
Implementing Linguistic Query Languages
Using LoToS

Lukas C. Faulstich1, und Ulf Leser1

1{faulstic,leser}@informatik.hu-berlin.de
Institut für Informatik, Humboldt-Universität zu Berlin

18th November 2005

Abstract

A linguistic database is a collection of texts where sentences and words are an-
notated with linguistic information, such as part of speech, morphology, and syn-
tactic sentence structure. While early linguistic databases focused on word an-
notations, and later also on parse-trees of sentences (so-called treebanks), the re-
cent years have seen a growing interest in richly annotated corpora of historic
texts that include not only syntactic annotations but further complex annotations,
such as alignments between related text layers. This raises the issue of efficiently
querying such complex structured linguistic databases.

We present a generic approach for defining domain-specific query languages
that we use in developing a query language for richly annotated historic corpora.
In our approach, a query language is defined as a set of predicates. A query in form
of a logic rule is translated by our LoToS query compiler into a single, possibly
deeply nested SQL query.

In contrast to previous approaches, the annotation structures that can be queried
need not be trees but can also form DAGs, or, for a restricted class of recursive
queries, arbitrary graphs. To this end, LoToS offers an operator for computing
transitive closures using the recursive capabilities of modern database systems.
We believe that this is the first approach to use modern SQL capabilities for eval-
uating recursive predicates in logic-based query languages.

Chapter 1

Introduction

The project DDD1 is a large effort of various research groups in the field of lin-
guistics, history, and literature for creating a diachronic corpus of German, i.e.,
a collection of German texts ranging from the 8th century to modern German
carefully selected to cater linguistic research interests. Most texts in the DDD
corpus will be richly annotated, i.e., words will be annotated with morphological,
lexical, and grammatical information; sentences will be annotated with their syn-
tactic structure; and texts will be annotated with respect to the structure of their
content as well as with bibliographic and other meta-data. While much of this an-
notation is flat, such as a part-of-speech value attached to a word, a considerable
amount of the annotation is highly structured. In particular, the syntactic struc-
ture of sentences is described by using complex data structures. Usually, these
data structures are restricted to trees. An example of a syntax tree from the Penn
Treebank2 is given in Fig. 1.

However, in many cases linguists are interested in annotating more complex
relationships between the words and grammatical substructures of a sentence.
Such relationships cannot be modelled as trees any more, because they may con-
tain cyclic dependencies, especially in the presence of ambiguous interpretations
of a sentence. For instance, Fig. 2 depicts the structure of a German sentence
together with information about the dependencies between certain grammatical
substructures and the subject of the sentence. The resulting graph of all relation-
ships may be cyclic since these dependencies may refer to arbitrary subtrees [1].

Non-tree syntax representations in linguistic databases have so far been mostly
ignored, with the exception of the TigerSearch Engine [1]. In TigerSearch, such
structures are stored as trees, while non-tree edges are managed by a special mech-
anism and require a special syntax in queries.

1www.deutschdiachrondigital.de
2See http://www.cis.upenn.edu/ treebank/home.html

1

www.deutschdiachrondigital.de

S

SBAR-NOM-SBJ

WHNP-97

WP

What

S

NP-SBJ

PRP

she

VP

VBD

did

NP

-NONE-

T-97

VP

VBD

was

PP-PRD

IN

like

S-NOM

NP-SBJ

-NONE-

*

VP

VBG

taking

NP

DT

the

NN

law

PP-CLR

IN

into

NP

PP$

your

JJ

own

NNS

hands

.

.

Figure 1.1: Syntactic structure of the sentence “What she did was like taking the
law into her own hand” (from [1], p.6).

Er

PPER

3.Sg.Masc.Nom

kauft

VVFIN

3.Sg.Pres.Ind

und

KON

−−

verkauft

VVFIN

3.Sg.Pres.Ind

Äpfel

NN

Masc.Akk.Pl

und

KON

−−

Birnen

NN

Fem.Akk.Pl

.

$.

−−

SB HD CJ CD CJ

HD

CNP

OA

S

CJ CD

S

CJ

502

500

0 1 2 3 4 5 6 7

500 501

502

503

CS

SB

OA

Figure 1.2: Structure of the sentence “Er kauft und verkauft Äpfel und Birnen.”,
meaning “He buys and sells apples and pears.” (from [1], p.9).

Quoniam quidem multi conati sunt ordinare narrationem ...

Bithiu uuanta manage zilotun ordinon saga ...

directly−precedes directly−precedes directly−precedes

translates−to translates−to translates−to

directly−precedes directly−precedes

translates−totranslates−to

Figure 1.3: Alignment of corresponding phrases in a bilingual Latin / Old High
German text (Tatian), represented as a graph over text spans.

2

In the DDD project, we are developing methods to store and manage large col-
lections of richly annotated historic texts in a relational database [2]. The project
is faced with non-tree shaped annotation graphs and multiple annotation hierar-
chies with conflicting structure that cannot be represented naturally in XML [3].
For instance, the logical organisation of a text in sections, paragraphs, sentences,
and words often conflicts with the structure of its physical source (typically a
book) in pages, lines, and whitespace-separated groups of characters (sentences
may cross several lines, logical words may be hyphenated etc.). Moreover, the
research interests of historical linguists require texts to be represented as sev-
eral parallel text layers (e.g., a so-called diplomatic version close to the physical
source, a more readable normalised version, a word-by-word translation, alterna-
tive versions from different text witnesses etc.) which need to be carefully aligned
with each other. Alignments are represented as graphs over text spans (i.e., sub-
strings of text layers), see Fig. 3.Together with spatial relationships between the
spans of a text layer (precedence, inclusion, intersection etc.) and different anno-
tation layers on top of these text layers, this complex representation poses further
challenging requirements to the query language.

For these reasons, we believe that using XML and related query languages
such as XPath or XQuery is not the best choice for modelling and querying the
DDD corpus. Instead, we develop a logic-based query language whose queries
are translated into SQL commands executed by a commercial relational database
management system.

In this paper, we present a generic framework for developing a query language
for a given application domain (here linguistics) with capabilities to query cyclic
structures. In our approach, a query language consists of a set of logic predicates.
For each predicate, one or more templates are defined in advance by the language
designer. Each template of a predicate specifies SQL expressions for computing
values for the output parameters of this predicate and SQL conditions on its input
parameters. Our approach enables database designers or even domain experts with
some SQL expertise to design domain-specific query languages.

Given a query as a logical combination of predicates, a query translation algo-
rithm combines the different fragments of the predicates into a single SQL com-
mand that is executed by a relational DBMS, thus computing the answer to the
query. There are two main differences to previous approaches. First, each query
is translated into a single SQL command, thus leveraging the query optimization
capabilities of commercial database management systems. Second, queries may
contain a certain form of recursion, and are nevertheless translated into a single
query. To translate such queries, we have developed the LoToS (Logic To SQL)
query compiler that leverages the support for recursive queries now available in
commercial database systems.

3

1.1 Running Example
In [2] we have presented predicates for a linguistic query language. Since the
query compiler presented here is generic and the complexity of an application
domain is encapsulated in the domain-specific set of predicates, we do not en-
ter further the intricate domain of richly annotated historic corpora. (However,
some examples from [2] are shown in the Appendix, together with the transla-
tions produced by LoToS.) Instead we use uninterpreted directed labelled graphs
as a running example. The underlying relational schema consists of the tables
vertex(id,label) and edge(source,label, target) where
edge.source and edge.target reference vertex.id as foreign keys.

This schema is reflected by the predicates vertex() and edge(). Their exten-
sions are defined by the corresponding tables:

vertex(V,L) ≡ 〈V,L〉 ∈ vertex
edge(S,L,T) ≡ 〈S,L,T 〉 ∈ edge

We use horn clauses to denote queries. For instance, the query

q(V,L)← vertex(V,L)

retrieves all vertices and their labels. It can be expressed in SQL as:

SELECT id, label
FROM vertex

The challenge that we meet in this paper is how to translate nontrivial queries
consisting of several predicate calls with shared variables under binding con-
straints imposed by the predicate definitions into closed SQL queries.

1.2 Structure of the Paper
In the next section, we describe the query translation algorithm without recursive
predicates, which are introduced in Section 3. Section 4 discusses related work
and Section 5 concludes the paper.

4

Chapter 2

The Compilation Algorithm

Before we present the compilation algorithm, we motivate and formulate some
requirements to be met by the query compiler.

2.1 Requirements

2.1.1 Binding-dependent translation.
The translation of a parameter call in a query depends on which of its parameters
are bound. For instance, the translation of query

q(V)← vertex(V,"foo")

that searches for all vertices labeled "foo" needs to take into account that the
second parameter of predicate vertex() is bound, by specifying only a single col-
umn in the SELECT clause and by adding an appropriate condition to the WHERE
clause:

SELECT v.id
FROM vertex v
WHERE v.label= "foo"

Requirement: The predicate definition language must provide a mechanism to
specify alternative binding-dependent translations.

Other predicates cannot be called at all with any unbound arguments. For
instance, to support wildcard search in labels, the SQL string pattern matching
operator (. LIKE .) is used to define a predicate like(S,P) ≡ (S LIKE P).
This predicate can be used in the query q(V)← vertex(V,L)∧ like(V,"a%") to
retrieve all vertices the label of which starts with “a”. In SQL this query can be
expressed by:

5

SELECT v.id
FROM vertex v
WHERE v.label LIKE "a%"

However, the query q(S)← like(S,"a%") cannot be translated to SQL since it
is unsafe: its extension is the set of all strings S such that (S LIKE "a%") is
satisfied.

Requirement: The translation algorithm must detect illegal binding patterns.

2.1.2 Shared variables.
Non-trivial queries involve several interdependent predicate calls that are com-
bined by logical connectors. Dependencies between predicate calls are speci-
fied by using shared variables. These variables act as channels for information
flow from one predicate (that binds a variable) to another (that uses this variable).
Moreover, more than one predicate sharing a variable may provide a binding for
this variable. In this case it must be ensured that all bindings are equal. In SQL,
this amounts to introduce appropriate equality constraints.

Consider for instance the query

q(U,V)← vertex(U,"a"),edge(U,"b",V),vertex(V,"c")

that retrieves all pairs 〈U,V 〉 of vertex identifiers such that the vertex identified by
U is labeled "a", the vertex identified by V is labeled "c", and an edge labeled
"b" connects the first with the second vertex. This query can be translated into
SQL as follows:

SELECT u.id, v.id
FROM vertex u, edge e, vertex v
WHERE u.label= "a"
AND e.label="b"
AND v.label="c"
AND u.id= e.source
AND e.target= v.id

Variable U is computed both by the SQL expression u.id and by e.source.
Therefore these alternative implementations must be connected by the equality
constraint u.id=e.source. Similarly, variable V is computed both by v.id
and e.target which need to be equated in the WHERE-clause. The informa-
tion flow from the query body to the query head where U and V are used is im-
plemented by including the expressions u.id and v.id in the SELECT clause.
Which particular SQL expression from a set of alternatives is chosen for a variable
does not matter because all alternatives are connected by equality constraints.

6

Requirement: Information flow via shared variables must be implemented by
propagating variable values in form of SQL expressions and by introducing ap-
propriate equality constraints.

2.2 Preliminaries
A query q is defined as a horn clause H← F . The head H = h(x1, . . . ,xm) defines
the variables x1, . . . ,xm as output parameters of q. F is a Boolean formula defined
recursively as F ::= F1∨F2|F1∧F2|¬F1|p(t1, . . . , tn). h and p are predicate sym-
bols. The call parameters t j are either constants or variables. A query result is a
substitution σ for all free variables in q such that the result Fσ , i.e., applying σ

to F , is true.
A predicate is either a macro or a primitive. Macros are defined by a set of

non-recursive horn clauses, i.e., a macro defines an intensional database predicate.
Macros are expanded into their definition before query translation, as described
later. A primitive predicate p is defined by one or more templates T , each of
which provides a SQL implementation for a certain binding pattern that can be in-
stantiated to a SQL SELECT statement. Primitives are not necessarily extensional
database predicates since their templates may combine data from multiple tables
of the underlying database.

Definition 2.2.1 (Template)
A template T for a predicate p(a1, . . . ,am) has the form (A, I,R,σ ,τ,w) where

• A = 〈a1, . . . ,am〉 is the parameter vector of p.

• I ⊆ {a1, . . . ,am} is a set of input parameters that must be bound externally.

• O = {a1, . . . ,am}− I is the set of output parameters that can be computed
by p.

• R = {r1, . . . ,rn} is a finite set of table aliases

• ER,I is the set of SQL expressions over aliases R and free variables I.

• σ : O→ ER,I , the output substitution, assigns expressions to output param-
eters.

• τ : R→T ∪QR,I , the table assignment, assigns each table alias an element
from the set T of table names or from the set QR,I of sub-queries over R
and I.

7

• w ∈ ER,I is a SQL condition that must be satisfied for each solution of p.

2

Example 2.2.1
The template for predicate vertex(U,L) may be defined as

Tvertex = (〈U,L〉, /0,{v},{U = v.id,L = v.label},{v) = vertex}, true)

A call to predicate vertex, for instance vertex("v21",L), induces a binding β

for all (here: zero) input parameters and some output parameters, i.e., β (U) =
"v21". The template can be expanded then to the following SQL query which
retrieves the label for vertex "v21":

SELECT v.label
FROM vertex v
WHERE v.id= "v21"

2

Example 2.2.2
In contrast, the template for predicate like(S,P) requires S and P to be bound

since they both occur in the range of the input substitution:

Tvertex = (〈S,P〉,{S,P}, /0, /0, /0,(S LIKE P))

2

A single template T = (A, I,R,σ ,τ,w) can be translated to a SQL SELECT
statement given a substitution β : B→ ER, /0 that assigns ground SQL expressions
to a set B of parameters including all input parameters (i.e., I ⊆ B ⊆ A). The
column expressions are formed by the SQL expressions assigned by σ to all free
output parameters, i.e., {e1, . . . ,ek} = {β (σ(a))|a ∈ O−B}. Those output pa-
rameters bound by β result in a set of equality constraints {c1, . . . ,cl}= {(β (a) =
β (σ(a)))|a ∈ O∩B}. For instance, in Example 2.2.1, there is a single condition
v.id= "v21" since both σ and β are defined for parameter V .

The general form of the resulting SELECT statement is then:

SELECT e1,. . .,ek
FROM τ(r1) r1, . . ., τ(rn) rn

WHERE β (w) AND c1 AND . . . AND cl

The challenge which we meet here is not to translate a single template, but
to translate a whole query by combining templates for the predicates in the query
into a closed SQL statement. This task requires some preprocessing which is
discussed next.

8

2.3 Preprocessing
The body F of a query H← F is preprocessed by recursively expanding all macro
calls. The result is transformed into a disjunctive form defined recursively by

F ::= F1∨F2|C
C ::= C1∧C2|¬C1|G
G ::= p(t1, . . . , tn)

Note that this is not disjunctive normal form since ¬(C1 ∧C2) is allowed. This
is due to the fact that binding constraints must be respected. For instance, if
predicate q in p(X)∧ q(X) requires its argument X to be bound and p provides
these bindings, then ¬(p(X)∧ q(X)) should not be transformed into (¬p(X))∨
(¬q(X)) since q cannot be called with unbound X . (In contrast, ¬(C1 ∨C2) is
rewritten as (¬C1)∧ (¬C2) as expected.) We assume that every conjunction C is
reordered into the form G1∧Gr∧¬C1∧ . . .¬Cs.

2.4 Translation
A query q≡ (H← F) with head H = h(x1, . . . ,xm) is translated into a SQL query
Q that produces tuples with m attributes each. Every tuple 〈c1, . . . ,cm〉 in the result
of Q yields a solution φ = {x1 = c1, . . . ,xm = cm} for q.

After the preprocessing step the query body F has the form C1∨ . . .∨Cn where
all Ci are free of disjunctions. If the Ci translate to SQL queries Qi for i = 1, . . . ,n,
then F translates to Q1UNION ALL Q2 . . .UNION ALL Qn.

Each conjunction Ci has the general form G1∧ . . .∧Gr∧¬N1∧ . . .¬Ns where
each G j is a predicate call p j(t j1, . . . , t jn j) and N1 . . .Ns are again conjunctions
of this general form (i.e., nested negations are allowed, c.f. Sec. 2.3). Let V =
{x1, . . . ,xm, . . . ,xn} be the set of all free variables in H,G1, . . . ,Gr (some of which
may be shared by N1 . . .Ns).

Since we do not allow function symbols, the predicate arguments t ji are either
variables from V or constants. We denote this domain of variables and constants
by TV .

For each predicate call G j = p j(t j1, . . . , t jn j), j = 1, . . . ,r let Tj = (A j, I j,R j,σ j,
τ j,w j) be a template defining the called predicate p j. Without loss of generality
we assume that all parameters and table aliases in different templates Tj are dis-
joint. Note, that several templates may be defined for a predicate in order to offer
variants with different binding requirements or to provide alternative implemen-
tations. Hence there may be alternative selections of templates for a query. Not
every possible template combination can be translated successfully because the

9

binding requirements of all templates must be compatible. Multiple translations
raise the issue of finding an optimal translation (with respect to some cost mea-
sure) which could be tackled using standard query optimisation methods. We have
not yet explored these possibilities of our query translator.

Each predicate call p j(t j1, . . . , t jm j) defines a parameter binding, i.e., a substi-
tution β j : A j→TV that assigns each parameter a ji a predicate argument β j(a ji) =
t ji for i = 1, . . . ,m j. Since all parameters are disjoint, we can define a global bind-
ing β =

⋃r
j=1 β j on the joint parameter set A = {a ji| j = 1, . . . ,r, i = 1, . . . ,m j}.

The global set of input parameters is then I =
⋃r

j=1 I j. On O = A− I, the set of
output parameters, the global output substitution σ is defined as σ =

⋃r
j=1 σ j.

Let R =
⋃r

j=1 R j = {r1, . . . ,r|R|} be the global set of all table aliases and τ =⋃r
j=1 τ j the resulting global table assignment. Let w = w1 AND . . .AND wr be the

conjunction of all template conditions w j.
The set E(x) of all expressions e ∈ ER,V that compute x ∈ V is defined by

E(x) = {β (σ(a)) | a ∈ O,β (a) = x}. The translation algorithm fails for a chosen
combination of templates if E(x) = /0 for some x ∈ V . Otherwise there exists a
substitution ρ : V → ER,V such that ρ(x) ∈ E(x) for all x ∈ V . The expression
ρ(x) may still contain other variables from V . To resolve a variable x to a ground
SQL expression, ρ must be applied exhaustively which is only possible if there
are no cyclic dependencies like ρ(x) = y, ρ(y) = x in which case the translation
fails. Otherwise the substitution ρ∗ : V → ER, /0 that applies ρ exhaustively until
all variables are resolved is well-defined. We extend σ to I by defining σ(x) =
x ∈ ER,I for all x ∈ I. Now the substitution φ : A→ ER, /0 which maps parameters
to ground SQL expressions can be defined by φ = ρ∗ ◦β ◦σ .

Due to shared variables x ∈ V there may be several alternative expressions in
E(x) for computing x. These alternatives must be connected by equations which
act as join conditions between different table aliases. In addition, for output pa-
rameters a ∈ O that are bound to constants (denoted const(β (a))) an appropriate
equation must be added to the WHERE clause of the resulting SELECT state-
ment. These requirements are taken care of by a set Q = {q1, . . . ,q|Q|} of equality
constraints defined by

Q = {(φ(a) = φ(a′)) | a,a′ ∈ O,a 6= a′,β (a) = β (a′)}
∪ {(φ(a) = β (a)) | a ∈ O,const(β (a))}

Since the negative conditions N1, . . . ,Ns of Ci are again conjunctions of the
same form as Ci, they can be translated into correlated sub-queries by a recur-
sive call of the translation algorithm that takes substitution ρ∗ into account. Let
S1, . . . ,Ss be translations of N1, . . . ,Ns.

With these definitions the conjunction Ci is now translated into the SQL state-
ment

10

SELECT ρ∗(x1), . . . ,ρ∗(xm)
FROM r1, . . . ,r|R|
WHERE φ(w)
AND q1 AND . . . AND q|Q|
AND NOT EXISTS (S1) AND . . . AND NOT EXISTS (Ss)

2.5 Expressions
In many queries, arithmetic expressions need to be formulated. There are two
approaches to this problem. The first approach is logically clean but verbose. It
requires each n-ary function to be defined as an (n+1)-ary predicate. For instance,
the condition Y = 2X +1 would be encoded as times(2,X ,T)∧plus(T,1,Y).

The second approach is more convenient and has been implemented in our
query compiler. It introduces an equality predicate the arguments of which can be
arithmetic expressions (i.e., terms). For instance, the mentioned condition can be
formulated naturally as X = 2∗Y +1. This approach applies not only to arithmetic
operations on numbers, but extends to operations on other data types, e.g., to string
operations like concatenation, etc.

In general, an equality condition t1 = t2 where both t1 and t2 are terms con-
taining free variables v1, . . . ,vn, is translated into a template

(〈v1, . . . ,vn〉,{v1, . . . ,vn}, /0, /0, /0,e1 = e2)

where e1,e2 are SQL expressions computing the expressions represented by term
t1, t2, respectively. Definitions for the free variables v1, . . . ,vn must be provided
by other templates in the query.

If t1 is a variable v1, the resulting template is

(〈v1, . . . ,vn〉,{v2, . . . ,vn}, /0,{v1 = e2}, /0, true)

Thus the template assigns the SQL expression e2 to v1 which can be used as input
variable in other templates then. The case where t2 is a variable is analogous. If
both t1 and t2 are variables, both possible templates are tried.

Tests other than equality (e.g., <, ≤) do not allow information flow between
variables. They are supported by a predicate test(t) which takes a term t repre-
senting a Boolean SQL expression b with free variables v1, . . . ,vn as argument and
translates it into the template

(〈v1, . . . ,vn〉,〈v1, . . . ,vn〉, /0, /0, /0,b)

Example 2.5.1

11

The Boolean condition test(X < Y) yields the template

(〈X ,Y 〉,{X ,Y}, /0, /0, /0,(X < Y))

which can be used to translate a query containing this condition. 2

2.6 Postprocessing: Self Join Optimisation
If two predicates that access the same table are combined in a conjunction, the
resulting query may involve a redundant self-join of a table that can be avoided by
unifying table aliases. For instance, let the convenience predicate edge labels()
be defined as a macro

edge labels(U,V,UL,EL,V L)≡ vertex(U,UL)∧ edge(U,EL,V)∧ vertex(V,V L)

This macro retrieves edges together with the labels of its endpoints. The query

q(UL,V L,WL) ← edge labels(U,V,UL, ,V L) ∧
edge labels(U,W,UL, ,WL) ∧

V 6= W

(which returns the labels of two edges U →V and U →W) translates to

SELECT v1.label, v2.label, v4.label
FROM vertex v1,

edge e1,
vertex v2,
vertex v3,
edge e2,
vertex v4

WHERE v1.id=e1.source
AND e1.source=v3.id
AND v3.id=e2.source
AND v1.label=v3.label
AND e1.target=v2.id
AND e2.target=v4.id
AND e1.target <> e2.target

Since the table aliases v1 and v3 for table vertex are connected by the join
conditions v1.id=e1.source and e1.source=v3.id, their keys v1.id and
v3.id are equal. This means that v1 and v3 always reference the same tuple. By
unifying the two aliases and removing redundant equations we can save one join
operation:

12

SELECT v13.label, v2.label, v4.label
FROM edge e1,

vertex v13,
vertex v2,
edge e2,
vertex v4

WHERE e1.source=v2.id
AND v2.id=e2.source
AND e1.target=v1.id
AND e2.target=v3.id
AND e1.target <> e2.target

This optimisation requires two aliases for the same table for which it can be
deduced from the equality constraints in the WHERE clause that their key at-
tributes are equal. In this case, the aliases are unified and redundant equations are
removed.

13

Chapter 3

Recursive Queries

Many application domains such as linguistics (see Sec. 1) and bioinformatics deal
with data that is represented in form of graphs or restrictions thereof, such as
directed acyclic graphs (DAGs) or trees. In bioinformatics for instance, graphs and
graph queries play an increasingly important role to model and query metabolic
networks [4].

An important class of queries in such application domains deals with paths in
graphs. Paths can easily be specified using recursive predicates. For instance, the
(non-reflexive) transitive closure in a graph can be defined by

tc(A,D) ≡ edge(A,L,T)∧ (T = D∨ tc(T,D))

Linear recursive queries have been introduced to SQL in the SQL:1999 stan-
dard and are now supported by some commercial database systems, such as Oracle
and DB2. While DB2 supports recursive queries conforming to SQL:1999, Oracle
offers a proprietary SQL extension for so-called hierarchical queries that amount
to computing the transitive closure of a binary relation between rows of a table.

In hierarchical data, such as XML document trees, precomputed pre-/post-
order ranks can be used to answer path queries much more efficiently compared
to recursive SQL queries [5]. As shown in [6], this technique can be extended to
DAGs.

Our goal is to support a class of recursive queries that (i) can be implemented
on top of both DB2 and Oracle and (ii) can make use of pre-/post-order rank
indexes where possible. This class consists of horn clauses extended with the
(non-reflexive) transitive closure operator (.)+, defined by

p(X0,Xn)+ ≡ ∃n > 0,X1, . . . ,Xn−1 : p(X0,X1)∧ . . .∧ p(Xn−1,Xn)

The reflexive transitive closure operator (.)∗ is syntactic sugar defined by

p(X0,Xn)∗ ≡ X0 = Xn∨ p(X0,Xn)+

14

We assume that predicate p can be translated to a sub-query P with columns x,y.
The call p(X ,Y)+ can be expressed in SQL:1999 as:

〈X ,Y 〉 ∈ (
WITH RECURSIVE r(x,y) AS (

(SELECT x,y
FROM P p
[WHERE x=X]X

) UNION ALL (
SELECT r.x, p.y
FROM P p, r
WHERE r.y = p.x

))
SELECT DISTINCT *
FROM r
WHERE [y=Y]Y)

The notation [B]V indicates a code fragment B that is included if variable V is
bound.

In Oracle SQL, the call p(X ,Y)+ can be expressed using a hierarchical query:

〈X ,Y 〉 ∈ (
SELECT (CONNECT_BY_ROOT x), y
FROM p
[WHERE y=Y]Y
[START WITH x=X]X
CONNECT BY PRIOR y = x)

If the graph G = (V,E) induced by p (i.e., V = {u|∃v : p(u,v)} ∪ {v|∃u :
p(u,v)}, E = {(u,v)|p(u,v)}) is finite and acyclic, then a pre-/post-order rank
index rp can be computed. The fact rp(V,Rpre,Rpost) states that node V has been
reached in a depth first traversal at step Rpre and has been left at step Rpost after
traversing all of its descendents. Note, that the traversal algorithm may visit the
children of a node in arbitrary order if no ordering criterion is defined, such as
document order in an XML document tree. If the graph G is not a tree, then a
node may be visited several times. For each visit, it receives a different tuple in
rp. If the graph has several root nodes, it is treated as if all roots were children of
a virtual root.

If a pre-/post-order index rp exists for a predicate p, then the call p(X ,Y)+

can be rewritten using the following equivalence:

p(X ,Y)+ ≡ rp(X ,Xpre,Xpost)∧ rp(Y,Ypre,)∧Xpre < Ypre∧Ypre < Xpost

The query compiler translates this call as follows:

15

SELECT x.node,y.node
FROM r_p x, r_p y
WHERE x.pre < y.pre
AND y.pre < y.post
[AND x.node= X]X
[AND y.node= Y]Y

Example 3.0.1
Given a macro definition edge(S,T)≡ edge(S, ,T), the query

q(V1,V2)← vertex(V1,a)∧ edge(V1,V2)+∧ vertex(V2,b)

retrieves all pairs of a vertex V1 labeled "a" and a vertex V2 labeled "b" that are
connected by a path from V1 to V2. This is translated to the SQL:1999 statement

WITH RECURSIVE tc(source,target) AS (
(SELECT edge.source, edge.target

FROM vertex, edge
WHERE vertex.id = edge.source
AND vertex.label="a"

) UNION ALL (
SELECT tc.source, edge.target
FROM tc, edge
WHERE tc.target= edge.source

))
SELECT tc.source, tc.target
FROM tc, vertex
WHERE tc.target= vertex.id
AND vertex.label="b"

For Oracle, this query is translated to a SELECT statement with a hierarchical
SELECT statement as inline view tc that is correlated with the vertex tuples v1
and v2 by the START WITH and WHERE conditions. Note that the WHERE clause
in the sub-query is evaluated on the last path element, i.e., the edge pointing to V1.

SELECT v1.id, v2.id
FROM vertex v1,
(SELECT 1
FROM

(SELECT e.source AS source, e.target AS target
FROM edge e) s

WHERE v2.id=s.target
START WITH v1.id=s.source
CONNECT BY NOCYCLE (PRIOR s.target)=s.source

) tc, vertex v2

16

WHERE v1.label="a"
AND v2.label="b";

2

Note, that predicate p may have a more complex definition than just a single
table. In SQL:1999, two calls of p are translated in the WITH RECURSIVE part,
one in the initializing SELECT statement, and the other in the recursive SELECT
statement.

In the case of Oracle SQL, the call of p is translated separately as a sub-query
that is included as inline view in the hierarchical query.

17

Chapter 4

Related Work

Principles of Datalog and its evaluation are presented in [7]. The NAIL! system
[8], an early deductive database system also translated programs written in Nail
into SQL. In [9] the system (and the approach in general) is criticized for produc-
ing inefficient SQL code that required a large number of temporary tables and for
its lack of control over the optimisation of the generated SQL queries.

Other deductive database prototypes that used relational database systems as
back-ends are LOLA [10], DECLARE and SDS [11], and LDL++ [12].

The translation of GraphLog queries into SQL queries for DB2 are discussed
in [13]. Recursive graph log queries are translated into recursive views in DB2.

In [14] a query compiler is presented that translates a query over a set of dat-
alog rules into a C-program with embedded SQL. The generated program fetches
tuples from intermediate queries from the database and sends them back to be
inserted in temporary tables which causes a large communication overhead. The
advances of commercial DBMS since 1998 allow LoToS to delegate more work
to the database system.

There have been many proposals for query languages on linguistic data. How-
ever, most languages were developed for small corpora and use main-memory
based evaluation schemes. A detailed overview can be found in [2]. More re-
cently, XML has been proposed as the fundamental structure to store annotated
corpora [15, 16]. However, as stated previously, the DDD annotation contains
structures not easily modelled or queried in XML. Therefore, we believe that our
approach is a more powerful alternative, although its performance still needs to be
evaluated.

18

Chapter 5

Conclusion and Future Work

Domain-specific query languages are useful in various application domains, in-
cluding complex linguistic databases [1, 15, 16] or metabolic network databases
in biology [4].

The LoToS query compiler presented in this work enables the rapid implemen-
tation of domain-specific query languages on top of a relational database system
with a fixed schema. The resulting logic-based query language provides a clean
semantics and independence from particular data modelling decisions or vendor-
specific SQL extensions. These advantages also make it a good target language for
compilation of queries in a more concise query language in case that the language
of logic formulas is found too verbose in a particular application domain.

As already mentioned, we have not yet explored the possibilities of query
optimisation in our approach. Cost based optimisation should be used to chose
between different translation generated by different predicate templates. Further-
more, the technique described in 2.6 should be considered as a special case of
query minimization, i.e., techniques to rewrite a complex query in a simpler, yet
semantically equivalent query [17]. However, many query minimization tech-
niques are only applicable under set semantics and thus not in our scenario.

A prototype of the LoToS query compiler implemented in SWI Prolog is avail-
able1.

1 http://www.informatik.hu-berlin.de/∼faulstic/projects/DDD/
software/LoToS

19

http://www.informatik.hu-berlin.de/~faulstic/projects/DDD/software/LoToS
http://www.informatik.hu-berlin.de/~faulstic/projects/DDD/software/LoToS

Bibliography

[1] Lezius, W.: Ein Suchwerkzeug für syntaktisch annotierte Textkorpora. PhD
thesis, Institut für maschinelle Textverarbeitung (IMS), Universität Stuttgart
(2002)

[2] Faulstich, L.C., Leser, U., Lüdeling, A.: Storing and querying historical
texts in a relational database. Informatik-Bericht 176, Institut für Informatik,
Humboldt-Universität zu Berlin (2005)

[3] Dipper, S., Faulstich, L.C., Leser, U., Lüdeling, A.: Challenges in modelling
a richly annotated diachronic corpus of german. In: Workshop on XML-
based richly annotated corpora, Lisbon, Portugal (2004)

[4] Leser, U.: A query language for biological networks. Informatik-Bericht
187, Institut für Informatik, Humboldt-Universität zu Berlin (2005)

[5] Grust, T., Keulen, M.V., Teubner, J.: Accelerating XPath evaluation in any
RDBMS. ACM Transactions on Database Systems 29 (2004) 91–131

[6] Trissl, S., Leser, U.: Querying ontologies in relational database systems. In:
2nd Conference on Data Integration in the Life Sciences (DILS05). (2005)

[7] Ullman, J.D.: Database and Knowledge-Base Systems, Vol. 2. Computer
Science Press, Maryland (1990)

[8] Morris, K., Ullman, J.D., Gelder, A.V.: Design overview of the NAIL!
system. In: Proc. of Third intl. conf. on logic programming. (1986) 554–568

[9] Derr, M.A., Morishita, S., Phipps, G.: The glue-nail deductive database sys-
tem: design, implementation, and evaluation. The VLDB Journal 3 (1994)
123–160

[10] Zukowski, U., Freitag, B.: The deductive database system LOLA. In Dix,
J., Furbach, U., Nerode, A., eds.: Proceedings of the 4th International Con-
ference on Logic Programing and Nonmonotonic Reasoning. Volume 1265
of LNAI., Berlin, Springer (1997) 375–386

20

[11] Kießling, W., Schmidt, H., Strauß, W., Dünzinger, G.: Declare and sds:
early efforts to commercialize deductive database technology. The VLDB
Journal 3 (1994) 211–243

[12] Arni, F., Ong, K., Tsur, S., Wang, H., Zaniolo, C.: The deductive database
system LDL++. Technical Report cs/0202001, arXiv (2002)

[13] Eigler, F.C.: Translating graphlog to SQL. In: CASCON ’94: Proc. of the
1994 conf. of the Centre for Advanced Studies on Collaborative research,
IBM Press (1994) 14

[14] Sunderraman, R., Sunderraman, R.: A deductive rules processor for SQL
databases. In: ACM-SE 36: Proceedings of the 36th annual Southeast re-
gional conference. (1998) 64–73

[15] Bird, S., Buneman, P., Tan, W.C.: Towards a query language for annotation
graphs. In: 2nd intl. Conf. on Language Resources and Evaluation (LREC
2000). (2000) 807–814

[16] Bird, S., Chen, Y., Davidson, S., Leea, H., Zheng, Y.: Extending XPath to
support linguistic queries. In: Workshop on Programming Language Tech-
nologies for XML (PLAN-X). (2005)

[17] Kunen, I.K., Suciu, D.: A scalable algorithm for query minimization. Tech-
nical Report 02-11-04, University of Washington (2002)

21

Appendix

As illustration to the compilation method demonstrated in the paper, we present
some linguistic queries from [2] together with the translations produced by the Lo-
ToS query compiler. For definitions of predicates and for the underlying relational
schema please refer to this report.

5.1 Searching for word forms
Sentences s where verb “sagen” occurs in second person singular This query
combines a condition on the logical text structure (a token t within a sentence s)
with conditions on the lemma annotation (lemma name n equals “sagen”) and the
inflectional morphology f .

Qa(S) ≡ element(’Sentence’,S) ∧ element(’Token’,T) ∧
ancestor(S,T) ∧
element(’Lemma’,L) ∧ parent(L,T) ∧
element(’Entry’,E) ∧ parent(L,E) ∧
element(’LemmaName’,N) ∧ parent(E,N) ∧
elementSpan(N,Sn) ∧ string(Sn.tid,’sagen’,Sn) ∧
element(’FlexMorph’,F) ∧ parent(F,T) ∧
element(’Verb’,V) ∧ parent(F,V) ∧
attribute(V,’person’,2) ∧ attribute(V,’number’,’sing’)

This query is translated to:

SELECT
element1.id AS Sentence

FROM
element element1,
element element2,
rank ancestor,

22

rank descendent,
element element3,
rank child1,
element element4,
rank child2,
rank child3,
element element5,
text,
element element6,
rank child4,
element element7,
rank child5,
attribute attribute1,
attribute attribute2

WHERE element1.name="sentence"
AND element2.name="token"
AND element3.name="lemma"
AND element4.name="entry"
AND element5.name="lemma_name"
AND SUBSTR(text.content,

element5.span.left,
element5.span.right-element5.span.left)="sagen"

AND element6.name="flex_morph"
AND element7.name="verb"
AND attribute1.name="person"
AND attribute1.value=2
AND attribute2.name="number"
AND attribute2.value="singular"
AND element1.id=ancestor.element
AND element2.id=descendent.element
AND descendent.element=child1.element
AND child1.element=child4.element
AND element3.id=child1.parent
AND child1.parent=child2.parent
AND element4.id=child2.element
AND child2.element=child3.parent
AND child3.element=element5.id
AND element6.id=child4.parent
AND child4.parent=child5.parent
AND element7.id=child5.element
AND child5.element=attribute1.element
AND attribute1.element=attribute2.element
AND ancestor.pre=<descendent.pre

23

AND descendent.pre<ancestor.post
AND (element5.span IS NOT NULL)
AND element5.span.tid=text.id;

5.2 Querying aligned texts
How is “pulcher” (lat.) translated into Old High German? Query Qb binds
variable sg to all spans that are aligned in role ’goh’ (i.e., German Old High)
with a span in role ’lat’ that contains “pulcher” as content of a token t.

Qb(Sg) ≡ element(’Token’,T) ∧ elementSpan(T,St) ∧
string(Sn.tid,’pulcher’,Sn) ∧
element(’Align’,Al) ∧ attribute(Al,’role’,’lat’) ∧
elementSpan(Al,Sl) ∧ contains(Sl,St) ∧
parent(L,Al) ∧ element(’Link’, l) ∧
parent(L,Ag) ∧ element(’Align’,ag) ∧
attribute(Ag,’role’,’goh’) ∧
elementSpan(Ag,Sg)

The query is translated to:

SELECT
element4.span AS SpanGOH,
SUBSTR(text2.content,

element4.span.left,
element4.span.right-element4.span.left) AS ContentGOH

FROM
element element1,
text text1,
attribute attribute1,
element element2,
rank child1,
element element3,
rank child2,
attribute attribute2,
element element4,
text text2

WHERE element1.name="token"
AND SUBSTR(text1.content,

element1.span.left,

24

element1.span.right-element1.span.left)="pulcher"
AND element2.name="align"
AND attribute1.name="role"
AND attribute1.value="lat"
AND element3.name="link"
AND element4.name="align"
AND attribute2.name="role"
AND attribute2.value="goh"
AND attribute1.element=element2.id
AND element2.id=child1.element
AND child1.parent=element3.id
AND element3.id=child2.parent
AND child2.element=element4.id
AND attribute2.element=element4.id
AND (element1.span IS NOT NULL)
AND element1.span.tid=text1.id
AND (element2.span IS NOT NULL)
AND element2.span.tid=element1.span.tid
AND element2.span.left=<element1.span.left
AND element1.span.right=<element2.span.right
AND (element4.span IS NOT NULL)
AND element4.span.tid=text2.id;

5.3 Querying Linguistic Trees
The following sample queries are taken from [16]. To facilitate comparisons, the
query identifiers and the XML representation used there are adopted here: words
are represented by elements named with the part-of-speech information (e.g., noun
= N, verb= V); phrases are represented by elements whose name ends in a P (noun
phrase = NP, verb phrase = VP etc.).

Noun phrases np that immediately follow a verb v.

Q1(NP,V) ≡ element(’V’,V) ∧ element(’NP’,NP) ∧
elementSpan(V,Sv) ∧ elementSpan(NP,Snp) ∧
immediatelyPrecedes(Sv,Snp)

SELECT
element2.id AS NP,
element1.id AS V

25

FROM
element element1,
element element2

WHERE element1.name="V"
AND element2.name="NP"
AND (element1.span IS NOT NULL)
AND (element2.span IS NOT NULL)
AND element1.span.tid=element2.span.tid
AND element1.span.right=element2.span.left;

Noun phrases np which are the rightmost descendent of a verb phrase vp:

Q6(NP,VP) ≡ element(’VP’,VP) ∧ element(’NP’,NP) ∧
ancestor(vp,NP) ∧
elementSpan(VP,Svp) ∧ elementSpan(NP,Snp) ∧
suffix(sNP,Svp)

SELECT
element2.id AS NP,
element1.id AS VP

FROM
rank ancestor,
rank descendent,
element element1,
element element2

WHERE element1.name="VP"
AND element2.name="NP"
AND ancestor.element=element1.id
AND descendent.element=element2.id
AND ancestor.pre=<descendent.pre
AND descendent.pre<ancestor.post
AND (element1.span IS NOT NULL)
AND (element2.span IS NOT NULL)
AND element2.span.tid=element1.span.tid
AND element2.span.left>=element1.span.left
AND element2.span.right=element1.span.right;

Verb phrases vp comprised of a verb v, a noun phrase np, and a prepositional
phrase pp:

26

Q7(VP,V,NP,PP) ≡ element(’VP’,VP) ∧ element(’V’,V) ∧
element(’NP’,NP) ∧ element(’PP’,PP) ∧
ancestor(VP,V) ∧ ancestor(VP,NP) ∧ ancestor(VP,PP) ∧
elementSpan(VP,Svp) ∧ elementSpan(V,Sv) ∧
elementSpan(NP,Snp) ∧ elementSpan(PP,Spp) ∧
prefix(Sv,Svp) ∧ immediatelyPrecedes(Sv,Snp) ∧
immediatelyPrecedes(Snp,Spp) ∧ suffix(Spp,Svp)

SELECT
element1.id AS VP,
element2.id AS V,
element3.id AS NP,
element4.id AS PP

FROM
rank ancestor1,
rank descendent1,
rank ancestor2,
rank descendent2,
rank ancestor3,
rank descendent3,
element element1,
element element2,
element element3,
element element4

WHERE element1.name="VP"
AND element2.name="V"
AND element3.name="NP"
AND element4.name="PP"
AND ancestor1.element=ancestor2.element
AND ancestor2.element=ancestor3.element
AND ancestor3.element=element1.id
AND descendent1.element=element2.id
AND descendent2.element=element3.id
AND descendent3.element=element4.id
AND ancestor1.pre=<descendent1.pre
AND descendent1.pre<ancestor1.post
AND ancestor2.pre=<descendent2.pre
AND descendent2.pre<ancestor2.post
AND ancestor3.pre=<descendent3.pre
AND descendent3.pre<ancestor3.post

27

AND (element1.span IS NOT NULL)
AND (element2.span IS NOT NULL)
AND (element3.span IS NOT NULL)
AND (element4.span IS NOT NULL)
AND element2.span.left=element1.span.left
AND element2.span.right=<element1.span.right
AND element2.span.tid=element3.span.tid
AND element2.span.right=element3.span.left
AND element3.span.tid=element4.span.tid
AND element3.span.right=element4.span.left
AND element4.span.tid=element1.span.tid
AND element4.span.left>=element1.span.left
AND element4.span.right=element1.span.right;

28

	Introduction
	Running Example
	Structure of the Paper

	The Compilation Algorithm
	Requirements
	Binding-dependent translation.
	Shared variables.

	Preliminaries
	Preprocessing
	Translation
	Expressions
	Postprocessing: Self Join Optimisation

	Recursive Queries
	Related Work
	Conclusion and Future Work
	Searching for word forms
	Querying aligned texts
	Querying Linguistic Trees

