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prolog
(1 VL)

Introduction: languages and their aspects, modeling vs. 
programming, meta-modeling and the 4 layer model

0.
(2 VL)

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description, 
features, p2-repositories, RCPs

1.
(2 VL)

Structure: Ecore, genmodel, working with generated code, 
constraints with Java and OCL, XML/XMI

2.
(3 VL)

Notation: Customizing the tree-editor, textural with XText, 
graphical with GEF and GMF

3.
(4 VL)

Semantics: interpreters with Java, code-generation with Java and 
XTend, model-transformations with Java and ATL

epilog
(2 VL)

Tools: persisting large models, model versioning and 
comparison, model evolution and co-adaption, modular 
languages with XBase, Meta Programming System (MPS)

Agenda
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Agenda

▶ Persistence of large models (e.g. CDO)

▶ Mode comparison (EMF Compare)

▶ Eclipse Client Platform (ECP)

▶ Version control for models (EMF Store)

▶ Course summary
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Persistence of Large Models
EMF and Databases
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Large?

▶ the size of typical software models is small enough

▶ versions

▶ industry scale model-based software projects

■ e.g. factory lines in automotive industry, more variants than sold 
cars

▶ reverse engineering of large code bases

▶ non software-model EMF-models

■ sensor data (usually XML and column/row databases)

■ geo-spacial models (usually XML or relational-databases + geo-
spacial indices)
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Large?

▶ How to measure model size?

■ number of objects: not all objects have equal size

■ memory: serialized? heap vs. XMI/XML vs. binary? Compression?

■ different heap representations in EMF

◆ each feature as a field

◆ all features in a dynamic array

■ syntax vs. syntax

◆ representations of the same model in different syntaxes can yield different 
memory requirements

◆ e.g. serialized AST’s ~ 400*code

■ syntax vs. semantic

◆ space needed to represent model in a certain syntax != minimum space 
needed to express its semantic
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too Large?

▶ Processing of models requires more main memory than 
available

▶ Processing of models requires more time than available/
sensible

▶ Depends on the actual processing task

■ queries

■ editing

■ execution/transformation
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Why does EMF not scale?

▶ Most tools are build under the assumption that models are 
relatively small

▶ Models have to be loaded as a whole or have to be spread 
over multiple resources manually

▶ EMF’s resource unload, does not really unload the 
contained objects

■ they are logically removed from the resource-set

■ references between objects are not broken, the objects cannot be 
collected by JVM’s GC
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Technological Spaces

▶ Object-oriented meta-models, e.g. EMF, MOF

▶ formal languages, e.g. context-free grammars

▶ XML

▶ databases

■ relational databases

■ NoSQL databases

◆ graph databases

◆ document, column, key-value databases
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Technological Spaces

▶ Different technological spaces focus on different things

▶ OO MM: presenting human readable and editable software 
models

▶ XML: serialization and interchange of data

▶ Databases: scalability, safe storage, and optimized queries
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Solution – Mapping to other Technological Spaces

▶ Textual representations: we already mapped EMF to a 
different technological space: formal languages, i.e. context-
free grammars

▶ Mapping to databases

■ different mappings for different database technologies

■ different database technologies have different properties, correct 
choice depends on use-case

■ mappings can be more or less natural
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Databases – Relational vs. NoSQL

▶ Atomicity, Consistency, Isolation, Durability (ACID)

■ reliable database-wide transactions

▶ Basically Available, Soft state, Eventual consistent (BASE)

■ distributability and availability is more important than immediate 
consistency

▶ Consistency, Availability, Partition tolerance (CAP)-theorem, 
a.k.a Brewer’s theorem

■ “only two of three possible”

■ ACID: not partition tolerant

■ BASE: not consistent
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EMF and Relational Databases

▶ Object-oriented data-models vs. relations/tables

▶ Object Relational Mappings (ORM)

■ each class gets its own table

■ each attribute its own column

■ an object is represented as row in the corresponding table

■ different solutions for inheritance hierarchies

◆ one table per hierarchy

◆ one table per sub class

◆ one table per concrete class

■ one table per reference
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Concrete ORM’s and Frameworks

▶ hibernate, indirect

■ general ORM for Java

■ mapping of generated Java classes

▶ Connected Data Objects (CDO), direct

■ dedicated EMF-framework

■ special EObject implementation

■ EStore-based

■ Client/server architecture
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Connected Data Objects (CDO)
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Connected Data Objects (CDO)
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Client 

Server 

Client 

•  Client adds/modifies CDOObjects 
•  Client transaction creates temporary IDs for new 

objects and records change deltas 
•  Commit() sends new packages, new revisions and 

revision deltas to the server 
•  Server passes data to the configured store 
•  Store remaps temporary IDs and persists the data 
•  Server sends back ID mappings 
•  Server notifies other sessions about invalidations 
•  Client transaction applies ID mappings 



Connected Data Objects (CDO)
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// Open an embedded connection
IConnector connector = JVMUtil.getConnector(container, "default");

// Open a session and register the model
CDOSession session = CDOUtil.openSession(connector, “repo", true);
session.getPackageRegistry().putEPackage(Model1Package.eINSTANCE);

// Start a transaction and create a resource
CDOTransaction transaction = session.openTransaction();
Resource resource = transaction.createResource("/my/big/resource");

// Work normally with the EMF resource
resource.getContents().add(getInputModel());
transaction.commit();

// Cleanup
session.close();
connector.disconnect();



ORM – Disadvantages

▶ Object-relational Impedance Mismatch

▶ fast queries, but depend on SQL on mapped data

▶ slow traversal/navigation
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EMF and Document/Column/Key-Value Databases

▶ Two strategies

▶ one entry per object

■ object to database entry

■ entry keys as IDs for references

■ each object is serialized in a database-friendly format, e.g. JSON for MongoDB

■ natural index for entry keys

■ secondary indexes for other attributes

▶ fragmentation

■ automated distribution of model object over many resources

■ resources are serialized into database entries, URI as key

■ natural index for URIs

■ no secondary indexes
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Disadvantages

▶ scalability issues with very large value-sets

▶ limited indices and query capabilities

▶ fast traversal/navigation
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EMF and Graph-Databases

▶ index-free adjacency, constant execution time navigation from 
one node to another, no index involved

▶ one-to-one mapping

■ objects to nodes

■ references to edges

■ attributes as node attributes (supported by most graph 
databases)
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Disadvantages

▶ no indices besides the model itself (and proprietary 
database query capabilities)

▶ Very fast traversal via index-free adjacency

▶ simple mapping

▶ in reality graph-databases do not actually allow constant 
time navigation
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Summary

▶ EMF models can be too large

▶ Solution mapping to other technological spaces

▶ Mappings for different database technologies exist
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Model Comparison and Merging
EMF Compare
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EMF Compare

▶ API and UI

▶ Allows you to compare two (or more) models

■ generate matches

■ generate differences

■ compare differences similar to textual diff (e.g. in SVN, GIT 
clients)

◆ based on model-elements not based on LOC

■ merge models interactively 
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EMF Compare – Process
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Version 1

Version 2

match
model

diff
modelmatch engine diff builder

user interfacemerger

merged
model



Match Model
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Generic Match Engine
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Custom Match Engines
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Merging UI
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Eclipse Client Platform (ECP)
GUI applications based on EMF data
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Eclipse Client Platform (ECP)

▶ One-click build GUI application based on EMF-data models

▶ generates editors and forms based on a meta-model

▶ Suited for simple data entry and manipulation applications

▶ Works well with persistence backends
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EMF Store
Version control for models based on CDO, 
ECP, and EMF Compare
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Version Control
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Version Control
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Version Control

39



Version Control
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Version Control
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EMF Store

▶ Client/Server architecture

▶ Server

■ Versioning and persistence (CDO)

■ Access control

▶ Client

■ Offline operation

■ Commit/update models

■ Interactive model merging (EMF Compare)

■ Views

◆ Repository browser

◆ History Browser
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Model Versioning Problems

▶ No generic match, merge strategy for models, like for text

▶ Custom merge UI required for models with graphical 
notation

▶ Models with textual notation can be managed with 
traditional text/code based technologies
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Course Summary
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Course Summary

▶ Classification of computer languages

▶ Language aspects (notation, structure, semantics)

▶ Language descriptions, tools, instances

▶ Object-oriented meta-modeling, 4-layer, multi-level-metamodeling, 
problems with multi-level-metamodeling

▶ Ecore, differences to UML class diagrams, Java-mapping

▶ Serialization, notification, MVC

▶ Validation, OCL

▶ Textual notations, strategies, grammar-to-metamodel-mapping, scoping

▶ Types of semantics/descriptions, interpreter vs. code-generation, code-
generation vs. model-to-model, elaboration
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