$ den optimalen Wert $L(C_2) = \mathcal{H}(\mathcal{X}) = 2,625$ erreicht.

Die Redundanz eines Codes für eine Zufallsvariable \mathcal{X} ist um so höher, je größer seine mittlere Codewortlänge im Vergleich zur Entropie von \mathcal{X} ist. Um auch Codes über unterschiedlichen Alphabeten miteinander vergleichen zu können, ist es notwendig, die Codewortlänge in einer festen Einheit anzugeben. Hierzu definiert man die **Bitlänge** eines Wortes x über einem Alphabet A mit m>2 Buchstaben zu $|x|_2=|x|\log_2(m)$. Beispielsweise ist die Bitlänge von **GOLD** (über dem lateinischen Alphabet) $|\text{GOLD}|_2=4\log_2(26)=18,8$. Entsprechend berechnet sich für einen Code $C=\{y_1,\ldots,y_n\}$ unter einer Verteilung p_1,\ldots,p_n die mittlere Codewortlänge (in bit) zu

$$L_2(C) = \sum_{i=1}^n p_i \cdot |y_i|_2.$$

◁

Mit dem Huffman-Verfahren lässt sich ein optimaler Code über einem beliebigem Alphabet mit $m \geq 2$ Zeichen effizient berechnen. Nun können wir die Redundanz eines Codes als den mittleren Anteil der Codewortbuchstaben definieren, die keine Information tragen.

Definition 73. Die (relative) Redundanz eines Codes C für X ist definiert als

$$\mathcal{R}(C) = \frac{L_2(C) - \mathcal{H}(\mathcal{X})}{L_2(C)}.$$

Beispiel 74. Während eine von \mathcal{X} generierte Nachricht im Durchschnitt $\mathcal{H}(\mathcal{X}) = 2.625$ bit an Information enthält, haben die Codewörter von C_1 eine Bitlänge von 3. Der Anteil an "überflüssigen" Zeichen pro Codewort beträgt also

$$\mathcal{R}(C_1) = \frac{3 - 2.625}{3} = 12,5\%,$$

 $wogegen C_2$ keine Redundanz besitzt.

3.3 Redundanz von Sprachen

Auch Schriftsprachen wie Deutsch oder Englisch und Programmiersprachen wie C oder PASCAL können als eine Art Code aufgefasst werden. Es ist zu erwarten, dass eine Sprache umso mehr Redundanz aufweist, je restriktiver die Gesetzmäßigkeiten sind, unter denen in ihr Worte und Sätze gebildet werden. Um die statistischen Eigenschaften einer Sprache L zu erforschen, erweist es sich als zweckmäßig, die Textstücke der Länge n (n-Gramme) von L für unterschiedliche n getrennt voneinander zu betrachten. Sei also \mathcal{L}_n die Zufallsvariable, die die Verteilung aller n-Gramme in L beschreibt. Interpretieren wir diese n-Gramme als Codewörter einer festen Codewortlänge n, so ist

$$\mathcal{R}(\mathcal{L}_n) = \frac{n \log_2 m - \mathcal{H}(\mathcal{L}_n)}{n \log_2 m}$$

die Redundanz dieses Codes.

Definition 75 (Entropie einer Sprache). Für eine Sprache L über einem Alphabet A mit |A| = m ist $\mathcal{H}(\mathcal{L}_n)/n$ die n-Gramm-Entropie von L (pro Buchstabe). Falls dieser Wert für n gegen ∞ von oben gegen einen Grenzwert

$$\mathcal{H}(L) = \lim_{n \to \infty} \mathcal{H}(\mathcal{L}_n) / n$$

konvergiert, so wird dieser Grenzwert als die **Entropie von** L bezeichnet. In diesem Fall konvergiert $\mathcal{R}(\mathcal{L}_n)$ von unten gegen den Grenzwert

$$\mathcal{R}(L) = \lim_{n \to \infty} \mathcal{R}(\mathcal{L}_n) = \frac{\log_2 m - \mathcal{H}(L)}{\log_2 m},$$

der als die (relative) Redundanz von L bezeichnet wird. Der Zähler

$$\mathcal{R}_{abs}(L) = \log_2 m - \mathcal{H}(L) = \mathcal{R}(L) \log_2 m$$

wird auch als absolute Redundanz von L bezeichnet (gemessen in bit/Zeichen).

Die Redundanz von natürlichen Sprachen lässt sich näherungsweise bestimmen, indem man die Entropien $\mathcal{H}(\mathcal{L}_n)$ ihrer n-Gramme empirisch ermittelt.

Beispiel 76. In der deutschen Sprache D hat die Einzelzeichenverteilung eine Entropie von $\mathcal{H}(\mathcal{D}_1) = 4,1$ bit, während eine auf A_{lat} gleichverteilte Zufallsvariable \mathcal{U} einen Entropiewert von $\mathcal{H}(\mathcal{U}) = \log(26) = 4,7$ bit hat. Für die Bigramme ergibt sich ein Entropiewert von $\mathcal{H}(\mathcal{D}_2)/2 = 3,5$ bit pro Buchstabe. Mit wachsender Länge sinkt die Entropie von deutschsprachigen Texten weiter ab und strebt gegen einen Grenzwert $\mathcal{H}(\mathcal{D})$ von 1,5 bit pro Buchstabe.

n	$\mathcal{H}(\mathcal{D}_n)$	$\mathcal{H}(\mathcal{D}_n)/n$	$\mathcal{R}_{abs}(\mathcal{D}_n)/n$	$\mathcal{R}(\mathcal{D}_n)$
1	4, 1	4, 1	0, 6	13%
2	7,0	3, 5	1, 2	26%
3	9, 6	3, 2	1,5	32%
6	12, 2	2,0	2,7	57%
15	27, 6	1, 8	2,9	62%
:	:	:	:	:
∞	∞	$\mathcal{H}(D) = 1, 5$	$\mathcal{R}_{abs}(D) = 3, 2$	$\mathcal{R}(D) = 67\%$

Deutsche Texte hinreichender Länge besitzen also eine durchschnittliche Redundanz von ca. 67%, so dass ihre Länge bei optimaler Kodierung auf ca. 1/3 komprimierbar ist.

3.4 Die Eindeutigkeitsdistanz

Wir betrachten nun den Fall, dass mit einem Kryptosystem Klartexte einer variablen Länge n verschlüsselt werden, ohne dabei den Schlüssel zu wechseln. Die Chiffrierfunktion hat also die Form

$$E_n: K \times A^n \to C_n,$$

wobei die Klartextlänge n variabel ist und wir der Einfachheit halber annehmen, dass die Menge C_n der entsprechenden Kryptotexte die gleiche Kardinalität $|C_n| = |A^n| = m^n$ wie der Klartextraum hat. Ist y ein abgefangener Kryptotext, so ist

$$K(y) = \{k \in K \mid \exists x \in A^n : E_n(k, x) = y \land p(x) > 0\}$$

die Menge aller infrage kommenden Schlüssel. K(y) besteht aus einem "echten" (d. h. dem zur Generierung von y tatsächlich benutzten) und |K(y)|-1 so genannten "unechten" Schlüsseln. Aus informationstheoretischer Sicht ist das Kryptosystem unter der Klartextverteilung \mathcal{X} umso sicherer, desto größer die erwartete Anzahl

$$\bar{s}_n = \sum_{y \in C_n} p(y) \cdot (|K(y)| - 1) = \sum_{y \in C_n} p(y) \cdot |K(y)| - 1$$

der unechten Schlüssel ist. Im besten Fall kommen für jeden Kryptotext alle Schlüssel infrage, d.h. $\bar{s}_n = |K| - 1$. Ist dagegen \bar{s}_n gleich 0, so liefert der abgefangene Kryptotext dem Gegner genügend Information, um den benutzten Schlüssel und somit den zugehörigen Klartext eindeutig bestimmen zu können (sofern er über genügend Ressourcen verfügt).

Definition 77. Die **Eindeutigkeitsdistanz** n_0 eines Kryptosystems unter Klartextverteilung \mathcal{X} ist der kleinste Wert von n, für den $\bar{s}_n = 0$ wird.

Als nächstes wollen wir eine untere Schranke für \bar{s}_n (und damit für n_0) herleiten. Hierzu benötigen wir den Begriff der bedingten Entropie $\mathcal{H}(\mathcal{X}|\mathcal{Y})$ von \mathcal{X} , wenn der Wert von \mathcal{Y} bereits bekannt ist.

Definition 78. Seien X, Y Zufallsvariablen. Die **bedingte Entropie** von X unter Y ist definiert als

$$\mathcal{H}(\mathcal{X}|\mathcal{Y}) = \sum_{y \in W(\mathcal{Y})} p(y) \cdot \mathcal{H}(\mathcal{X}|y),$$

wobei $\mathcal{X}|y$ die Zufallsvariable mit der Verteilung $p_y(x) = p(x|y) = \Pr[\mathcal{X} = x \mid \mathcal{Y} = y]$ ist (d.h. $\mathcal{X}|y$ hat die Entropie $\mathcal{H}(\mathcal{X}|y) = \sum_{x \in W(\mathcal{X})} p(x|y) \cdot \log_2(1/p(x|y))$.

Satz 79. Es gilt

- 1. $\mathcal{H}(\mathcal{X}, \mathcal{Y}) = \mathcal{H}(\mathcal{Y}) + \mathcal{H}(\mathcal{X}|\mathcal{Y})$ und
- 2. $\mathcal{H}(\mathcal{X}, \mathcal{Y}) \leq \mathcal{H}(\mathcal{X}) + \mathcal{H}(\mathcal{Y})$, wobei Gleichheit genau dann eintritt, wenn \mathcal{X} und \mathcal{Y} unabhängig sind.

Beweis. s. Übungen.

Korollar 80. Es gilt $\mathcal{H}(\mathcal{X}|\mathcal{Y}) \leq \mathcal{H}(\mathcal{X})$, wobei Gleichheit genau dann eintritt, wenn \mathcal{X} und \mathcal{Y} unabhängig sind.

Satz 81. In jedem Kryptosystem gilt für die Klartextentropie $\mathcal{H}(\mathcal{X})$, die Schlüsselentropie $\mathcal{H}(\mathcal{S})$ und die Kryptotextentropie $\mathcal{H}(\mathcal{Y})$ die Gleichung

$$\mathcal{H}(\mathcal{S}|\mathcal{Y}) = \mathcal{H}(\mathcal{S}) + \mathcal{H}(\mathcal{X}) - \mathcal{H}(\mathcal{Y}).$$

Beweis. Zunächst ist $\mathcal{H}(\mathcal{S}|\mathcal{Y}) = \mathcal{H}(\mathcal{S},\mathcal{Y}) - \mathcal{H}(\mathcal{Y})$. Es reicht also zu zeigen, dass

$$\mathcal{H}(\mathcal{S}, \mathcal{Y}) = \mathcal{H}(\mathcal{S}) + \mathcal{H}(\mathcal{X})$$

ist. Da bei Kenntnis des Schlüssels der Wert von \mathcal{X} bereits eindeutig durch \mathcal{Y} und der Wert von \mathcal{Y} eindeutig durch \mathcal{X} festgelegt ist, folgt unter Berücksichtigung der gemachten Annahme, dass \mathcal{X} und \mathcal{S} unabhängig sind,

$$\mathcal{H}(\mathcal{S},\mathcal{Y}) = \mathcal{H}(\mathcal{S},\mathcal{X},\mathcal{Y}) - \underbrace{\mathcal{H}(\mathcal{X}|\mathcal{S},\mathcal{Y})}_{=0} = \mathcal{H}(\mathcal{S},\mathcal{X}) + \underbrace{\mathcal{H}(\mathcal{Y}|\mathcal{S},\mathcal{X})}_{=0} = \mathcal{H}(\mathcal{S}) + \mathcal{H}(\mathcal{X}).$$

Jetzt verfügen wir über alle Hilfsmittel, um die erwartete Anzahl

$$\bar{s}_n = \sum_{y \in C_n} p(y) \cdot |K(y)| - 1$$

der unechten Schlüssel nach unten abschätzen zu können.

Lemma 82. Seien \mathcal{X}_n und \mathcal{Y}_n die Zufallsvariablen, die die Verteilungen der n-Gramme der Klartextsprache und der zugehörigen Kryptotexte beschreiben. Dann gilt

- 1. $\mathcal{H}(\mathcal{S}|\mathcal{Y}_n) \leq \log_2(\bar{s}_n + 1),$
- 2. $\mathcal{H}(S|\mathcal{Y}_n) \geq \mathcal{H}(S) n\mathcal{R}(\mathcal{L}_n) \log_2 m$.

Beweis.

1. Unter Verwendung der Jensenschen Ungleichung folgt

$$\mathcal{H}(\mathcal{S}|\mathcal{Y}_n) = \sum_{y \in C_n} p(y) \cdot \mathcal{H}(\mathcal{S}|y) \le \sum_{y \in C_n} p(y) \cdot \log_2 |K(y)| \le \log_2 \sum_{y \in C_n} p(y) \cdot |K(y)|$$
$$= \log_2(\bar{s}_n + 1).$$

2. Mit Satz 81 folgt

$$\mathcal{H}(\mathcal{S}|\mathcal{Y}_n) = \mathcal{H}(\mathcal{S}) + \mathcal{H}(\mathcal{X}_n) - \mathcal{H}(\mathcal{Y}_n).$$

Für die Klartextentropie $\mathcal{H}(\mathcal{X}_n)$ gilt

$$\mathcal{H}(\mathcal{X}_n) = \mathcal{H}(\mathcal{L}_n) = (1 - \mathcal{R}(\mathcal{L}_n)) n \log_2 m,$$

wobei m = |A| ist. Zudem lässt sich die Kryptotextentropie $\mathcal{H}(\mathcal{Y}_n)$ wegen $W(\mathcal{Y}_n) = C_n$ und $|C_n| = m^n$ durch

$$\mathcal{H}(\mathcal{Y}_n) \leq n \log_2 m$$

abschätzen. Somit ist

$$\mathcal{H}(\mathcal{S}|\mathcal{Y}_n) = \mathcal{H}(\mathcal{S}) + \mathcal{H}(\mathcal{X}_n) - \mathcal{H}(\mathcal{Y}_n) \ge \mathcal{H}(\mathcal{S}) - n\mathcal{R}(\mathcal{L}_n)\log_2 m \qquad \Box$$

Zusammen ergibt sich also

$$\log_2(\bar{s}_n + 1) \ge \mathcal{H}(\mathcal{S}|\mathcal{Y}_n) \ge \mathcal{H}(\mathcal{S}) - n\mathcal{R}(\mathcal{L}_n)\log_2 m.$$

Da $\mathcal{H}(S)$ im Fall der Gleichverteilung den maximalen Wert $\mathcal{H}(S) = \log_2 |K|$ erreicht, führt dies auf die Abschätzung

$$\bar{s}_n + 1 \ge 2^{\mathcal{H}(\mathcal{S}|\mathcal{Y}_n)} \ge |K| m^{-n\mathcal{R}(\mathcal{L}_n)}.$$

Satz 83. Sei (M, C, E, D, K, S) ein Kryptosystem mit $M = A^n$ und $|C| = m^n$. Falls S gleichverteilt auf K ist, ist die erwartete Anzahl der unechten Schlüssel $\bar{s}_n \geq |K| m^{-n\mathcal{R}(\mathcal{L}_n)} - 1 \geq |K| m^{-n\mathcal{R}(\mathcal{L})} - 1$.

Setzen wir in obiger Abschätzung $\bar{s}_n = 0$, so erhalten wir folgende untere Schranke für die Eindeutigkeitsdistanz n_0 eines Kryptosystems.

Korollar 84. Unter den Bedingungen des obigen Satzes gilt

$$n_0 \ge \frac{\log_2 |K|}{\mathcal{R}(L) \log_2 m} = \frac{\log_2 |K|}{\mathcal{R}_{abs}(L)}.$$

Man beachte, dass wir die Mindestmenge an Kryptotext, der zur eindeutigen Bestimmung des Schlüssels benötigt wird, nur nach unten abgeschätzt haben und die tatsächlich benötigte Menge deutlich größer sein kann. Natürlich erlaubt die eindeutige Bestimmung des Schlüssels auch die eindeutige Bestimmung des Klartexts. Unter Umständen kann jedoch der Klartext auch schon mit einer wesentlich geringeren Menge an Kryptotext eindeutig rekonstruierbar sein.

Beispiel 85. Für Substitutionen bei deutschsprachigem Klartext ergeben sich folgende Werte $\log_2 |K|/\mathcal{R}_{abs}(D)$ als untere Schranke für die Eindeutigkeitsdistanz n_0 (wobei wir von einer absoluten Redundanz von $\mathcal{R}_{abs}(D) = 3, 2$ bit/Zeichen ausgehen, was einer relativen Redundanz von $\mathcal{R}(D) = 3, 2/4, 7 \approx 67\%$ entspricht):

Kryptosystem	$Schl \ddot{u}sselanzahl \; K $	$\log_2 K $	$\log_2 K /\mathcal{R}_{abs}(D)$
additive Chiffre	26	4.7	$\frac{4.7}{3.2} \approx 1.5$
affine Chiffre	$12 \cdot 26 = 312$	8.3	2.6
$einfache\ Substitution$	26!	88.4	27.6
$Vigen\`ere$ - $Chiffre$	26^d	$4.7 \cdot d$	$1.5 \cdot d$
DES-Algorithmus	2^{56}	56	17.5

Dagegen erhalten wir für Blocktranspositionen folgende unteren Schranken für die Mindestmenge an Kryptotext, die zur eindeutigen Schlüsselbestimmung benötigt wird. Hierbei unterscheiden wir zusätzlich nach der Länge der bei der Häufigkeitsanalyse benutzten n-Gramme. Wird der Kryptotext einer Blocktransposition nur auf der Basis von n-Grammen analysiert, so erhalten wir folgende untere Schranke:

$$n_0 \ge \log_2 |K|/\mathcal{R}(\mathcal{L}_n) \log_2 m = \log_2 \ell!/\mathcal{R}(\mathcal{L}_n) \log_2 m.$$

Dies entspricht der Situation, dass die Wahrscheinlichkeit jedes Zeichens im Klartext höchstens von den n-1 vorausgehenden Zeichen abhängt.

Untere Schranke	$n \ f\ddot{u}r \ n_0 \ bei \ einer$	$Blockl\"{a}nge~\ell$									
$H\"{a}ufigke its analystical$	se auf der Basis von	10	20	50	100	1 000					
Einzelzeichen	$\mathcal{R}(\mathcal{D}_1) = 13\%$	59	165	578	1415	22 986					
Bigrammen	$\mathcal{R}(\mathcal{D}_2) = 26\%$	40	111	390	954	15502					
Trigrammen	$\mathcal{R}(\mathcal{D}_3) = 32\%$	24	65	226	553	9473					
n-Grammen, n -	$\rightarrow \infty, \ \mathcal{R}(D) = 67\%$	7	19	67	164	2665					

◁

3.5 Weitere Sicherheitsbegriffe

Da die Benutzung eines informationstheoretisch sicheren Kryptosystems einen immensen Aufwand erfordert, begnügt man sich in der Praxis meist mit schwächeren Sicherheitsanforderungen.

- Kryptosystem gilt als komplexitätstheoretisch sicher oder als berechnungssicher (computationally secure), falls es dem Gegner nicht möglich ist, das System mit einem für ihn lohnenswerten Aufwand zu brechen. Das heißt, der Zeitaufwand und die Kosten für einen erfolgreichen Angriff (sofern er überhaupt möglich ist) übersteigen den potentiellen Nutzen bei weitem.
- Ein Kryptosystem gilt als nachweisbar sicher (provably secure), wenn seine Sicherheit mit bekannten komplexitätstheoretischen Hypothesen verknüpft werden kann, deren Gültigkeit gemeinhin akzeptiert wird.
- Als praktisch sicher (practically secure) werden dagegen Kryptosysteme eingestuft, die über mehrere Jahre hinweg jedem Versuch einer erfolgreichen Kryptoanalyse widerstehen konnten, obwohl sie bereits eine weite Verbreitung gefunden haben und allein schon deshalb ein attraktives Ziel für einen Angriff darstellen.

Die komplexitätstheoretische Analyse eines Kryptosystems ist äußerst schwierig, da der Aufwand für einen erfolgreichen Angriff unabhängig von der dabei benutzten Technik abgeschätzt werden muss. Es reicht also nicht, alle bekannten kryptoanalytischen Ansätze in Betracht zu ziehen, sondern alle *möglichen*. Dabei darf sich die Aufwandsanalyse nicht ausschließlich an einer vollständigen Rekonstruktion des Klartextes orientieren, da bereits ein kleiner Unterschied zwischen der A-posteriori- und A-priori-Wahrscheinlichkeit für den Gegner einen Vorteil bedeuten könnte.

Aus den genannten Gründen ist noch für kein praktikables Kryptosystem der Nachweis gelungen, dass es komplexitätstheoretisch sicher ist. Damit ist auch nicht so schnell zu rechnen, zumindest nicht solange der Status fundamentaler komplexitätstheoretischer Fragen wie etwa des berühmten P²-NP-Problems offen ist. Dagegen gibt es eine ganze Reihe praktikabler Kryptosysteme, die als nachweisbar sicher oder praktisch sicher gelten. Wir schließen diesen Abschnitt mit einer Präzisierung des komplexitätstheoretischen Sicherheitsbegriffs, die unter dem Namen IND-CPA (indistinguishability under a chosenplaintext attack) bekannt ist. Hierzu ist es erforderlich, die Verletzung der Vertraulichkeit als ein algorithmisches Problem für den Gegner zu formulieren. Konkret läuft ein IND-CPA-Angriff wie folgt ab.

- 1. Zuerst wählt der Gegner zwei Klartexte $x_0 \neq x_1 \in M$.
- 2. Dann wird x_0 oder x_1 zufällig ausgewählt und der zugehörige Kryptotext y gebildet.
- 3. Dem Gegner wird der Kryptotext y vorgelegt und er muss raten, welcher der beiden Klartexte sich hinter y verbirgt.
- 4. Der Angriff ist erfolgreich, falls der Gegner richtig rät.

Die Erfolgsaussichten des Gegners bei diesem Angriff lassen sich wie folgt formalisieren. Dabei gehen wir davon aus, dass das gewünschte Maß an Sicherheit durch einen Parameter $s \in \mathbb{N}$ reguliert wird. Typischerweise werden Kryptosysteme nach ihrer Schlüssellänge s = |k| parameterisiert. Aus Praktikabilitätsgründen sollten dann alle legalen Operationen (wie die Chiffrierung oder die Schlüsselgenerierung) effizient (d.h. in Zeit $s^{O(1)}$) durchführbar sein. Natürlich darf dann auch der Aufwand des Gegners in Abhängigkeit von s steigen, weshalb er zusätzlich den Parameterwert s erhält.

Definition 86 (IND-CPA Angriff). Sei (M, C, E, D, K, S) ein Kryptosystem mit Sicherheitsparameter $s \in \mathbb{N}$. Ein **IND-CPA-Gegner** (oder kurz **Gegner**) ist ein Paar $G = (\mathcal{X}, \mathcal{V})$ von probabilistischen Algorithmen, wobei

- $-\mathcal{X}$ bei Eingabe $s \in \mathbb{N}$ ein Klartextpaar $\mathcal{X}(s) = (\mathcal{X}_0(s), \mathcal{X}_1(s)) \in M^2$ ausgibt und
- \mathcal{V} bei Eingabe $s \in \mathbb{N}$, $x_0, x_1 \in M$ und $y \in C$ ein Bit $\mathcal{V}(s, x_0, x_1, y)$ ausgibt.

Der **Vorteil von** G bei Parameterwert $s \in \mathbb{N}$ ist

$$\alpha_G(s) = 2 \left(\Pr[\mathcal{V}(s, \mathcal{X}(s), E(\mathcal{S}, \mathcal{X}_{\mathcal{B}}(s))) = \mathcal{B}] - 1/2 \right),$$

wobei \mathcal{B} auf $\{0,1\}$ gleichverteilt und von $\mathcal{S}, \mathcal{X}, \mathcal{V}$ unabhängig ist.

Ist der Wert des Sicherheitsparameters s irrelevant, fest vorgegeben oder aus dem Kontext ersichtlich, so verzichten wir meist auf seine explizite Angabe.

Wird beispielsweise eine Folge von Klartextblöcken a_1, a_2, \ldots mit einer Blockchiffre verschlüsselt, indem die einzelnen Blöcke unabhängig voneinander mit demselben Schlüssel k zu einer Folge b_1, b_2, \ldots von Kryptotextblöcken $b_i = E(k, a_i)$ verschlüsselt werden (so genannter **ECB-Modus**; electronic code book mode), so kann ein Gegner ohne großen Aufwand einen Vorteil von 1 erzielen (d.h. mit Wahrscheinlichkeit 1 den richtigen Klartext

raten). Hierzu wählt er (deterministisch) zwei beliebige Klartexte $x_0 = a_1 a_2 \dots$ und $x_1 = a'_1 a'_2 \dots$ mit der Eigenschaft $a_1 = a_2$ und $a'_1 \neq a'_2$. Dann kann er bei Vorlage eines Kryptotextes $y = b_1 b_2 \dots$ leicht erkennen, aus welchem Klartext y generiert wurde:

$$V(x_0, x_1, y) = \begin{cases} 0, & b_1 = b_2 \\ 1, & \text{sonst.} \end{cases}$$

Erwartungsgemäß sind absolut sichere Kryptosysteme gegen IND-CPA-Angriffe resistent.

Satz 87. Der maximale Vorteil gegenüber einem absolut sicheren Kryptosystem ist gleich Null (d.h. ein IND-CPA-Gegner kann höchstens mit Wahrscheinlichkeit 1/2 den richtigen Klartext raten, auch wenn er über unbeschränkte Rechenressourcen verfügt).

Beweis. Bei einem absolut sicheren Kryptosystem sind der Kryptotext $\mathcal{Y} = E(S, \mathcal{X})$ und der Klartext \mathcal{X} unabhängig. Daher sind auch die Zufallsvariablen $V(\mathcal{X}_0, \mathcal{X}_1, E(S, \mathcal{X}_{\mathcal{B}}))$ und \mathcal{B} unabhängig und es folgt

$$\Pr[V(\mathcal{X}_{0}, \mathcal{X}_{1}, E(S, \mathcal{X}_{B})) = \mathcal{B}] \\
= \Pr[V(\mathcal{X}_{0}, \mathcal{X}_{1}, E(S, \mathcal{X}_{B})) = \mathcal{B} = 0] + \Pr[V(\mathcal{X}_{0}, \mathcal{X}_{1}, E(S, \mathcal{X}_{B})) = \mathcal{B} = 1] \\
= \Pr[V(\mathcal{X}_{0}, \mathcal{X}_{1}, E(S, \mathcal{X}_{B})) = 0] \cdot \underbrace{\Pr[\mathcal{B} = 0 \mid V(\mathcal{X}_{0}, \mathcal{X}_{1}, E(S, \mathcal{X}_{B})) = 0]}_{= \Pr[\mathcal{B} = 0] = 1/2} \\
+ \Pr[V(\mathcal{X}_{0}, \mathcal{X}_{1}, E(S, \mathcal{X}_{B})) = 1] \cdot \underbrace{\Pr[\mathcal{B} = 1 \mid V(\mathcal{X}_{0}, \mathcal{X}_{1}, E(S, \mathcal{X}_{B})) = 1]}_{= \Pr[\mathcal{B} = 1] = 1/2} \\
= 1/2.$$

In den Übungen wird auch die umgekehrte Implikation bewiesen. Ein Kryptosystem ist somit genau dann absolut sicher, wenn kein Gegner einen Vorteil größer als 0 erzielen kann. Für die Präzisierung der komplexitätstheoretischen Sicherheit sind nun die folgenden beiden Fragen von entscheidender Bedeutung:

- 1. Über welche Rechenressourcen verfügt ein Gegner realistischerweise?
- 2. Wie groß darf der vom Gegner erzielbare Vorteil höchstens sein, ohne die Vertraulichkeit der verschlüsselten Nachricht zu verletzen?

Definition 90. wobei dann nur Klartexte der Länge demselben Schlüssel verschlüsselt werden.

Bezüglich Frage 1 geht man typischerweise davon aus, dass der Gegner über probabilistische Schaltkreise polynomieller Größe verfügt.

Definition 88.

a) Ein **boolescher Schaltkreis** der Größe m mit Eingängen x_1, \ldots, x_n und Ausgängen $i_1, \ldots, i_l \in [m]$ ist eine Folge $c = (g_1, \ldots, g_m)$ von **Gattern**

$$g_l \in \{0, 1, x_1, \dots, x_n, (\neg, j), (\land, j, k), (\lor, j, k)\}$$
 mit $1 \le j, k < l$.

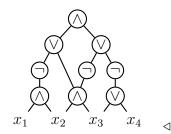
b) Der von c bei Eingabe $a \in \{0,1\}^n$ am Gatter g_l berechnete Wert $g_l(a) \in \{0,1\}$ ist induktiv wie folgt definiert:

c) Die **Ausgabe** von c bei Eingabe $a \in \{0,1\}^n$ ist die Bitfolge $c(a) = g_{i_1}(a) \dots g_{i_l}(a)$.

Beispiel 89. Der Schaltkreis

$$c = (x_1, x_2, x_3, x_4, (\land, 1, 2), (\land, 2, 3), (\lor, 3, 4), (\neg, 5), (\neg, 6), (\neg, 7), (\lor, 6, 8), (\lor, 9, 10), (\land, 11, 12))$$

mit den Eingängen x_1, x_2, x_3, x_4 und Ausgängen (11, 12, 13) gibt bei Eingabe a = 0110 die Bitfolge c(0110) = 100 aus.



Ein **probabilistischer Schaltkreis** c hat neben den regulären Eingabegattern x_1, \ldots, x_n noch eine beliebige Anzahl von Zufallsgattern z_1, \ldots, z_m . Hierbei werden die Eingabegatter x_i wie bisher mit den Bits a_i eines Eingabevektors $a = a_1 \ldots a_n \in \{0, 1\}^n$ belegt, während die m Zufallsgatter unabhängig gleichverteilte Bits Z_1, \ldots, Z_m erzeugen (d.h. es gilt $\Pr[Z_1 \ldots Z_m = b] = 2^{-m}$ für alle $b \in \{0, 1\}^m$). Dadurch wird die Ausgabe $c(a, Z_1, \ldots, Z_m)$ zu einer Zufallsvariablen, die wir auch kurz mit C(a) bezeichnen.

Bezüglich der zweiten Frage verlangt man, dass der Gegner für jedes Polynom p höchstens für endlich viele Parameterwerte s einen Vorteil größer gleich 1/p(s) erzielen darf. Andernfalls wäre die Sicherheit gefährdet, da er für jedes solche s nach polynomiell vielen Wiederholungen der probabilistischen Berechnung von $V(s, x_0, x_1, y)$ fast sicher den richtigen Klartext ausfindig machen könnte, indem er das mehrheitlich berechnete Bit ausgibt.

Definition 90. Sei KS ein Kryptosystem mit variablem Sicherheitsparameter $s \in \mathbb{N}$.

- Eine Funktion $\varepsilon : \mathbb{N} \to \mathbb{R}$ heißt **vernachlässigbar**, wenn für jedes Polynom p eine Zahl $n_0 \in \mathbb{N}$ existiert, so dass $\varepsilon(n) < 1/p(n)$ für alle $n \ge n_0$ gilt.
- Ein Gegner $G = (\mathcal{X}_0, \mathcal{X}_1, V)$ heißt **effizient**, wenn für jedes s probabilistische Schaltkreise c_s und c'_s der Größe $s^{O(1)}$ mit $\mathcal{C}_s = (\mathcal{X}_0(s), \mathcal{X}_1(s))$ und $\mathcal{C}'_s(x_0, x_1, y) = \mathcal{V}(s, x_0, x_1, y)$ existieren, wobei die Ein- und Ausgaben von c_s und c'_s binär kodiert sind
- KS heißt komplexitätstheoretisch sicher, wenn jeder effiziente Gegner G nur einen vernachlässigbaren Vorteil erzielen kann (d.h. die Funktion $\alpha_G(s)$ ist vernachlässigbar).

4 Moderne symmetrische Kryptosysteme & ihre Analyse

4.1 Produktchiffren

Produktchiffren erhält man durch die sequentielle Anwendung mehrerer Verschlüsselungsverfahren. Sie können extrem schwer zu brechen sein, auch wenn die einzelnen Komponenten leicht zu brechen sind.

Definition 91. Seien $KS_1 = (M_1, C_1, E_1, D_1, K_1, S_1)$ und $KS_2 = (M_2, C_2, E_2, D_2, K_2, S_2)$ Kryptosysteme mit $C_1 = M_2$. Dann ist das **Produktkryptosystem** $KS_1 \times KS_2$ von KS_1 und KS_2 definiert als $(M_1, C_2, E, D, K_1 \times K_2, S)$ mit $S = (S_1, S_2)$ und

$$E(k_1, k_2; x) = E_2(k_2, E_1(k_1, x))$$
 sowie $D(k_1, k_2; y) = D_1(k_1, D_2(k_2, y))$

für alle $x \in M_1$, $y \in C_2$ und $(k_1, k_2) \in K_1 \times K_2$.

Der Schlüsselraum von $KS_1 \times KS_2$ umfasst also alle Paare (k_1, k_2) von Schlüsseln $k_1 \in K_1$ und $k_2 \in K_2$, wobei wir voraussetzen, dass die Schlüssel unabhängig gewählt werden (d.h. es gilt $p(k_1, k_2) = p(k_1)p(k_2)$).