Theoretische Informatik 2

Johannes Köbler

Institut für Informatik Humboldt-Universität zu Berlin

WS 2009/10

Die Chomsky-Hierarchie

Definition

Sei $G = (V, \Sigma, P, S)$ eine Grammatik.

① *G* heißt vom Typ 3 oder regulär, falls für alle Regeln $u \rightarrow v$ gilt:

$$u \in V \text{ und } v \in \Sigma V \cup \Sigma \cup \{\varepsilon\}.$$

(d.h. alle Regeln haben die Form A o aB, A o a oder A o arepsilon)

② G heißt vom Typ 2 oder kontextfrei, falls für alle Regeln $u \rightarrow v$ gilt:

$$u \in V$$
. (d.h. alle Regeln haben die Form $A \to \alpha$)

- **3** G heißt vom Typ 1 oder kontextsensitiv, falls für alle Regeln $u \to v$ gilt: $|v| \ge |u|$. (mit Ausnahme der ε -Sonderregel, s. unten)
- Jede Grammatik ist automatisch vom Typ 0.

Die ε -Sonderregel

In einer kontextsensitiven Grammatik ist auch die Regel $S \to \varepsilon$ zulässig. Aber nur, wenn das Startsymbol S nur links vorkommt.

CFL ist echt in CSL enthalten

Bemerkung

- Wie wir gesehen haben, ist CFL in CSL enthalten.
- Zudem ist folgende Sprache nicht kontextfrei:

$$L = \{a^n b^n c^n \mid n \ge 1\}.$$

- L kann jedoch von einer kontextsensitiven Grammatik erzeugt werden.
- Daher ist CFL echt in CSL enthalten.

Eine kontextsensitive Grammatik für $\{a^nb^nc^n \mid n \geq 1\}$

Beispiel

• Betrachte die Grammatik $G = (V, \Sigma, P, S)$ mit $V = \{S, B, C\}$, $\Sigma = \{a, b, c\}$ und den Regeln

P:
$$S \rightarrow aSBC, aBC$$
 (1,2) $CB \rightarrow BC$ (3) $aB \rightarrow ab$ (4) $bB \rightarrow bb$ (5) $C \rightarrow c$ (6)

• In G lässt sich beispielsweise das Wort w = aabbcc ableiten:

• Allgemein gilt für alle n > 1:

$$S \underset{(1)}{\Rightarrow}^{n-1} a^{n-1} S(BC)^{n-1} \underset{(2)}{\Rightarrow} a^{n} (BC)^{n} \underset{(3)}{\Rightarrow}^{\binom{n}{2}} a^{n} B^{n} C^{n}$$

$$\underset{(4)}{\Rightarrow} a^{n} b B^{n-1} C^{n} \underset{(5)}{\Rightarrow}^{n-1} a^{n} b^{n} C^{n} \underset{(6)}{\Rightarrow}^{n} a^{n} b^{n} c^{n}$$

• Also gilt $a^n b^n c^n \in L(G)$ für alle $n \ge 1$.

Kontextsensitive Sprachen

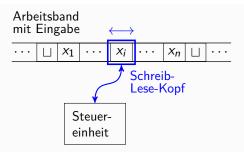
Beispiel (Schluss)

• Betrachte die kontextsensitive Grammatik $G = (V, \Sigma, P, S)$ mit $V = \{S, B, C\}, \Sigma = \{a, b, c\}$ und den Regeln

P:
$$S \rightarrow aSBC$$
, aBC (1,2) $CB \rightarrow BC$ (3) $aB \rightarrow ab$ (4) $bB \rightarrow bb$ (5) $C \rightarrow c$ (6)

- Umgekehrt folgt durch Induktion über die Ableitungslänge, dass jede Satzform u mit $S \Rightarrow^* u$ die folgenden Bedingungen erfüllt:
 - $\#_a(u) = \#_b(u) + \#_B(u) = \#_c(u) + \#_C(u)$,
 - links von S kommen nur a's vor,
 - links von einem a kommen ebenfalls nur a's vor,
 - links von einem b kommen nur a's oder b's vor.
- Daraus ergibt sich, dass in G nur Wörter $w \in \Sigma^*$ der Form $w = a^n b^n c^n$ ableitbar sind, d.h. $L(G) = \{a^n b^n c^n \mid n \geq 1\} \in \mathsf{CSL}$.

Die Turingmaschine



- Um ein geeignetes Maschinenmodell für die kontextsensitiven Sprachen zu finden, führen wir zunächst das Rechenmodell der nichtdeterministischen Turingmaschine (NTM) ein.
- Eine NTM erhält ihre Eingabe auf einem nach links und rechts unbegrenzten Band.
- Während ihrer Rechnung kann sie den Schreib-Lese-Kopf auf dem Band in beide Richtungen bewegen und dabei die besuchten Bandfelder lesen sowie die gelesenen Zeichen gegebenenfalls überschreiben.

Definition

- Sei $k \ge 1$. Eine nichtdeterministische k-Band-Turingmaschine (k-NTM oder einfach NTM) wird durch ein 6-Tupel $M = (Z, \Sigma, \Gamma, \delta, q_0, E)$ beschrieben, wobei
 - Z eine endliche Menge von Zuständen,
 - Σ das Eingabealphabet (mit $\sqcup \notin \Sigma$),
 - Γ das Arbeitsalphabet (mit $\Sigma \cup \{\sqcup\} \subseteq \Gamma$),
 - $\delta: Z \times \Gamma^k \to \mathcal{P}(Z \times \Gamma^k \times \{L, R, N\}^k)$ die Überführungsfunktion,
 - q₀ der Startzustand und
 - $E \subseteq Z$ die Menge der Endzustände ist.
- Eine k-NTM M heißt deterministisch (kurz: M ist eine k-DTM oder einfach DTM), falls für alle $(q, a_1, ..., a_k) \in Z \times \Gamma^k$ gilt:

$$\|\delta(q, a_1, \ldots a_k)\| \leq 1.$$

- Für $(q,b_1,\ldots,b_k,D_1,\ldots,D_k)\in\delta(p,a_1,\ldots a_k)$ schreiben wir auch $(p,a_1,\ldots,a_k) o (q,b_1,\ldots,b_k,D_1,\ldots,D_k).$
- Eine solche Anweisung ist ausführbar, falls
 - p der aktuelle Zustand von M ist und
 - sich für i = 1, ..., k der Lesekopf des i-ten Bandes auf einem mit a_i beschrifteten Feld befindet.
- Ihre Ausführung bewirkt, dass M
 - vom Zustand p in den Zustand q übergeht,
 - auf Band i das Symbol a_i durch b_i ersetzt und
 - den Kopf gemäß D_i bewegt (L: ein Feld nach links, R: ein Feld nach rechts, N: keine Bewegung).

Definition

• Eine Konfiguration ist ein (3k + 1)-Tupel

$$K = (q, u_1, a_1, v_1, \dots, u_k, a_k, v_k) \in Z \times (\Gamma^* \times \Gamma \times \Gamma^*)^k$$

und besagt, dass

- q der momentane Zustand ist und
- das *i*-te Band mit ... $\sqcup u_i a_i v_i \sqcup ...$ beschriftet ist, wobei sich der Kopf auf dem Zeichen a_i befindet.
- Im Fall k=1 schreiben wir für eine Konfiguration (q,u,a,v) auch kurz uqav.

Definition

Seien $K = (p, u_1, a_1, v_1, \dots, u_k, a_k, v_k)$ und $K' = (q, u'_1, a'_1, v'_1, \dots, u'_k, a'_k, v'_k)$ Konfigurationen. K' heißt Folgekonfiguration von K (kurz $K \vdash K'$), falls eine Anweisung $(p, a_1, \dots, a_k) \rightarrow (q, b_1, \dots, b_k, D_1, \dots, D_k)$

existiert, so dass für i = 1, ..., k gilt:

im Fall $D_i = N$:	$D_i = R$:	$D_i = L$:	
$K: u_i a_i v_i$ $K': u_i b_i v_i$	$K: u_i a_i v_i$ $K': u_i b_i a'_i v'_i$	$K: u_i a_i v_i$ $K': u'_i a'_i b_i v_i$	
$u'_i = u_i,$ $a'_i = b_i \text{ und}$ $v'_i = v_i.$	$u_i' = u_i b_i$ und $a_i' v_i' = \begin{cases} v_i, & v_i \neq \varepsilon, \\ \sqcup, & sonst. \end{cases}$	$u_i'a_i' = egin{cases} u_i, & u_i eq arepsilon, \ & \sqcup, & ext{sonst} \ & ext{und} & v_i' = b_i v_i. \end{cases}$	

Definition

• Die Startkonfiguration von M bei Eingabe $x = x_1 \cdots x_n \in \Sigma^*$ ist

$$\mathcal{K}_{x} = \begin{cases} (q_{0}, \varepsilon, x_{1}, x_{2} \cdots x_{n}, \varepsilon, \sqcup, \varepsilon, \ldots, \varepsilon, \sqcup, \varepsilon), & x \neq \varepsilon, \\ (q_{0}, \varepsilon, \sqcup, \varepsilon, \ldots, \varepsilon, \sqcup, \varepsilon), & x = \varepsilon. \end{cases}$$

- Eine Rechnung von M bei Eingabe x ist eine (endliche oder unendliche) Folge von Konfigurationen $K_0, K_1, K_2 \ldots$ mit $K_0 = K_x$ und $K_0 \vdash K_1 \vdash K_2 \cdots$.
- Die von M akzeptierte oder erkannte Sprache ist

$$L(M) = \{x \in \Sigma^* \mid \exists K \in E \times (\Gamma^* \times \Gamma \times \Gamma^*)^k : K_x \vdash^* K\}.$$

• Ein Wort x wird also genau dann von M akzeptiert (kurz: M(x) akzeptiert), wenn es eine Rechnung von M bei Eingabe x gibt, bei der ein Endzustand erreicht wird.

Beispiel

 $q_3 \sqcup \rightarrow q_4 \sqcup N$ (10)

Betrachte die 1-DTM
$$M=(Z,\Sigma,\Gamma,\delta,q_0,E)$$
 mit $Z=\{q_0,\ldots q_4\}$, $\Sigma=\{a,b\}$, $\Gamma=\Sigma\cup\{A,B,\sqcup\}$, $E=\{q_4\}$ und den Anweisungen

$$\delta$$
: $q_0a \to q_1AR$ (1) Anfang der Schleife: Ersetze das erste a durch A $q_1a \to q_1aR$ (2) Bewege den Kopf nach rechts bis zum ersten b $q_1B \to q_1BR$ (3) und ersetze dies durch ein B (falls kein b mehr $q_1b \to q_2BL$ (4) vorhanden ist, dann halte ohne zu akzeptieren). $q_2a \to q_2aL$ (5) Bewege den Kopf nach links bis ein A kommt, $q_2B \to q_2BL$ (6) gehe ein Feld nach rechts zurück und wiederhole $q_2A \to q_0AR$ (7) die Schleife. $q_0B \to q_3BR$ (8) Falls kein a am Anfang der Schleife, dann teste, $q_3B \to q_3BR$ (9) ob noch ein b vorhanden ist. Wenn ja, dann halte

ohne zu akzeptieren. Andernfalls akzeptiere.

Beispiel (Fortsetzung)

$$\delta: q_0 a \to q_1 AR$$
 (1) $q_1 a \to q_1 aR$ (2) $q_1 B \to q_1 BR$ (3) $q_1 b \to q_2 BL$ (4) $q_2 a \to q_2 aL$ (5) $q_2 B \to q_2 BL$ (6) $q_2 A \to q_0 AR$ (7) $q_0 B \to q_3 BR$ (8) $q_3 B \to q_3 BR$ (9) $q_3 \sqcup \to q_4 \sqcup N$ (10)

• Dann akzeptiert M die Eingabe aabb wie folgt:

• Ähnlich lässt sich für ein beliebiges $n \ge 1$ zeigen, dass $a^n b^n \in L(M)$ ist.

Beispiel (Schluss)

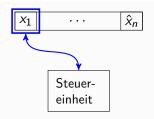
$$\delta: q_0 a \to q_1 AR$$
 (1) $q_1 a \to q_1 aR$ (2) $q_1 B \to q_1 BR$ (3) $q_1 b \to q_2 BL$ (4) $q_2 a \to q_2 aL$ (5) $q_2 B \to q_2 BL$ (6) $q_2 A \to q_0 AR$ (7) $q_0 B \to q_3 BR$ (8) $q_3 B \to q_3 BR$ (9) $q_3 \Box \to q_4 \Box N$ (10)

Andererseits führt die Eingabe abb auf die Rechnung

$$q_0abb \underset{(1)}{\vdash} Aq_1bb \underset{(4)}{\vdash} q_2ABb \underset{(7)}{\vdash} Aq_0Bb \underset{(8)}{\vdash} ABq_3b$$

- Da diese nicht fortsetzbar ist und da M deterministisch ist, kann M(abb) nicht den Endzustand q_4 erreichen, d.h. abb gehört nicht zu L(M).
- Tatsächlich lässt sich zeigen, dass $L(M) = \{a^n b^n \mid n \ge 1\}$ ist.
- In den Übungen werden wir eine 1-DTM für die Sprache $L = \{a^n b^n c^n \mid n \ge 1\}$ konstruieren.

Ein Maschinenmodell für CSL



- ullet Es ist leicht zu sehen, dass jede Typ-0 Sprache von einer NTM M erkannt wird, die ausgehend von der Eingabe x eine Rückwärtsableitung (Reduktion) auf das Startsymbol sucht.
- Im Fall einer Typ-1 Sprache ist die linke Seite jeder Regel h\u00f6chstens so lang wie die rechte Seite.
- ullet Daher muss M in diesem Fall nur deshalb das Blank hinter x lesen, um das Ende der Eingabe erkennen zu können.
- Falls wir das letzte Zeichen x_n von x markieren, kann M jedoch die Rechnung auf den Bereich der Eingabe beschränken.
- NTMs mit dieser Eigenschaft werden auch als LBAs bezeichnet.

Linear beschränkte Automaten

Definition

- $\begin{array}{l} \bullet \ \, \text{F\"ur ein Alphabet} \, \, \Sigma \, \text{sei} \, \, \hat{\Sigma} = \Sigma \cup \{\hat{a} \mid a \in \Sigma\} \, \, \text{und f\"ur} \, \, x = x_1 \cdots x_n \in \Sigma^* \\ \text{sei} \quad \quad \, \hat{x} = \begin{cases} x, & x = \varepsilon, \\ x_1 \cdots x_{n-1} \hat{x}_n, & x \neq \varepsilon. \end{cases}$
- Eine 1-NTM $M = (Z, \hat{\Sigma}, \Gamma, \delta, q_0, E)$ heißt linear beschränkt (kurz: M ist ein LBA), falls gilt:

$$\forall x \in \Sigma^* : \mathcal{K}_{\hat{x}} \vdash^* \mathit{uqav} \ \Rightarrow \ |\mathit{uav}| \leq \mathsf{max}\{|x|,1\}.$$

• Die von einem LBA akzeptierte oder erkannte Sprache ist

$$L(M) = \{x \in \Sigma^* \mid M(\hat{x}) \text{ akzeptiert}\}.$$

Bemerkung

Jede k-NTM, die bei Eingaben der Länge n höchstens linear viele (also cn + c für eine Konstante c) Bandfelder besucht, kann von einem LBA simuliert werden.

Linear beschränkte Automaten

Beispiel

• Es ist nicht schwer, die 1-DTM $M = (Z, \Sigma, \Gamma, \delta, q_0, E)$ mit

$$\delta: q_0 a \to q_1 AR$$
 (1) $q_1 a \to q_1 aR$ (2) $q_1 B \to q_1 BR$ (3) $q_1 b \to q_2 BL$ (4) $q_2 a \to q_2 aL$ (5) $q_2 B \to q_2 BL$ (6) $q_2 A \to q_0 AR$ (7) $q_0 B \to q_3 BR$ (8) $q_3 B \to q_3 BR$ (9) $q_3 \sqcup \to q_4 \sqcup N$ (10)

in einen deterministischen LBA (kurz: DLBA) $M' = (Z, \hat{\Sigma}, \Gamma', \delta', q_0, E)$ für die Sprache $\{a^n b^n | n \ge 1\}$ umzuwandeln.

- Ersetze hierzu
 - Σ durch $\hat{\Sigma} = \{a, b, \hat{a}, \hat{b}\}$,
 - Γ durch $\Gamma' = \hat{\Sigma} \cup \{A, B, \hat{B}, \sqcup\}$ sowie
 - die Anweisung $q_3 \sqcup \to q_4 \sqcup N$ (10) durch $q_3 \hat{B} \to q_4 \hat{B} N$ (10') und füge die Anweisungen $q_1 \hat{b} \to q_2 \hat{B} L$ (4a) und $q_0 \hat{B} \to q_4 \hat{B} N$ (8a) hinzu.

Linear beschränkte Automaten

Beispiel

- Ersetze hierzu
 - Σ durch $\hat{\Sigma} = \{a, b, \hat{a}, \hat{b}\},$
 - Γ durch $\Gamma' = \hat{\Sigma} \cup \{A, B, \hat{B}, \sqcup\}$ sowie
 - die Anweisung $q_3 \sqcup \to q_4 \sqcup N$ (10) durch $q_3 \hat{B} \to q_4 \hat{B} N$ (10')

und füge die Anweisungen $q_1\hat{b} \to q_2\hat{B}L$ (4a) und $q_0\hat{B} \to q_4\hat{B}N$ (8a) hinzu:

• Dann akzeptiert M' die Eingabe $aab\hat{b}$ wie folgt (d.h. $aabb \in L(M')$):

$$q_0$$
aab \hat{b} \vdash^* $AABq_1\hat{b}$ \vdash $AAq_2B\hat{B}$ \vdash^* $AABq_3\hat{B}$ \vdash $AABq_4\hat{B}$

Charakterisierung von CSL mittels LBAs

Als nächstes zeigen wir, dass LBAs genau die kontextsensitiven Sprachen erkennen.

Satz

 $CSL = \{L(M) \mid M \text{ ist ein LBA}\}.$

Beweis von $CSL \subseteq \{L(M) \mid M \text{ ist ein LBA}\}\$

Sei $G = (V, \Sigma, P, S)$ eine kontextsensitive Grammatik. Dann wird L(G) von folgendem LBA M akzeptiert (o.B.d.A. sei $\varepsilon \notin L(G)$):

Arbeitsweise von M bei Eingabe $x = x_1 \cdots x_n$ mit n > 0:

- Markiere das erste Eingabezeichen x_1
- 2 Wähle (nichtdeterministisch) eine Regel lpha
 ightarrow eta aus P
- Wähle ein beliebiges Vorkommen von β auf dem Band (falls β nicht vorkommt, halte ohne zu akzeptieren)
- 4 Ersetze die ersten $|\alpha|$ Zeichen von β durch α
- 5 Falls das erste (oder letzte) Zeichen von β markiert war, markiere auch das erste (letzte) Zeichen von α
- 6 Verschiebe die Zeichen rechts von β um $|\beta|-|\alpha|$ Positionen nach links und überschreibe die frei werdenden Bandfelder mit Blanks
- 7 Enthält das Band außer Blanks nur das (markierte) Startsymbol, so halte in einem Endzustand
- 8 Gehe zurück zu Schritt 2

Beweis von $CSL \subseteq \{L(M) \mid M \text{ ist ein LBA}\}$

- Nun ist leicht zu sehen, dass M wegen $|\beta| \ge |\alpha|$ tatsächlich ein LBA ist.
- M akzeptiert x, falls es gelingt, eine Ableitung für x in G zu finden (in umgekehrter Reihenfolge, d.h. M ist ein nichtdeterministischer Bottom-Up Parser).
- Da sich genau für die Wörter in L(G) eine Ableitung finden lässt, folgt L(M) = L(G).

- Sei $M = (Z, \hat{\Sigma}, \Gamma, \delta, q_0, E)$ ein LBA (o.B.d.A. sei $\varepsilon \notin L(M)$).
- Betrachte die kontextsensitive Grammatik $G = (V, \Sigma, P, S)$ mit

$$V = \{S, A\} \cup (Z\Gamma \cup \Gamma) \times \Sigma,$$

die für alle $a, b \in \Sigma$ und $c, d \in \Gamma$ folgende Regeln enthält:

$$P\colon \qquad S\to A(\hat{a},a),\ (q_0\hat{a},a) \qquad \qquad (S) \qquad \text{"Startregeln"}$$

$$A\to A(a,a),\ (q_0a,a) \qquad \qquad (A) \qquad \text{"A-Regeln"}$$

$$(c,a)\to a \qquad \qquad (F) \qquad \text{"Finale Regeln"}$$

$$(qc,a)\to a, \qquad \qquad \text{falls } q\in E \qquad (E) \qquad \text{"E-Regeln"}$$

$$(qc,a)\to (q'c',a), \qquad \text{falls } qc\to_M q'c'N \qquad (N) \qquad \text{"N-Regeln"}$$

$$(qc,a)(d,b)\to (c',a)(q'd,b), \qquad \text{falls } qc\to_M q'c'R \qquad (R) \qquad \text{"R-Regeln"}$$

$$(d,a)(qc,b)\to (q'd,a)(c',b), \qquad \text{falls } qc\to_M q'c'L \qquad (L) \qquad \text{"L-Regeln"}$$

Beispiel

• Betrachte den LBA $M = (Z, \hat{\Sigma}, \Gamma, \delta, q_0, E)$ mit $Z = \{q_0, \dots q_4\}$, $\Sigma = \{a, b\}$, $\Gamma = \{a, b, \hat{a}, \hat{b}, A, B, \hat{B}, \sqcup\}$ und $E = \{q_4\}$, sowie

$$\delta$$
: $q_0a o q_1AR$ $q_1\hat{b} o q_2\hat{B}L$ $q_0B o q_3BR$ $q_1a o q_1aR$ $q_2a o q_2aL$ $q_0\hat{B} o q_3BR$ $q_1B o q_1BR$ $q_2B o q_2BL$ $q_3B o q_3BR$ $q_1b o q_2BL$ $q_2A o q_0AR$ $q_3\hat{B} o q_4\hat{B}N$

• Die zugehörige kontextsensitive Grammatik $G=(V,\Sigma,P,S)$ enthält dann neben den Start- und A-Regeln

$$S o A(\hat{a}, a), \ A(\hat{b}, b), \ (q_0 \hat{a}, a), \ (q_0 \hat{b}, b) \ A o A(a, a), \ A(b, b), \ (q_0 a, a), \ (q_0 b, b) \ (A_1-A_4)$$

für jedes Zeichen $c \in \Gamma$ die F- und E-Regeln (wegen $E = \{q_4\}$) $(c, a) \to a, \ (c, b) \to b$ $(q_4c, a) \to a, \ (q_4c, b) \to b$ (E_1-E_{16})

Beispiel

ullet Die zugehörige kontextsensitive Grammatik $G=(V,\Sigma,P,S)$ enthält dann neben den Start- und A-Regeln

$$S \to A(\hat{a}, a), \ A(\hat{b}, b), \ (q_0 \hat{a}, a), \ (q_0 \hat{b}, b)$$
 (S₁-S₄)
 $A \to A(a, a), \ A(b, b), \ (q_0 a, a), \ (q_0 b, b)$ (A₁-A₄)

für jedes Zeichen $c \in \Gamma$ die F- und E-Regeln (wegen $E = \{q_4\}$) $(c,a) \to a, \ (c,b) \to b$ $(q_4c,a) \to a, \ (q_4c,b) \to b$ (E_1-E_{16})

$$ullet$$
 Für die Anweisung $q_3\hat{B} o q_4\hat{B}N$ die N-Regeln

$$(q_3\hat{B},a) o (q_4\hat{B},a), \quad (q_3\hat{B},b) o (q_4\hat{B},b)$$

• Daneben enthält P beispielsweise noch folgende Regeln:

• Für die Anweisung
$$q_1b \rightarrow q_2BL$$
 die L-Regeln (für jedes $d \in \Gamma$)
$$(d,a)(q_1b,a) \rightarrow (q_2d,a)(B,a), \quad (d,b)(q_1b,a) \rightarrow (q_2d,b)(B,a)$$

$$(d,a)(q_1b,b) \rightarrow (q_2d,a)(B,b), \quad (d,b)(q_1b,b) \rightarrow (q_2d,b)(B,b)$$

Beispiel

- Daneben enthält P beispielsweise noch folgende Regeln:
 - Für die Anweisung $q_3\hat{B} \to q_4\hat{B}N$ die N-Regeln $(q_3\hat{B},a) \to (q_4\hat{B},a), \quad (q_3\hat{B},b) \to (q_4\hat{B},b)$
 - Für die Anweisung $q_1b \rightarrow q_2BL$ die L-Regeln (für jedes $d \in \Gamma$) $(d,a)(q_1b,a) \rightarrow (q_2d,a)(B,a), \quad (d,b)(q_1b,a) \rightarrow (q_2d,b)(B,a)$ $(d,a)(q_1b,b) \rightarrow (q_2d,a)(B,b), \quad (d,b)(q_1b,b) \rightarrow (q_2d,b)(B,b)$
 - Für die Anweisung $q_0 a \rightarrow q_1 AR$ die R-Regeln (für jedes $d \in \Gamma$) $(q_0 a, a)(d, a) \rightarrow (A, a)(q_1 d, a), \quad (q_0 a, a)(d, b) \rightarrow (A, a)(q_1 d, b)$ $(q_0 a, b)(d, a) \rightarrow (A, b)(q_1 d, a), \quad (q_0 a, b)(d, b) \rightarrow (A, b)(q_1 d, b)$

4

- Sei $M = (Z, \hat{\Sigma}, \Gamma, \delta, q_0, E)$ ein LBA (o.B.d.A. sei $\varepsilon \notin L(M)$).
- Betrachte die kontextsensitive Grammatik $G = (V, \Sigma, P, S)$ mit

$$V = \{S, A\} \cup (Z\Gamma \cup \Gamma) \times \Sigma,$$

die für alle $a,b\in\Sigma$ und $c,d\in\Gamma$ folgende Regeln enthält:

 $(d, a)(gc, b) \rightarrow (g'd, a)(c', b)$, falls $gc \rightarrow_M g'c'L$ (L) "L-Regeln"

• Durch Induktion über m lässt sich nun leicht für alle $a_1, \ldots, a_n \in \Gamma$ und $q \in Z$ die folgende Äquivalenz beweisen:

$$q_0x_1\cdots x_{n-1}\hat{x}_n \vdash^m a_1\cdots a_{i-1}qa_i\cdots a_n \text{ gdw.}$$

$$(q_0x_1,x_1)\cdots(\hat{x}_n,x_n) \underset{(N,R,I)}{\Rightarrow} {}^m (a_1,x_1)\cdots(qa_i,x_i)\cdots(a_n,x_n)$$

• Ist also $q_0x_1\cdots x_{n-1}\hat{x}_n \vdash^m a_1\cdots a_{i-1}qa_i\cdots a_n$ eine akzeptierende Rechnung von $M(x_1\cdots x_{n-1}\hat{x}_n)$ mit $q\in E$, so folgt

$$S \underset{(S)}{\Rightarrow} A(\hat{x}_n, x_n) \underset{(A)}{\Rightarrow^{n-1}} (q_0 x_1, x_1)(x_2, x_2) \cdots (x_{n-1}, x_{n-1})(\hat{x}_n, x_n)$$

$$\underset{(N, L, R)}{\Rightarrow^m} (a_1, x_1) \cdots (a_{i-1}, x_{i-1})(qa_i, x_i) \cdots (a_n, x_n) \underset{(F, E)}{\Rightarrow^n} x_1 \cdots x_n$$

• Die Inklusion $L(G) \subseteq L(M)$ folgt analog.

Bemerkung

Eine einfache Modifikation des Beweises zeigt, dass 1-NTMs genau die Sprachen vom Typ 0 akzeptieren (siehe Übungen).

Deterministisch kontextsensitive Sprachen

Definition

Die Klasse der deterministisch kontextsensitiven Sprachen ist definiert als

```
DCSL = \{L(M) \mid M \text{ ist ein DLBA}\}.
```

Bemerkung

- Der DLBA M' für die Sprache $\{a^nb^n\mid n\geq 1\}$ aus obigem Beispiel lässt sich leicht in einen DLBA für die kontextsensitive Sprache $\{a^nb^nc^n\mid n\geq 1\}$ transformieren (siehe Übungen).
- Die Sprache $\{a^nb^nc^n \mid n \ge 1\}$ liegt also in DCSL \ CFL.
- Bis heute ungelöst ist die Frage, ob die Klasse DCSL eine echte Teilklasse von CSL ist oder nicht?
- Diese Fragestellung ist als LBA-Problem bekannt.

Zusammenfassung der Abschlusseigenschaften

	Vereinigung	Schnitt	Komplement	Produkt	Sternhülle
REG	ja	ja	ja	ja	ja
DCFL	nein	nein	ja	nein	nein
CFL	ja	nein	nein	ja	ja
DCSL	ja	ja	ja	ja	ja
CSL	ja	ja	ja	ja	ja
RE	ja	ja	nein	ja	ja

- In der VL Komplexitätstheorie wird gezeigt, dass die Klasse CSL unter Komplementbildung abgeschlossen ist.
- Im nächsten Kapitel werden wir sehen, dass die Klasse RE nicht unter Komplementbildung abgeschlossen ist.
- Die übrigen Abschlusseigenschaften der Klassen DCSL, CSL und RE in obiger Tabelle werden in den Übungen bewiesen.