Versatile Optimization of UDF-heavy Data Flows with Sofa

Astrid Rheinlander?

Arvid Heise?
IHumboldt-Universitat zu Berlin, Germany

Martin Beckmann!

Thomas Stoltmann'
2Hasso Plattner Institut Potsdam, Germany

Anja Kunkel
Ulf Leser!

Yrheinlae, beckmann, akunkel, stoltman, leser}@informatik.hu-berlin.de
2arvid.heise@hpi.uni-potsdam.de

ABSTRACT

Currently, we witness an increased interest in large-scale
analytical data flows on non-relational data. The predom-
inant building blocks of such data flows are user-defined
functions (UDFs), a fact that is not well taken into ac-
count for data flow language design and optimization in
current systems. In this demonstration, we present Me-
teor, a declarative data flow language, and Sofa, a logical
optimizer for UDF-heavy data flows, which are both part
of the Stratosphere system. Meteor queries seamlessly com-
bine self-descriptive, domain-specific operators with stan-
dard relational operators. Such queries are optimized by
Sofa, building on a concise set of UDF annotations and a
small set of rewrite rules to enable semantically equivalent
plan rewriting of UDF-heavy data flows. A salient feature
of Meteor and Sofa is extensibility: User-defined operators
and their properties are arranged into a subsumption hierar-
chy, which considerably eases integration and optimization
of new operators. In this demonstration, we will let users
pose arbitrary Meteor queries and graphically showcase ver-
satility and extensibility of Sofa during query optimization.

1. INTRODUCTION

While in the past analytical tasks commonly only involved
relational data, many applications today build upon data
flows processing large data sets containing both structured
and unstructured data, such as web data, text, scientific
data, etc. [4]. Still, most Big Data systems focus on the
structured case especially when it comes to data flow opti-
mization. Domain-specific functionality is implemented as
user-defined functions (UDFs) with the UDF semantics hid-
den from the query optimizer [3, 8, 13]. There are sys-
tems that optimize queries within one domain (e.g., XLog
for text [11]), but there the domain-specific optimizer logic
is hard-wired into the system making it impossible to mix-
in predicates from another domain, such as a web data ex-
traction followed by natural language processing and data
cleansing [9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

SIGMOD’14, June 22-27, 2014, Salt Lake City, UT, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM ACM 978-1-4503-2376-5/14/06:.$15.00.
http://dx.doi.org/10.1145/2588555.2594517.

Recently, we introduced Meteor, a declarative data flow
language, and Sopremo, an extensible and semantically rich
operator model for user-defined operators [5]. Optimiza-
tion of Sopremo plans is carried out by Sofa, a logical op-
timizer for UDF-heavy data flows that seamlessly combines
relational and user-defined operators from different domains
into a single optimization framework [10]. Sofa builds on
a concise set of properties for automatic and manual UDF
annotation, which are evaluated by a cost-based optimizer
using a small set of rewrite templates to infer semantically
equivalent data flows.

In this demonstration, we illustrate the flexibility of Me-
teor and Sofa by showing diverse queries from different appli-
cation domains (e.g., information extraction, web document
analysis, data cleansing). Users are invited to play with Me-
teor’s mechanisms for query refinement, intermixing opera-
tors from different packages, and its extensibility with new
operators to support complex analytical tasks. They can
step-by-step follow a graphical representation of the Sofa
optimizer at work, including operator dependency analysis,
inference of rewrites from operator annotations, cost-based
optimization, and plan selection. Visitors will also have the
option to interfere with query optimization by adding or re-
moving operator annotations and changing cost parameters
to study the impact on the resulting plans.

Meteor and Sofa are part of Stratosphere, a system for
data analytics at large scale. Some facets of Stratosphere,
e.g., the parallel execution model [1] or physical optimiza-
tion [7] have been demonstrated before. However, this demon-
stration is the first showing Stratosphere’s abilities in opti-
mizing cross-domain UDF-heavy data analytics tasks, and
also the first embracing the entire stack from Meteor down
to the parallel execution engine.

2. BACKGROUND

In this section, we briefly introduce the Meteor query lan-
guage, the algebraic layer Sopremo, and the Sofa optimizer.
Figure 1 displays the overall system architecture of Strato-
sphere. Details can be found in [2, 5, 10].

2.1 The Meteor query language

Meteor is a declarative and extensible data flow language
providing the user interface to Stratosphere. Meteor treats
domain-specific functions as first-class operators, allowing
users to combine these operators with a set of highly opti-
mized relational operators without switching between differ-
ent programming environments and paradigms. A main ad-
vantage of this approach is that the operator’s semantics can

- ? T = read from file.;
S & [P = annotate $T using..; "
L o |6 = annotate ST using.: omain packages
L 5 R = merge %D, %G on.;
S 3 @
o]

o @ (o]

—
g’»‘ﬁ. 3 A |
=
o™

=
§ 3 !
£ E .)
8 § " Statistics ~

Nephele:

s < Scheduling &
2.8 execution
L8
g8
S £
o = =
&8

Figure 1: Architecture of Stratosphere.

be accessed at compile time and can be used for data flow op-
timization (see below). Operator packages are self-contained
libraries of the operator implementations, their syntax, and
semantic annotations. More than 40 such domain-specific
operators from the areas of information extraction (IE), data
cleansing (DC), natural language processing (NLP), and data
integration (DI) are already available, and more covering
web data extraction and machine learning are shortly before
release. During demonstration, we show different Meteor
queries defining complex data flows build from operators
from all available packages. Visitors are invited to formu-
late own Meteor queries and witness their queries undergo-
ing the complete process of query translation, optimization,
and parallel execution.

2.2 The Sofa optimizer

A major issue in optimizing UDF-heavy data flows is the
diversity of the contained UDF's. Defining rewrite rules that
respect the individual operator semantics for each possible
combination of operators is merely impossible in UDF-rich
systems such as Stratosphere. A particular problem is exten-
sibility, as every new operator in principle needs to be ana-
lyzed with respect to all existing operators to identify rewrite
options. Sofa solves this problem by means of Presto, an ex-
tensible taxonomy of operators, properties, and rewrite tem-
plates, and by reasoning along subsumption relationships
encoded in Presto.

The principal ingredients of Presto are two taxonomies de-
scribing generalization-specialization relationships (is4) be-
tween operators and properties. Leaves in the operator tax-
onomy describe concrete implementations of the abstract
parent operator, like different algorithms for entity extrac-
tion. Presto uses three additional relationships (hasProp-
erty, hasPart, and hasPrerequisite) to model relations be-
tween operators and properties. Properties relevant for opti-
mization are, for example, algebraic properties such as com-
mutativity or associativity, the parallelization function (e.g.,
map, reduce), or the read/write behavior at attribute level.
Figure 2 displays a snippet of Presto showing annotations
for a selection operator (denoted as fltr) and different IE op-
erators (denoted with sentence, token, entity). Rewrite tem-
plates are defined using Presto relationships, operator prop-
erties, and abstract operators as building blocks. Reasoning

I
| 1=0 || field updates |[s_in = s_out| |commutative| no field updates

schema handnngl |0par.ltnr| |Un rntinJ |ltuh t]-pel lnpiata hahnwinurl |llgzhzain

Property|

Figure 2: Presto annotations for selection (fltr) and
IE operators (entity,anntt,sentence,token). Boxes de-
pict operators (blue) and properties (black). Grey
edges show isA relationships between operators and
properties, respectively, pink edges display hasProp-
erty relationships between operators and properties,
and green edges show hasPrerequisite relationships
between operators.

Relations: == hasProperty ==isA == hasPrerequisite

along Presto relationships allows Sofa to automatically in-
stantiate the templates with concrete operators and enables
discovery of individual rewrite options for concrete operator
combinations on-the-fly. During demonstration, visitors can
interactively navigate through Presto to explore relation-
ships between operators and operator properties, and they
can observe the effect on query optimization when Presto is
changed.

Using Presto, Sofa performs three steps to enumerate al-
ternative plans for a given data flow D: First, D is analyzed
for precedence constraints between operators. This analy-
sis yields a precedence graph used in the plan enumeration
phase to secondly enumerate, and thirdly to perform cost-
based ranking of valid plan alternatives. Finally, the best
plan is selected, translated, and physically optimized for par-
allel execution by Stratosphere’s execution engine. During
demonstration, we show that Sofa is capable of intermixing
predicates from different domains, of rewriting DAG-shaped
data flows, and of finding semantically equivalent yet more
efficient plans not found with previous work [6, 8, 12].

3. DEMONSTRATION SETUP

Our demonstration focuses on the Meteor language and
the optimization process for UDF-heavy data flows using
Presto. Visitors will be offered a selection of Meteor queries
from different application domains such as biomedical IE,
statistical NLP, and DI on Open Government Data to demon-
strate the flexibility and adaptability of Meteor to various
analytical tasks. Visitors are also invited to formulate their
own queries. They will be able to experience Meteor’s and
Sofa’s extensibility by exemplarily adding a novel web analy-
tics package into the system during demonstration. We will
also demonstrate how such new operators are seamlessly in-
tegrated into the optimization process using subsumption
relationships from Presto.

Sofa optimizes Meteor queries and compiles the optimized
plans to physical execution plans, which are executed in par-
allel using Stratosphere. We show in detail how the prece-
dence analysis component derives information for optimiza-
tion from analyzing operator properties, how plan alterna-
tives are enumerated based on precedence analysis and cost
estimates, and show the resulting plans ranked by estimated

(a) Meteor query interface

SoFa WERFRONTEND - OPTIMIZER

GE® =

il
o
Bi
I
|
|
i
i
i

(c) Sofa plan enumeration interface

Properties of POS' (POS) Properties of

(b) Presto subgraphs for two example operators

Recent Jobs— PACT Job at Wed Dec 04 15:10:05 CET 2013 &

PACT Job at!

| acriobat

Execution Graph | Allocated Instances

= cpu Network

rasi] g R

(d) Stratosphere’s parallel execution monitor

Figure 3: Screenshots of user interfaces shown during demonstration.

costs. In the following, we present the setup of our demon-
stration together with interaction opportunities for the au-
dience.

3.1 Versatile data analytics with Meteor

Visitors of our demonstration experience the flexibility
and ease of use of Meteor by means of different tasks in
large-scale data analytics in and across different domains.

Domain-specific analyses. Starting with an IE query
recognizing person names from Wikipedia articles, the au-
dience can participate in evolving this query, for example to
extract relationships between persons, or to change the sub-
ject of recognized entities and relationships, or even to per-
form complex extraction tasks such as determining the set
of companies mentioned in Wikipedia, which went bankrupt
in a certain time frame. They may switch the application
domain towards biomedical texts by only slightly modifying
the query. Visitors can also test the ability of our system
to define tasks in the area of statistical NLP. Starting with
a simple word count query on literature fiction, visitors can
expand this query with a few NLP operators for stopword
removal or stemming and further downstream operators to
detect important topics or language motifs.

Cross-domain data analytics. We demonstrate a com-
plex Meteor query analyzing a set of news websites for men-
tioned persons, locations, and companies. QOur data set
stems from a news crawl containing many duplicate arti-
cles, as different news articles are often copied from reports
prepared by news agencies. For duplicate removal we ap-
ply different DC operators, which are followed by a series
of IE and NLP operators performing linguistic analysis, en-
tity and relation extraction. After each extraction operator,
relational operators for filtering out texts containing no rel-
evant mentions of entities are applied.

Figure 3(a) displays the Meteor user interface. Queries

are typed into the text field on the upper left side, which is
shown in greater detail in Figure 4(a) with a Meteor query
for task-parallel annotation of person and company names
in texts. After submitting the query, the translated yet un-
optimized Sopremo data flow is displayed in the upper right
part of the client (see Figure 3(a)). The bottom of the client
shows a preview of the data to be analyzed (left side) and,
after the query has successfully finished, a preview of the
result set (right side). Next to viewing query translation,
optimization, and execution of various queries, visitors will
have the opportunity to write and submit own queries. Dur-
ing compilation, they get direct feedback from the system
on lexical, syntactical, and semantically soundness of their
queries.

3.2 Query Optimization and Execution

Sofa is designed to optimize complex, UDF-heavy data
flows such as those introduced above. Visitors can expe-
rience the entire optimization process step-by-step and vi-
sually explore each phase of optimization carried out with
Sofa.

Presto taxonomy and precedence analysis. After
submission, a query is translated into an initial algebraic
data flow as shown in the upper right of Figure 3(a). Boxes
depict operators, data sources, and sinks, edges indicate the
flow of the data. By clicking on an operator, relevant prop-
erties and relationships modelled in Presto can be inspected
(see Figure 3(b)). During demonstration, the demonstra-
tor explains available Presto annotations and relationships
and their implications that enable or prevent operator re-
orderings. Visitors can interfere with query optimization by
removing or adding facts to Presto and witnessing how this
reduces or increases the set of possible plan alternatives for
their queries.

Cost-based plan enumeration. Figure 3(c) displays

using ie;

MeteorExamples/data/wikipedia_small.json';
stexts = annotate sentences $texts;

$persons = annotate entities $texts type "PERSON";

MeteorExamples/output/result perscomp.json';

(a) Meteor query for task-parallel person and
company annotation

Plan Alternatives: E

i - 6

E = - =EE == - =

=~ = =1 = = =
B -, -

- - == m - =

B = = e E = = E

= = = Cost estimates for enumerated plans.

3 = 8

E = - s

= =

4. ==} 9

(b) Enumerated plan space and pop-up window
showing cost estimates for enumerated plans

Figure 4: Zoom into demo interfaces. Left: Meteor interface showing a query for task-parallel annotation of
persons and companies. Right: Sofa interface showing plan alternatives ordered by estimated costs.

an overview of the plan enumeration visualization. The up-
per part in this window displays the best ranked plan. Plan
alternatives are visualized in the bottom right part of the op-
timizer interface ordered by costs (see Figure 4(b)). Visitors
can inspect any plan alternative together with its estimated
costs select it for execution. The precedence graph, which
results from precedence analysis in the previous step, is dis-
played in the bottom left part of the client.

Parallel execution. The selected logical data flow is
translated into a Pact program, physically optimized, and
submitted to the Stratosphere execution engine, which dis-
tributes and executes the given data flow in parallel. The
interface shown in Figure 3(d) visualizes the execution of
the data flow program. It features the parallel execution
graph in the top part of the interface together with the color-
indicated status of tasks (waiting, running, finished, failed),
and information on resource consumption at the bottom of
the interface.

3.3 Extensibility

A key feature of Meteor and Sofa is their extensible de-
sign. During demonstration, we show and explain how new
operators can be added to the system by exemplarily adding
a new operator to cope with web data (e.g., markup removal,
body extraction, table extraction, etc.). Visitors can then
use these operators in their queries, for example, to perform
entity recognition from a set of news websites. Visitors will
experience that including new operators into the optimiza-
tion process requires only to specify a single subsumption re-
lationship in Presto. They can learn how iteratively adding
more operator annotations in Presto increases the number
of rewrite options for this new operator.

4. CONCLUSION

We demonstrate the Meteor query language together with
the optimization of MapReduce-style data flows by means of
the extensible logical optimizer Sofa. In our demonstration,
we present a query interface and job client visualizing all
steps in the end-to-end process of query formulation, com-
pilation, optimization, and execution, all providing diverse
opportunities for the audience to interact with the system,
i.e., by writing own queries, by interfering with the opti-
mization process, and by learning about the integration of
novel operators into the Meteor query language and the op-
timization process.

5. ACKNOWLEDGMENTS

This research was funded by the German Research Foun-
dation under grant FOR 1036. We thank Felix Naumann,
Fabian Hueske, and the Stratosphere team for valuable dis-
cussion and support.

6. REFERENCES
[1] A. Alexandrov et al. Massively Parallel Data Analysis

with PACTs on Nephele. PVLDB, 3(2):1625-1628,
2010.

[2] D. Battré et al. Nephele/PACTs: A Programming
Model and Execution Framework for Web-Scale
Analytical Processing. In SOCC 2010, pages 119-130.

[3] K. S. Beyer et al. JAQL: A Scripting Language for
Large Scale Semistructured Data Analysis. PVLDB
2011, 4(12):1272-1283.

[4] A. Cuzzocrea et al. Analytics over Large-Scale
Multidimensional Data: The Big Data Revolution! In
DOLAP 2011, pages 101-104.

[5] A. Heise et al. Meteor/Sopremo: An Extensible Query
Language and Operator Model. In BigData 2012,
Istanbul, Turkey.

[6] F. Hueske et al. Opening the Black Boxes in Data
Flow Optimization. PVLDB 2012, 5(11):1256-1267.

[7] F. Hueske et al. Peeking into the Optimization of
Data Flow Programs with MapReduce-style UDFs. In
ICDE 2013, pages 1292-1295, 2013.

[8] C. Olston et al. Pig Latin: A Not-So-Foreign
Language for Data Processing. In SIGMOD 2008,
pages 1099-1110.

[9] E. Rahm and H. H. Do. Data Cleaning: Problems and
Current Approaches. IEEE Data Engeering Bulletin,
23(4):3-13, 2000.

[10] A. Rheinlénder et al. SOFA: An Extensible Logical
Optimizer for UDF-heavy Dataflows. CoRR,
abs/1311.6335, 2013.

[11] W. Shen et al. Declarative Information Extraction
Using Datalog with Embedded Extraction Predicates.
In VLDB 2007, pages 1033-1044.

[12] A. Simitsis, P. Vassiliadis, and T. Sellis. Optimizing
ETL Processes in Data Warehouses. In ICDE 2005,
pages 564-575.

[13] A. Thusoo et al. Hive: A Warehousing Solution over a
Map-Reduce Framework. PVLDB 2009,
2(2):1626-1629.

