Designing a Re-Usable and Embeddable Corpus Search Library

Thomas Krause!, Ulf Leser?, Anke Liideling!, Stephan Druskat!
"Humboldt-Universitit zu Berlin, Dept. of German Studies and Linguistics, Unter den Linden 6, D-10099 Berlin
2Humboldt-Universitiit zu Berlin, Dept. of Computer Science, Unter den Linden 6, D-10099 Berlin
krauseto @hu-berlin.de, leser @informatik.hu-berlin.de, {anke.luedeling, stephan.druskat} @hu-berlin.de

Abstract
This paper describes a fundamental re-design and extension of the existing general multi-layer corpus search tool ANNIS, which
simplifies its re-use in other tools. This embeddable corpus search library is called graphANNIS and uses annotation graphs as its
internal data model. It has a modular design, where each graph component can be implemented by a so-called graph storage and
allows efficient reachability queries on each graph component. We show that using different implementations for different types of
graphs is much more efficient than relying on a single strategy. Our approach unites the interoperable data model of a directed graph
with adaptable and efficient implementations. We argue that graphANNIS can be a valuable building block for applications that need
to embed some kind of search functionality on linguistically annotated corpora. Examples are annotation editors that need a search
component to support agile corpus creation. The adaptability of graphANNIS, and its ability to support new kinds of annotation

structures efficiently, could make such a re-use easier to achieve.

Keywords: corpus tools, multi-layer corpora, interoperability, graph database

1. Introduction

The creation of a search tool for linguistic corpora can be a
large development effort. Nevertheless, new tools are still
being developed, due to their necessity for studies in cor-
pus linguistics as well as the increasing diversity of corpus
types and phenomena available for study Exemplary rea-
sons for such a re-development are:

(1) new kind of annotation structures not supported by any
other tool,

(2) non-ergonomic integration of the existing tool,
(3) problematic software licenses, or
(4) performance problems with the existing tool.

Problem (1) holds true especially true for multi-layer cor-
pora (Dipper, 2005), where different kinds of annotations
are combined into the same corpus and where it can be ex-
pected that the corpus is extended with new types of an-
notation over time. Multi-layer corpus search tools like
ANNIS (Krause and Zeldes, 2016) are often designed to
support many kinds of annotation structures generically in
the same software and query language. This generality in
ANNIS is accomplished by using annotation graphs (Bird
and Liberman, 2001} as the underlying data model. De-
spite the general data model, there are corpora which are
difficult to represent in ANNIS, e.g., corpora for sign lan-
guage, which need support for more complex concepts of
tokens, temporal and spatial annotations (Hanke and Storz,
2008). Thus, even a generic multi-layer corpus search tool
like ANNIS needs to be extended regularly to support more
types of data. The problems (2) and (3) can occur if a non-
search-centric tool, such as an annotation editor, needs to be

"Many dedicated and general search tools exists. Examples for
generic search tools are CWB (Evert and Hardie, 2011), KorAP
(Diewald and Margaretha, 2016), TIGERSearch (Lezius, 2002) or
EXMARaLDA EXAKT (Schmidt and Worner, 2014).

extended with search functionality, e.g., because it is sup-
posed to support an agile corpus creation workflow (Voor-
mann and Gut, 2008}, Druskat et al., 2017). Also, perfor-
mance issues (4) often prove to be a permanent problem.
While computer hardware evolves, the need for larger cor-
pora with more tokens, more annotation layers and more re-
lationships (even between documents if text reuse is studied
(Berti et al., 2014)) increases as well, and keeping up with
the amount of data poses a constant challenge.

When the need for a new corpus tool or integration of a
query system in an existing software arises, it can be more
sustainable to at least partially rely on an existing solution.
Consider the following example: An annotation tool needs
a custom user interface for presenting search results with
tight integration to an existing editor. It would not neces-
sarily need to implement a new query language or query
engine, or a whole query system with all necessary com-
ponents. Instead, it could simply re-use parts of existing
domain-specific query systems. This paper describes a fun-
damental re-design and extension of the existing general
multi-layer corpus search tool ANNIS, which simplifies its
re-use in other tools.

2. graphANNIS

We want to present an approach to design an embeddable
corpus search library that addresses the aforementioned
problems, and discuss the benefits and downsides of this
design. The library that will be used as a case study is the
graphANNIS query engine, which is described in more de-
tail in |Krause et al. (2016). graphANNIS was used to re-
implement the ANNIS Query Language (AQL) (Rosenfeld,
2010; |[Krause and Zeldes, 2016) as a main memory query
engine in the C++ programming language. It can represent
the same range of annotation types as the original ANNIS
implementation, which includes

e token annotations and multiple tokenization,

e span annotations,

e dominance relations (e.g. for syntax trees), and

e pointing relations for generic edges between any an-
notation node.

While it supports AQL, the implementation is much more
flexible compared to the original mapping of AQL to SQL.
It uses directed graphs that are partitioned into acyclic com-
ponents as its basic data model.

By using a main memory-based approach instead of a
relational database, the question of how large corpora
graphANNIS can support arises. In |Krause et al. (2016),
the used memory for different kind of corpora is re-
ported. The “Parlamentsreden_Deutscher_Bundestag™ cor-
pus (Odebrecht, 2012) contains around 3.1 million tokens
and each token has part-of-speech and lemma annotations.
It uses less than 600 MB of main memory. Servers with 512
GB of main memory are available, and such a server could
host corpora ~ 850 times larger than the ‘“Parlamentsre-
den_Deutscher_Bundestag” corpus. For such simple token-
only corpora, the memory consumption of graphANNIS
raises linearly with the number of tokens. Thus, even cor-
pora with approximately 2.6 billion tokens, including part-
of-speech and lemma annotation, should fit into the main
memory of such a server. The size of a corpus cannot ul-
timately be defined by numbers of tokens alone. Instead,
a depth factor must be taken into account, referring to the
complexity of a corpus, that is, the numbers of annotation
nodes and edges on top of tokens, and across different anno-
tation layers. Deeply annotated corpora with a large num-
ber of layers and consequently a large number of nodes
and/or relations can arguably be defined as “large”.

3. Modular implementation

Each component of the annotation graph can be imple-
mented in graphANNIS in a specialized module (see Figure
[T] for an overview). Such a graph storage is optimized to
find reachable nodes and distances between nodes inside a
component. In contrast to the similar Ziggurat design (Ev-
ert and Hardie, 2015), the implementation optimization is
agnostic to the type of annotation that is encoded in this
graph and only depends on the graph structure itself. Query
operators can be implemented by using the reachability and
distance functions of these components to efficiently imple-
ment queries for linguistic annotation concepts like prece-
dence or dominance. New operators can be added, which
allows to add support for more query languages, or address
currently missing features of AQL like the ones described
in Frick et al. (2012).

GraphANNIS currently implements three different types of
graph storages:

e one that stores the graph in an adjacency list and uses
graph traversal for finding reachable nodes,

e a pre-/post-order based implementation based on the
ideas of |Grust et al. (2004)), and

e a graph storage that stores linear graphsE] by using a
single order value per node.

%A Linear graph (or “path graph”) is a tree where the maxi-
mum number of outgoing edges for a node is 1.

AQL que
application Q qh ré Java API
ava Native Interface
graphANNIS library (C++)
query execution
engine
node label search\;achability queries
Graph Storages
node
annotation linear graphs | | pre-/post-order | | adjacency list
storage

Figure 1: Overview of the graphANNIS library with its dif-
ferent graph storage modules.

The adjacency list is able to store all types of graph compo-
nents, but the pre-/post-order based implementation is re-
stricted to directed acyclic graphs and needs duplicate en-
tries when the graph component is not a tree. When a cor-
pus is imported, a heuristic is used to choose which graph
storage best suits the given graph structure of each com-
ponent. This modular design allows adding new types of
graph storages when new annotations shall be supported by
the query engine. These new graph storages can exploit
the new types of graph structures and provide better per-
formance than the existing implementations. For example,
token precedence is modeled as explicit edges between to-
kens in graphANNIS. The length of the path between the
first and the last token in the document is the number of
tokens of the document. For queries that search for tokens
that precede each other with indefinite length, a traversal
on an adjacency list would be inefficient compared to di-
rect lookup of an order value in a pre-/post-order encoding
or the single order value of a linear graph. On the other
hand, in cases where pre-/post-order encoding would result
in duplicated entries because the annotation graph is not a
tree, graph traversal can be more efficient instead.

4. Evaluation

In|Krause et al. (2016), benchmarks have been executed to
compare graphANNIS with the original relational database
implementation of ANNIS. These benchmarks show that
graphANNIS is around 40 times faster to execute a work-
load of more than 3,000 queries (collected from actual user
interactions with the existing ANNIS system) from 17 cor-
pora, than the relational database implementation. It could
be argued, that a more monolithic graph-based implementa-
tion could handle the workload equally well. In order to test
if our modular design and the specialized graph storages ac-
tually have a positive impact, additional benchmarks with a
similar setup as in Krause et al. (2016)), but on an updated
set of queries, a have been performedE]

3We did not compare the performance with the relational
database implementation in this paper because the focus is on the
modularization. The data set including the queries will be released
as part of a later publication, which will allow performing such a
comparative benchmark.

Impact of fixed graph storage implementations (queries with joins only)
20,000,000 F—————————————————————————————————————]

17,500,000 =————

15,000,000 - ————

12,500,000 |- — —— — o= ————————————————————————

10,000,000 -————

7,500,000 -————

5,000,000 -————

sum of execution times (ms)

2,500,000 F————

0
use all graph storages use adjacency list only use pre/post-order only

Figure 2: Impact of choosing different graph storage im-
plementations per component on the execution time for
the workload of 2,713 queries. Only queries that combine
at least two annotation nodes haven been included in this
workload. Overall performance is measured as the sum of
the execution times for all queries in milliseconds. The
baseline configuration (using all graph storages) executes
the workload in ~ 230, 000 ms.

The workload has been executed with the same version of
graphANNIS on the same system, but with different opti-
mization configurations. The configuration where all three
graph storage implementations were enabled performed
best (Figure 2). Another configuration, where the adja-
cency list graph storage has been used exclusively, was >40
times slower than the first one. Using graph indexes like
the pre-/post-order alone does not help either, as this con-
figuration is >80 times slower than the one with all graph
storages enabled. There is no configuration where the graph
storage for linear graphs has been used exclusively, because
it is too specialized to represent all required graph types.
This experiment shows that the modularization actually has
a positive effect. Our approach unites the interoperable data
model of a directed graph with adaptable and efficient im-
plementations. More detailed experiments to further inves-
tigate the strengths and potential problems of this approach
are currently in progress.

5. Discussion and future work

While using a general data model is critical in supporting
a wide range of possible annotation types, there are more
practical issues that graphANNIS tries to solve as well. Re-
using an existing query engine as software component can
be challenging due to technical issues: If the system is only
available as a web service for example, the developed soft-
ware depends on the availability of this service, the net-
work connection, and the sustainability of the infrastruc-
ture providing both. Even if the web service is open source,
installing and managing it and all necessary dependencies
(like a database management system) on a separate infras-
tructure can be overly complicated. graphANNIS is a soft-
ware library that does not have dependencies that need to be
installed separately. It is currently provided as both a C++
and a Java APL The library is also usable as OSG{'| bun-
dle, which made it possible to integrate it into the Atomic
annotation tool (Druskat et al., 2014} Druskat et al., 2017).

‘nttps://www.osgi.org/

Given the diverse landscape of corpus tools, providing only
a C++ and a Java API does not seem sufficient. While a
web service has the advantage of being indifferent to the
programming language and operating system it is used by,
an embedded software component can be more restricted in
its ability to be integrated into these different types of sys-
tems. We therefore propose to extend graphANNIS with an
API of the C programming language, which is supported by
all major operating systems and programming languages.
Such a C API would be a simplified interface to the func-
tionality of graphANNIS and provide functions to execute
queries (counting and finding instances), retrieving sub-
graphs, and administrative tasks like importing corpora. It
would not expose the internal data structures like the actual
graph storages.

As graphANNIS is available as an open source project li-
censed under the liberal Apache License, Version 2.0 on a
public code hosting platfornﬂ the barriers for external con-
tributors are already quite low. This measure also implies
to foster sustainability and re-usability: when the integra-
tion into other programming languages or the feature set of
graphANNIS is “almost sufficient” for an external project,
it should be easier to extend graphANNIS than to develop
a completely new system. GraphANNIS currently does not
have some kind of dynamic plug-in system for extensions
like adding new operators or graph storages, but changes
by the community can be merged into the main code base.
A possible problem for such a community-driven project is
the usage of the C++ programming language, which is not
widely used in other corpus linguistic projects. Extensive
documentation, static code analysis, testing and continuous
integration can help to make access easier and safer for new
contributors. Alternatively, programming languages like
Rustﬁ provide more compile time guarantees for memory
safety and absence of data races, with an execution effi-
ciency similar to C++ and an easy way to provide an ex-
ternal C APL. It should be evaluated if a port of graphAN-
NIS to such a “safe” system programming language would
be feasible and provide the same performance characteris-
tics as the current C++ implementation. With the wide ap-
plicability of annotation graph data models for multi-layer
corpora, efficient designs for graph search implementations
on these models, techniques for easy integration into other
tools and a community-driven development approach, the
building blocks of a future interoperable linguistic query
search library seem to be in sight and the development of
such a system seems feasible.

6. Bibliographical References

Berti, M., Almas, B., Dubin, D., Franzini, G., Stoyanova,
S., and Crane, G. R. (2014). The linked fragment: TEI
and the encoding of text reuses of lost authors. Journal
of the Text Encoding Initiative, (8).

Bird, S. and Liberman, M. (2001). A formal framework
for linguistic annotation. Speech Communication, 33(1-
2):23-60. Speech Annotation and Corpus Tools.

*https://github.com/thomaskrause/
graphANNIS
%https://www.rust-lang.org

https://www.osgi.org/
https://github.com/thomaskrause/graphANNIS
https://github.com/thomaskrause/graphANNIS
https://www.rust-lang.org

Diewald, N. and Margaretha, E. (2016). Krill: KorAP
search and analysis engine. JLCL, 31(1):73-90.

Dipper, S. (2005). Xml-based stand-off representation
and exploitation of multi-level linguistic annotation. In
Berliner XML Tage, pages 39-50.

Druskat, S., Bierkandt, L., Gast, V., Rzymski, C., and
Zipser, F. (2014). Atomic: An open-source software
platform for multi-level corpus annotation. In Proceed-
ings of the 12th Konferenz zur Verarbeitung natiirlicher
Sprache (KONVENS 2014), volume 1, pages 228-234,
Hildesheim.

Druskat, S., Krause, T., Odebrecht, C., and Zipser,
F. (2017). Agile creation of multi-layer corpora
with corpus-tools.org. In DGfS-CL Poster Session. 39.
Jahrestagung der Deutschen Gesellschaft fiir Sprachwis-
senschaft (DGfS), Saarbriicken, March.

Evert, S. and Hardie, A. (2011). Twenty-first century cor-
pus workbench: Updating a query architecture for the
new millennium. In Proceedings of the Corpus Linguis-
tics 2011 conference. University of Birmingham.

Evert, S. and Hardie, A. (2015). Ziggurat: A new data
model and indexing format for large annotated text cor-
pora. Challenges in the Management of Large Corpora
(CMLC-3), page 21.

Frick, E., Schnober, C., and Banski, P. (2012). Evaluat-
ing query languages for a corpus processing system. In
LREC, pages 2286-2294.

Grust, T., Keulen, M. V., and Teubner, J. (2004). Acceler-
ating XPath evaluation in any RDBMS. ACM Transac-
tions on Database Systems (TODS), 29(1):91-131.

Hanke, T. and Storz, J. (2008). ilex—a database tool for
integrating sign language corpus linguistics and sign
language lexicography. In LREC 2008 Workshop Pro-
ceedings. W 25: 3rd Workshop on the Representation
and Processing of Sign Languages: Construction and
Exploitation of Sign Language Corpora. Paris: ELRA,
pages 64-67.

Krause, T. and Zeldes, A. (2016). ANNIS3: A new archi-
tecture for generic corpus query and visualization. Digi-
tal Scholarship in the Humanities, 31(1):118-139.

Krause, T., Leser, U., and Liideling, A. (2016). graphAN-
NIS: A Fast Query Engine for Deeply Annotated Lin-
guistic Corpora. JLCL, 31(1):iii-25.

Lezius, W. (2002). TIGERSearch Ein Suchwerkzeug fiir
Baumbanken. Tagungsband zur Konvens.

Odebrecht, C. (2012). Lexical Bundles. Eine korpuslin-
guistische Untersuchung. Master’s thesis, Humboldt-
Universitit zu Berlin, Philosophische Fakultit II.

Rosenfeld, V. (2010). An implementation of the Annis 2
query language. Technical report, Humboldt-Universitit
zu Berlin.

Schmidt, T. and Worner, K. (2014). Exmaralda. In Ul-
rike Gut Jacques Durand et al., editors, Handbook on
Corpus Phonology, pages 402—419. Oxford University
Press.

Voormann, H. and Gut, U. (2008). Agile corpus creation.
Corpus Linguistics and Linguistic Theory, 4(2):235-251.

	Introduction
	graphANNIS
	Modular implementation
	Evaluation
	Discussion and future work
	Bibliographical References

