Modellbasierte Softwareentwicklung (MODSOFT)

Part ||
Domain Specific Languages

Semantics

Prof. Joachim Fischer /
Dr. Markus Scheidgen / Dipl.-Inf. Andreas Blunk

{fischer,scheidge,blunk} @informatik.hu-berlin.de
LFE Systemanalyse, I11.310



prolog

(1 VL)
(2 VL)

(2 VL)

2.
(3 VL)

3.

(4 VL)

= epilog
(2 VL)

Agenda

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI|

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)

2



Agenda

> Persistence of large models (e.g. CDO)
» Mode comparison (EMF Compare)

» Eclipse Client Platform (ECP)

> Version control for models (EMF Store)

» Course summary






Persistence of Large Models
EMF and Databases



Large?

> the size of typical software models is small enough
> versions

> industry scale model-based software projects

B e.g. factory lines in automotive industry, more variants than sold
cars

> reverse engineering of large code bases

» non software-model EMF-models

B sensor data (usually XML and column/row databases)

B geo-spacial models (usually XML or relational-databases + geo-
spacial indices)



x 10’ Linux Kernel x 10° x 10° Debian Linux x 10° x 10®  Windows NT/2000/XP/Server %(510

——— model size with history D —— model size with history ——— model size with history

—4A— model size —A— model size —4A— model size
—&— SLOC —66— SLOC —o— SLOC
7 19
4 14
1] 1] Q
O O O
2, 2, ko)
g6 8 3
© © S 3 A3
g g g
(@)
c M= c
N N N2 2
wn wn wn
o 4F 6 © D
© © ©
(@) o (@)
€ € €
1r 1
3r 5
q
q
2 1 1 1 4 0 1 1 1 0 0 1 1 1 O
02/04 11/06 08/09 05/12 02/04 09/98 05/01 02/04 11/06 08/09 03/93 12/95 09/98 05/01 02/04
time time time

1 GVGOl OG \»WW
» non software-model EMF-models
B sensor data (usually XML and column/row databases)

B geo-spacial models (usually XML or relational-databases + geo-
spacial indices)



Large?

» How to measure model size?

B number of objects: not all objects have equal size
B memory: serialized? heap vs. XMI/XML vs. binary? Compression?
m different heap representations in EMF

¢ cach feature as a field
¢ all features in a dynamic array

B syntax vs. syntax

¢ representations of the same model in different syntaxes can yield different
memory requirements

¢ e.g. serialized AST’s ~ 400%*code
B syntax vs. semantic

¢ space needed to represent model in a certain syntax = minimum space
needed to express its semantic



too Large?

» Processing of models requires more main memory than
available

> Processing of models requires more time than available/
sensible

» Depends on the actual processing task
B queries
B editing

B execution/transformation



Why does EMF not scale?

» Most tools are build under the assumption that models are
relatively small

» Models have to be loaded as a whole or have to be spread
over multiple resources manually

» EMF’s resource unload, does not really unload the
contained objects

B they are logically removed from the resource-set

B references between objects are not broken, the objects cannot be
collected by J[VM’s GC



Technological Spaces

> Object-oriented meta-models, e.g. EMF, MOF

> formal languages, e.g. context-free grammars

> XML

» databases

B relational databases

B NoSQL databases

¢ graph databases

¢ document, column, key-value databases

10



Technological Spaces

» Different technological spaces focus on different things

» OO MM: presenting human readable and editable software
models

> XML: serialization and interchange of data

» Databases: scalability, safe storage, and optimized queries

11



Solut

ion — Mapping to other Technological Spaces

> Textual representations: we already mapped EMF to a

different technological space: formal languages, i.e. context-

free grammars

» Ma

e

oping to databases

ifferent mappings for different database technologies

B C

ifferent database technologies have different properties, correct

choice depends on use-case

B mappings can be more or less natural

12



Databases — Relational vs. NoSQL

> Atomicity, Consistency, Isolation, Durability (ACID)

B reliable data

> Basically Avai

hase-wide transactions

able, Soft state, Eventual consistent (BASE)

B distributability and availability is more important than immediate

consistency

» Consistency, Availability, Partition tolerance (CAP)-theorem,
a.k.a Brewer’s theorem

B “only two of three possible”

B ACID: not partition tolerant

B BASE: not consistent

13



EMF and Relational Databases

> Object-oriented data-models vs. relations/tables

» Object Relational Mappings (ORM)

B each class gets its own table
B each attribute its own column
B an object is represented as row in the corresponding table

B different solutions for inheritance hierarchies

¢ one table per hierarchy

¢ one table per sub class

¢ one table per concrete class

B one table per reference

14



ranar _ _ 1 n_1_.:_ __1I
Natabases
{ Player ]
LName J
/ \ ~— e | ions/tables
[ Footballer ] [ Cricketer ] NamePIayers
LCIub ] LBattingAverage J Club

A\ BattingAverage
BowlingAverage
Type

[ Bowler

BowlingAverage J
u

B an object is represented as row in the corresponding table

B different solutions for inheritance hierarchies

¢ one table per hierarchy

¢ one table per sub class

¢ one table per concrete class

B one table per reference

14



raar _ _ 1 mo_1_+°_ __1

Natabases

Player ]

|
[Name

/ b\ — inn</tahlec
[ Footballer 1 f Ry 1
lClub : Players
2 Name
[ Player \
[Name r
E «table»
Footballers
E / \ kCIub
[ Footballer | [ Cricketer |
= an ObJeCt lclub lBattingAverage [ bles ‘ ;table
Cricketers
] dl.ﬁ'e rent < ZF lBattingAverage
[ Bowler :
# one tab |BowlingAverage e
BattingAverage
® one tab BowlingAverage
¢ one table perconcrete class T —

B one table per reference

14



raoar _ _ 1 mD_1_+:_ . __1
Natabases
[ Player
lName
/ V>\ ( v inn</tahlec
| Footballer «table»
lCIub £ Players
Name
[ Player \
Name
E
[ Footballer | [ Player
B an ObJeCt lCIub lName
m different : / \
[ Footballer 1 [ Cricketer
® one tab lCIub lBattingAverage
¢ one tab [f
[ Bowler
¢ one table perconcrete |BowlingAverage

B one table per reference

«table»
Footballers

Name

Club

«table»
Cricketers

\

Name
BattingAverage

«table»
Bowlers

Name
BattingAverage
BowlingAverage




Concrete ORM'’s and Frameworks

» hibernate, indirect

B general ORM for Java

B mapping of generated Java classes

» Connected Data Objects (CDO), direct

B dedicated EMF-framework
B special EObject implementation
B EStore-based

B Client/server architecture

15



= CDOClientl - tcp://localhost:2036/repol/MyCompany [1:1] - Eclipse SDK
File Edit Source Refactor Navigate Search Project Run CDO Editor Window Help

I HE  $-0-Q~ &~ i~ F 7 (&7 CoOClient! |
/n# CDO Sessions 2@\ o = E\ lyCompany - = 0 /Ea Container &3 = B\

39 Session tcp://localhost:2036/repol [1] a4 < Company ES-Computersysteme B3
5 Audit [17.92.2008 10:15:36] < Category MDA. Consulting ® BufferPool[4.096]

& *Transaction [1] 4 < (ategory O5Gi Development ® CDOSession[ClientTCP(
*/MyCompany ¢ Product CDO ® CDOAudit(3)

5 View [2] < Customer Eclipse.org @ CDOTransaction(l)

<> Order Detail 0.0

@ ClientTCPConnector(lo
@ Channel[0]

@ java.util.concurrent.Thn

@ TCPSelector

(o Connectors 33\ v =) /E Properties E@\O Introspector\' ’E

@ ClientTCPConnector{localhost:2.036] Property Value
- Channel[0] City '= Berlin

Name '= ES-Computersysteme
Street "= Eclipse Ave. 39

7% B Selected Object: Company ES-Computersysteme

16



Connected Data Objects (CDO)

Client adds/modifies CDOODbjects

Client transaction creates temporary IDs for new
objects and records change deltas

Commit() sends new packages, new revisions and
revision deltas to the server

Server passes data to the configured store

Store remaps temporary |IDs and persists the data
Server sends back ID mappings

Server notifies other sessions about invalidations
Client transaction applies ID mappings

17



Connected Data Objects (CDO)

// Open an embedded connection
IConnector connector = JVMUtil.getConnector (container, '"default'");,

// Open a session and register the model
CDOSession session = CDOUtil.openSession (connector, “repo", true);,
session.getPackageRegistry () .putEPackage (ModellPackage.eINSTANCE) ,

// Start a transaction and create a resource
CDOTransaction transaction = session.openTransaction() ;
Resource resource = transaction.createResource ("/my/big/resource") ;

// Work normally with the EMF resource
resource.getContents () .add (getInputModel ()) ;
transaction.commit () ;

// Cleanup
session.close() ;
connector.disconnect () ;

18



ORM - Disadvantages

> Object-relational Impedance Mismatch
> fast queries, but depend on SQL on mapped data

> slow traversal/navigation

19



EMF and Document/Column/Key-Value Databases

» Two strategies

> one entry per object
B object to database entry
B entry keys as IDs for references
B each object is serialized in a database-friendly format, e.g. JSON for MongoDB

B natural index for entry keys

B secondary indexes for other attributes

> fragmentation

B automated distribution of model object over many resources
B resources are serialized into database entries, URI as key
B natural index for URIs

B no secondary indexes

20



Disadvantages

> scalability issues with very large value-sets
> limited indices and query capabilities

> fast traversal/navigation

21



EMF and Graph-Databases

> index-free adjacency, constant execution time navigation from
ohe node to another, no index involved

» one-to-one mapping
B objects to nodes
B references to edges

B attributes as node attributes (supported by most graph
databases)

22



Disadvantages

» no indices besides the model itself (and proprietary
database query capabilities)

> Very fast traversal via index-free adjacency
> simple mapping

> in reality graph-databases do not actually allow constant
time navigation

23



Summary

» EMF models can be too large

> Solution mapping to other technological spaces

» Mappings for different database technologies exist

24



Model Comparison and Merging
EMF Compare



EMF Compare

» APl and Ul

> Allows you to compare two (or more) models

B generate matches
B generate differences

B compare differences similar to textual diff (e.g. in SVN, GIT
clients)

¢ based on model-elements not based on LOC

B merge models interactively

26






EMF Compare — Process

match engine |

match diff builder
model

[ merger } [ user interface }4
merged
model

28



Match Model

© match model

version 2
version 1 ¢

29



Generic Match Engine

XMI-ID GenericMatchEngine
e DUt (Matchontions OBTION TEWRE et I Baolsan FALSE): Metamodelo o
MatchModel match = MatchService.doContentMatch(left,right options);
..................... . TE—
Model lname
I content
ID-Attribute s
relations

options.put(MatchOptions OPTION IGNORE ID, Boolean,FALSE);
MatchModel match = MatchService.doContentMatch(left,right options);

30



Custom Match Engines

{] Contact
£] AddressBook £ People
0..') contacts
0..'] peoples & name : EString ?
l [1..1) book [ ‘
|-} Electronic (] Office
{] BookVersion
c emall : EString 3 company : EString
¢ d:EBnt=0 3 webstte : EString
public class AddressBookMatcher extends GenericMatchEngine {
/lt
* {@inheritDoc)
o §
@Override
protected boolean isSimilar(EObject objl, EObject obj2) throws FactoryException {
/-
* If we've got a People, only check the name similarity.
i A

if (objl instanceof People || obj2 instanceof People)

return nameDistance(objl, obj2) > 0.8;

/t
* Contacts are similar if : the associated people is similar + their content is quite the same.
./

if (objl instanceof Contact && obj2 instanceof Contact) {

EObject objlParent = objl.eContainer();

EObject obj2Parent = obj2.eContainer();

if (objlParent instanceof People & obj2Parent instanceof People)

return isSimilar(objlParent, obj2Parent) && contentDistance(objl, obj2) > 0.5;

}

/t
* If it's something we don't know about, then use the generic behavior.
'/

return super.isSimilar(objl, obj2);

}

31



Merging Ul

v Y 1 change(s) in model
v “» 1 change(s) in Library

# Book has been added

% Removed dependency on resource authors.extlibrary

4 Visualisation des différences structurelles Bl [& B <& | & ¢

ProjectOnGit/authors.extlibrary | ProjectOnGit/My.extlibrary
v & platform:/resource/ProjectOnCvs v & platform:/resource/ProjectOnGit/
v < Library L™ # Library

32



Eclipse Client Platform (ECP)
GUI applications based on EMF data



Eclipse Client Platform (ECP)

» One-click build GUI application based on EMF-data models
> generates editors and forms based on a meta-model
> Suited for simple data entry and manipulation applications

» Works well with persistence backends

34



¢

Only one Click to an EMF Application

EMF Client Platform

Jonas Helming, Maximilian Koegel
{helming, koegel}@in.tum.de

Chair for Applied Software Engineering
Institut fur Informatik
Technische Universitat Munchen

L3



EMF Store

Version control for models based on CDO,
ECP, and EMF Compare

36



Version Control

et
NS

= NS - A .
== Ty Cite i 18 1408 N I

Bk, Sty
T My

37



Version Control

e espaANy
” o
-

ST IR &

38




Version Control

39



Version Control

40



Version Control

41



EMF Store

» Client/Server architecture

» Server

B Versioning and persistence (CDO)

B Access control
» Client

m Offline operation

B Commit/update models

B Interactive model merging (EMF Compare)
m Views

¢ Repository browser

¢ History Browser

42



® Eclipse File Edit Navigate Search Project Run Window Help 8 ™ < (Finishing Charge Tue 15:00 s o)
SNOo Unicase - Eclipse - /Users/Shared /workspaces/unicase '
X N i ?
- . & - ) - - -_ *‘ Unicase '.." De:ug -'-0 ,:3\‘:;
«& Unicase Navigator 3 —'|m =
EmfStore Browser 23 Task View O Error Log (O Status View (O Status View (O Status View (O Status View — |

r

[l

unicase Developer Serv

117M of 284M



Model Versioning Problems

» No generic match, merge strategy for models, like for text

» Custom merge Ul required for models with graphical
hotation

» Models with textual notation can be managed with
traditional text/code based technologies

44



Course Summary

45



Course Summary

» Classification of computer languages

» Language aspects (notation, structure, semantics)

» Language descriptions, tools, instances

» Object-oriented meta-modeling, 4-layer, multi-level-metamodeling,
problems with multi-level-metamodeling

> Ecore, differences to UML class diagrams, Java-mapping

» Serialization, notification, MVC
» Validation, OCL

>

>

‘extual notations, strategies, grammar-to-metamodel-mapping, scoping

ypes of semantics/descriptions, interpreter vs. code-generation, code-

generation vs. model-to-model, elaboration

46



