
Modellbasierte Softwareentwicklung (MODSOFT)

Part II

Domain Specific Languages

Semantics
Prof. Joachim Fischer /

Dr. Markus Scheidgen / Dipl.-Inf. Andreas Blunk

{fischer,scheidge,blunk}@informatik.hu-berlin.de
LFE Systemanalyse, III.310

1

prolog
(1 VL)

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

0.
(2 VL)

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

1.
(2 VL)

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI

2.
(3 VL)

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

3.
(4 VL)

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

epilog
(2 VL)

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)

Agenda

2

➡

Agenda

▶ Persistence of large models (e.g. CDO)

▶ Mode comparison (EMF Compare)

▶ Eclipse Client Platform (ECP)

▶ Version control for models (EMF Store)

▶ Course summary

3

4

Persistence of Large Models
EMF and Databases

5

Large?

▶ the size of typical software models is small enough

▶ versions

▶ industry scale model-based software projects

■ e.g. factory lines in automotive industry, more variants than sold
cars

▶ reverse engineering of large code bases

▶ non software-model EMF-models

■ sensor data (usually XML and column/row databases)

■ geo-spacial models (usually XML or relational-databases + geo-
spacial indices)

6

Large?

▶ the size of typical software models is small enough

▶ versions

▶ industry scale model-based software projects

■ e.g. factory lines in automotive industry, more variants than sold
cars

▶ reverse engineering of large code bases

▶ non software-model EMF-models

■ sensor data (usually XML and column/row databases)

■ geo-spacial models (usually XML or relational-databases + geo-
spacial indices)

6

02/04 11/06 08/09 05/12 02/04
2

3

4

5

6

7

8
x 10

7

time

m
o

d
e

l s
iz

e
 in

 n
u

m
b

e
r

o
f
o

b
je

ct
s

Linux Kernel

02/04 11/06 08/09 05/12 02/04
4

5

6

7

8

9

10
x 10

6

S
L

O
C

model size with history
model size
SLOC

09/98 05/01 02/04 11/06 08/09
0

1

2

3

4
x 10

9

time

m
o

d
e

l s
iz

e
 in

 n
u

m
b

e
r

o
f
o

b
je

ct
s

Debian Linux

09/98 05/01 02/04 11/06 08/09
0

1

2

3

4
x 10

8

S
L

O
C

model size with history
model size
SLOC

03/93 12/95 09/98 05/01 02/04
0

1

2

3

4

5
x 10

8

time

m
o

d
e

l s
iz

e
 in

 n
u

m
b

e
r

o
f
o

b
je

ct
s

Windows NT/2000/XP/Server

03/93 12/95 09/98 05/01 02/04
0

1

2

3

4

5
x 10

7

S
L

O
C

model size with history
model size
SLOC

Large?

▶ How to measure model size?

■ number of objects: not all objects have equal size

■ memory: serialized? heap vs. XMI/XML vs. binary? Compression?

■ different heap representations in EMF

◆ each feature as a field

◆ all features in a dynamic array

■ syntax vs. syntax

◆ representations of the same model in different syntaxes can yield different
memory requirements

◆ e.g. serialized AST’s ~ 400*code

■ syntax vs. semantic

◆ space needed to represent model in a certain syntax != minimum space
needed to express its semantic

7

too Large?

▶ Processing of models requires more main memory than
available

▶ Processing of models requires more time than available/
sensible

▶ Depends on the actual processing task

■ queries

■ editing

■ execution/transformation

8

Why does EMF not scale?

▶ Most tools are build under the assumption that models are
relatively small

▶ Models have to be loaded as a whole or have to be spread
over multiple resources manually

▶ EMF’s resource unload, does not really unload the
contained objects

■ they are logically removed from the resource-set

■ references between objects are not broken, the objects cannot be
collected by JVM’s GC

9

Technological Spaces

▶ Object-oriented meta-models, e.g. EMF, MOF

▶ formal languages, e.g. context-free grammars

▶ XML

▶ databases

■ relational databases

■ NoSQL databases

◆ graph databases

◆ document, column, key-value databases

10

Technological Spaces

▶ Different technological spaces focus on different things

▶ OO MM: presenting human readable and editable software
models

▶ XML: serialization and interchange of data

▶ Databases: scalability, safe storage, and optimized queries

11

Solution – Mapping to other Technological Spaces

▶ Textual representations: we already mapped EMF to a
different technological space: formal languages, i.e. context-
free grammars

▶ Mapping to databases

■ different mappings for different database technologies

■ different database technologies have different properties, correct
choice depends on use-case

■ mappings can be more or less natural

12

Databases – Relational vs. NoSQL

▶ Atomicity, Consistency, Isolation, Durability (ACID)

■ reliable database-wide transactions

▶ Basically Available, Soft state, Eventual consistent (BASE)

■ distributability and availability is more important than immediate
consistency

▶ Consistency, Availability, Partition tolerance (CAP)-theorem,
a.k.a Brewer’s theorem

■ “only two of three possible”

■ ACID: not partition tolerant

■ BASE: not consistent

13

EMF and Relational Databases

▶ Object-oriented data-models vs. relations/tables

▶ Object Relational Mappings (ORM)

■ each class gets its own table

■ each attribute its own column

■ an object is represented as row in the corresponding table

■ different solutions for inheritance hierarchies

◆ one table per hierarchy

◆ one table per sub class

◆ one table per concrete class

■ one table per reference

14

EMF and Relational Databases

▶ Object-oriented data-models vs. relations/tables

▶ Object Relational Mappings (ORM)

■ each class gets its own table

■ each attribute its own column

■ an object is represented as row in the corresponding table

■ different solutions for inheritance hierarchies

◆ one table per hierarchy

◆ one table per sub class

◆ one table per concrete class

■ one table per reference

14

EMF and Relational Databases

▶ Object-oriented data-models vs. relations/tables

▶ Object Relational Mappings (ORM)

■ each class gets its own table

■ each attribute its own column

■ an object is represented as row in the corresponding table

■ different solutions for inheritance hierarchies

◆ one table per hierarchy

◆ one table per sub class

◆ one table per concrete class

■ one table per reference

14

EMF and Relational Databases

▶ Object-oriented data-models vs. relations/tables

▶ Object Relational Mappings (ORM)

■ each class gets its own table

■ each attribute its own column

■ an object is represented as row in the corresponding table

■ different solutions for inheritance hierarchies

◆ one table per hierarchy

◆ one table per sub class

◆ one table per concrete class

■ one table per reference

14

Concrete ORM’s and Frameworks

▶ hibernate, indirect

■ general ORM for Java

■ mapping of generated Java classes

▶ Connected Data Objects (CDO), direct

■ dedicated EMF-framework

■ special EObject implementation

■ EStore-based

■ Client/server architecture

15

Connected Data Objects (CDO)

16

Client VM

CDO Client

CDO Protocol

Net4j TCP

Net4j

E
M

F

G
en

er
at

ed
 M

od
el

s

OSGi / Eclipse

Client Applications

Server VM

CDO Server

CDO Protocol

Net4j TCP

Net4j

OSGi / Eclipse Backend

CDO Store

Connected Data Objects (CDO)

17

Client

Server

Client

•  Client adds/modifies CDOObjects
•  Client transaction creates temporary IDs for new

objects and records change deltas
•  Commit() sends new packages, new revisions and

revision deltas to the server
•  Server passes data to the configured store
•  Store remaps temporary IDs and persists the data
•  Server sends back ID mappings
•  Server notifies other sessions about invalidations
•  Client transaction applies ID mappings

Connected Data Objects (CDO)

18

// Open an embedded connection
IConnector connector = JVMUtil.getConnector(container, "default");

// Open a session and register the model
CDOSession session = CDOUtil.openSession(connector, “repo", true);
session.getPackageRegistry().putEPackage(Model1Package.eINSTANCE);

// Start a transaction and create a resource
CDOTransaction transaction = session.openTransaction();
Resource resource = transaction.createResource("/my/big/resource");

// Work normally with the EMF resource
resource.getContents().add(getInputModel());
transaction.commit();

// Cleanup
session.close();
connector.disconnect();

ORM – Disadvantages

▶ Object-relational Impedance Mismatch

▶ fast queries, but depend on SQL on mapped data

▶ slow traversal/navigation

19

EMF and Document/Column/Key-Value Databases

▶ Two strategies

▶ one entry per object

■ object to database entry

■ entry keys as IDs for references

■ each object is serialized in a database-friendly format, e.g. JSON for MongoDB

■ natural index for entry keys

■ secondary indexes for other attributes

▶ fragmentation

■ automated distribution of model object over many resources

■ resources are serialized into database entries, URI as key

■ natural index for URIs

■ no secondary indexes

20

Disadvantages

▶ scalability issues with very large value-sets

▶ limited indices and query capabilities

▶ fast traversal/navigation

21

EMF and Graph-Databases

▶ index-free adjacency, constant execution time navigation from
one node to another, no index involved

▶ one-to-one mapping

■ objects to nodes

■ references to edges

■ attributes as node attributes (supported by most graph
databases)

22

Disadvantages

▶ no indices besides the model itself (and proprietary
database query capabilities)

▶ Very fast traversal via index-free adjacency

▶ simple mapping

▶ in reality graph-databases do not actually allow constant
time navigation

23

Summary

▶ EMF models can be too large

▶ Solution mapping to other technological spaces

▶ Mappings for different database technologies exist

24

Model Comparison and Merging
EMF Compare

25

EMF Compare

▶ API and UI

▶ Allows you to compare two (or more) models

■ generate matches

■ generate differences

■ compare differences similar to textual diff (e.g. in SVN, GIT
clients)

◆ based on model-elements not based on LOC

■ merge models interactively

26

27

EMF Compare – Process

28

Version 1

Version 2

match
model

diff
modelmatch engine diff builder

user interfacemerger

merged
model

Match Model

29

Generic Match Engine

30

Custom Match Engines

31

Merging UI

32

Eclipse Client Platform (ECP)
GUI applications based on EMF data

33

Eclipse Client Platform (ECP)

▶ One-click build GUI application based on EMF-data models

▶ generates editors and forms based on a meta-model

▶ Suited for simple data entry and manipulation applications

▶ Works well with persistence backends

34

35

EMF Store
Version control for models based on CDO,
ECP, and EMF Compare

36

Version Control

37

Version Control

38

Version Control

39

Version Control

40

Version Control

41

EMF Store

▶ Client/Server architecture

▶ Server

■ Versioning and persistence (CDO)

■ Access control

▶ Client

■ Offline operation

■ Commit/update models

■ Interactive model merging (EMF Compare)

■ Views

◆ Repository browser

◆ History Browser

42

43

Model Versioning Problems

▶ No generic match, merge strategy for models, like for text

▶ Custom merge UI required for models with graphical
notation

▶ Models with textual notation can be managed with
traditional text/code based technologies

44

Course Summary

45

Course Summary

▶ Classification of computer languages

▶ Language aspects (notation, structure, semantics)

▶ Language descriptions, tools, instances

▶ Object-oriented meta-modeling, 4-layer, multi-level-metamodeling,
problems with multi-level-metamodeling

▶ Ecore, differences to UML class diagrams, Java-mapping

▶ Serialization, notification, MVC

▶ Validation, OCL

▶ Textual notations, strategies, grammar-to-metamodel-mapping, scoping

▶ Types of semantics/descriptions, interpreter vs. code-generation, code-
generation vs. model-to-model, elaboration

46

