Algorithms and Data Structures

Self-Organizing Lists

UIf Leser

Assumptions for Searching

e Until now, we implicitly assumed that every element of our
list is searched with the same probability, I.e., with the
same frequency

e Accordingly, we treated all elements equal and tried to
reduce the worst-case runtime for any element

e \We may sort the list by properties of its elements, but we
never considered properties of its usage

e This setting sometimes Is inadequate

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Searches on the Web [Germany, 2010, Google Zeitgeist]

achnellst wachsende Suchbegriffe Die haufigsten Suchbegriffe Meist gesuchte Personen
1. wem 2010 1. facebook 1. lena meyer-landrut
2. chatroulette 2. youtube 2. jorg kachelmann
3. ipad 3. berlin 3. daniela katzenberger
4. d=zd=s 2010 4. ebay 4. justin bieher
5. immobilienscout24 5. google 5. shakira
6. iphone 4 6. wetter 6. katy perry
7. facebook R 7. david guetta
5. zalando 5. gmx . miley cyrus
9. google street view 9. you 9. rihanna
10, studi vz 10, test 10, megan fox
Beliehte Produkte Meist gesuchte Machrichten Beliehte Bildersuchen
1. ipod 1. bayern 1. ipad
2. handy 2. menowin frahlich 2. lena meyer-landrut
3. =chuhe 3. jorg kachelmann 3. larizsa riguelme
4. fernzeher 4. stuttgart 21 4. mehrzad marashi
4. iphone 4. iphone 5. menowin frahlich
6. notebook 6. fc bayern 6. wvampire diaries
oo 7. aschewaolke 7. frisuren 2010
g, ipad G. daniela katzenberger 3. kesha

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Germany 2014 [Google trends]

Suchbegriffe

1 wwMz204

2 Michael Schumacher
3 iPhoneb

4 ImmebilienScout24

5 BSI Sicherheitstest

Maore

Musik

1 Conchita Wurst
2 ESC2014

3 Bohse Onkelz
4 Mieze Katz

5 Aneta Sablik

Mare

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Nachrichten

1 wwMm204
2 Michael Schumacher

3 Robin Williams

4 Ebola

5 UliHoenel
More

Technik

1 iPhoneé

2 Threema
3 Netflix
4 Samsung Galaxy 55

5 i0s8

Maore

Sport

1 wwm2m4

2 Medaillenspiegel
3 Olympia 2014

4 Neymar

5 Manuel Neuer

More

Personen

1 Michael Schumacher

2 Helene Fischer
3 Jennifer Lawrence
4 Melanie Miiller

5 Conchita Wurst

Maore

2016 [Google Zeitgeist]

Suchbegriffe Schlagzeilen Promis national

1 EM 2016 1 Brexit 1 Mico Rosberg

2 Pokemon Go 2 Deonald Trump 2 Sarah Lombardi

3 iPhone 7 3 us-wWahl 3 Helena Frst

4 Brexit 4 AfD 4 Vanessa Mai

5 Olympia 5 Brissel 5 Jan Béhmermann

=== Mehr === Mehr === Mehr

Promis international Abschiede Fragen: Warum ...?

1 Donald Trump 1 Tamme Hanken 1 Warum ist Prince gestorben?

2 Melania Trump 2 David Bowie 2 Warum haben Katzen Angst vor G...
3 Terence Hill 3 Roger Cicero 3 Warum ist Italien Gruppensieger?
4 Brigitte Nielsen 4 Prince 4 Warum Hamsterkdufe?

5 Antoine Griezmann 5 Bud Spencer 5 Warum Brexit?

=== Mehr === Mehr === Mehr

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Changing Freguencies [Google Zeitgeist]

chami!

Aufsteiger — Suchbegriffe Aufsteiger - Personen

wim chatroul- . dsds mmobien- phone e
2010 ette pad 2010 scout24 - facebook Faanes
FEE MARZ AFR MAI AUG EF OKT.

Diezes Gadget weitergeher: ‘ n

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Changing Word Usage [Google n‘gram viewer]

B cool) lassig
0.0001800%,
0.0001600%
0.0001 400%,
0.0001200%
0.0001000%
0.0000800%,
0.0000600%,
0.0000400%

0.0000200%:

0.00000005 1 L

g L= 1820 1840 1BG0 1BBO 1800 1820 1940 1960 1980 2000

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Zipf-Distribution

e Many events are not equally but Zipf-distributed

— Let f be the frequency of an event and r its rank in the list of all
events sorted by frequency

— Zipf's law: f ~ k/r for some constant k
e Examples 16000

— Search terms on the web 14000
12000
— Purchased goods 10000
— Words in a text 8000
— Sizes of cities 6000
0o 4000
— Opened files in a OS
2000
B 0 - | —

Source: http://searchengineland.com/the-long-tail-of-search-12198

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Changing the Scenario

e Assume we have a list L of values
e L Is searched very often
e But: Elements in L are searched with different frequencies

e How can we organize L such that a series of searches
following this frequency distribution is as fast as possible?

e Can we organize L such that searches are fast even when
the frequencies of searches change arbitrarily?

e Let L organize itself depending on its usage

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Content of this Lecture

e Self-Organizing Lists
— Fixed frequencies
— Dynamic frequencies

e QOrganization Strategies

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Simple Case: Fixed Frequencies

e For simplicity, we assume L has n=|L| different elements

e Let p; be the relative (and fixed) frequency at which the 1'th
element is searched (1<i<n)

e Example: Assume p; is distributed with p.=1/(1+i)?*c
— Assume n=25
— ¢: normalization factor to ensure >p=1
— Yields something like 41%, 18%, 10%, 6%, 4%, 3%, 2%, 1%, ...

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Analysis

e What are the expected costs for a series of searches
following the frequency distribution?

e Option 1: Assume L Is sorted by a key and we search L
with log(n) comparisons upon each search
— Independent of p;'s; that’s how we did it so far
— Expected cost for 100 searches: 100*log(n) ~ 500

e Option 2: Assume L is sorted by p;, and we search L linearly
upon each search

— In 41% of cases: 1 access; in 18% 2 accesses; in 10% 3; ...
— For 100 searches: 1*41+2*18+3*10+4*6+5*4+6*3+ ... — 380

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Other Distributions

e |If p=1/(1+i)3*c, we need only ~200 accesses for the
frequency-sorted list, but still ~500 for the value-sorted list
— Access frequencies: 62, 18, 7, 4, ...

e If p=1/n, we have 1336 versus —500 accesses
— Equal distribution, access frequencies: 4, 4, 4, 4, ...

e Summary
— Sorting the list by ,,popularity* may make sense

— Gain (or loss) in efficiency can be computed in advance if
frequency of accesses are known (and do not change)

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Content of this Lecture

e Self-Organizing Lists
— Fixed frequencies
— Dynamic frequencies

e QOrganization Strategies

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Self-Organizing Lists

e More Iinteresting scenario
— Access frequencies are not known in advance

— Access frequencies change over time

e Implication: It is not generally optimal to log searches for some time,
then compute popularity, then re-sort list

e Our model of self-organization
— After each access, we may change the order in the list

— Searching the (currently) i'th element of the list costs i operations
e |l.e., L is implemented as linked list
e Using arrays doesn’t help — we don’t know where the searched value is

e This scenario Is called a self-organizing linear list (SOL)

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Application: Caching

e Often, applications need to read more data from disk than
there is main memory
— Especially if there are more than one app running

e Reading from disk is ~10000 times slower than memory

e Caching: OS keeps those data blocks in memory for which
It expects that they will be reused (in the near future)

e There is not enough space to keep all ever used blocks

e Thus, when loading new blocks, the OS has to evict blocks
from the cache — which ones?
— Those that probably will not be reused in the near feature

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Caching and SOLs

e The OS must keep a SOL S with all block IDs sorted by
their popularity (= past/expected times they were read)

e The top-k blocks of the list are cached
e When loading a new block b, the OS ...

— evicts the k'th block in' S from memory
— loads b into the free space
— re-organizes S to reflect the change in popularity of b
e Prominent strategies in caching
— Most recently used: Popularity is the time stamp of the last usage
— Most frequently used: Popularity is the number of access until now

e See course on Operating Systems (or/and Databases)

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Content of this Lecture

e Self-Organizing Linear Lists
e QOrganization Strategies

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Organization Strategies

e Many proposals in the literature
e Many are very application specific

e Three general strategies are popular
— MF, move-to-front:
After searching an element e, move e to the front of L
e This is “most recently used” in OS terms

— T, transpose:
After searching an element e, swap e with its predecessor in L

— FC, frequency count:
Keep an access frequency counter for every element in L and keep
L sorted by this counter. After searching e, increase counter of e
and move “up” to keep sorted’'ness

e This is “most frequently used” in OS terms

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Visual

A 4

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Properties

e Move-to-Front, MF
— If a rare element is accessed, it “jams” the list head for some time
— Bursts of frequent same-element accesses are well supported
— No problem with changes in popularity over time (trends)

e Transpose, T
— Problems with fast changing trends — slow adaptation
— Frequently accessing same-elements well supported
e After some swing-in time
e Frequency Count, FC
— Requires O(n) additional space
— Re-sorting requires WC O(log(n)) time (binsearch in L[1...e])
e Rather O(1) in practice — local moves
— Slow adaptation to changing trends — old counts dominate list head

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Examples

e For each strategy, we can find sequences of accesses that
are very well supported and others that are not

e Example: L={1,2,...7}, n=7; assume two workloads
- S;:{1,2,..7, 1,2,.7, 1,2,... 7} (ten times)
- S,:{1,1,1,1,1,1,1,1,1,1, 2,2,2,... ... 6, 7,7,7,7,7,7,7,7,7,7}
— Each workload performs 70 searches, each element is accessed 10
times with the same relative frequency 1/7
e Assume an arbitrary static order of L
— There are seven different costs 1, ... 7
— Each cost is incurrent 10 times i
— Average cost per search for S; and for S,: n*(j =4

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

MF: Average Cost sz. o 2. 6,7 .3

Almost worst case

-« MF/S,

— In the first subsequence, we require i ops for the i'th access
— L then looks like 7,6,5,4,3,2,1
— We need 7 ops per element for all following subsequence

— Together 1 I
10*n (Z.”*g* ‘@
e MF/S,

— First subsequence requires 10=1+9 ops
— Second requires 2+9 Almost best case

— Third requires 3+9
— Together i £ 9*n*
sl Sivormf

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

FC: Average Cost

e FC/ S, (all counters are initialized with 0)

— First subsequence costs 2i and doesn’t change order
e Assuming stable sorting; now all counters are 1

— Same for all other subsequences

— Together 1 0
e [Ignoring the constant re-sorting costs] 10%n *10* ZI =4
« FC/S,

— First subsequence costs 10 and no change in order

— Second subsequence costs 20 and no change in order
— Same for all other subsequences

— Together 1 (< Loxi) 4
 [Ignoring the constant re-sorting costs] 10*n ; =

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

T: Average Cost

e T/S,
— First subsequence costs i = 28
— Order now is 2,3,4,5,6,7,1 — next subseq costs 7+1+2+...5+7 = 29
— Order now is 3,4,5,6,2,7,1 — next subseq costs 7+... = 30

Access ---- 7 1 Costs
1 3 4 5 6 2 1 7 7
2 3 4 5 2 6 1 7 5
3 3 4 5 2 6 1 7 1
4 4 3 5 2 6 1 7 2
5 4 5 3 2 6 1 7 3
6 4 5 3 6 2 1 7 5
7 4 5 3 6 2 7 1 7

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Worst Case Complexity

e Lemma
The worst case complexity of MF and T for searching a
workload W in a SOL L is O(|W[*[L])
e Proof
— A workload W consists of |W| requests
— A request consists of a search and a move

— Since a search may access any element, it is in O(|L|) in worst case
— Moves in Mf and in T are in O(1)
— ged.

e Note: FC is even slightly worse (re-sorting)

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Optimal Strategies

e “Optimality” of a strategy depends on the sequence of
accesses

e Conventional analysis assumes worst-case for every single
access, which is O(n) for every search in every strategy

e QOverly pessimistic: Accesses (by self-organization)
Influence (decrease!) the cost of subsequent accesses

e Using a clever trick, we can derive estimates about the
relative costs for different strategies over any seguence

e This trick is called amortized analysis
e This will take some time (next lecture)

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

Exemplary Questions

e Consider a list L{1,2,3,4,5} and the following workload
S$={1,3,33,5,5,5,5,5}. Analyze the cost of answering S
using the MF, the T, and the FC strategy

e Consider a list L, |L]=n, of n different elements and a
workload S which accesses element | with relative
frequency p,=1/(1+i)?*c. Which of our three strategies is
optimal for S?

e OS often use the least-recently used strategy for managing
a cache. Is LRU equivalent to our MF, T, or FC strategy?

UIf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017

	Foliennummer 1
	Assumptions for Searching
	Searches on the Web [Germany, 2010, Google Zeitgeist]
	Germany 2014 [Google trends]
	2016 [Google Zeitgeist]
	Changing Frequencies [Google Zeitgeist]
	Changing Word Usage [Google n‘gram viewer]
	Zipf-Distribution
	Changing the Scenario
	Content of this Lecture
	Simple Case: Fixed Frequencies
	Analysis
	Other Distributions
	Content of this Lecture
	Self-Organizing Lists
	Application: Caching
	Caching and SOLs
	Content of this Lecture
	Organization Strategies
	Visual
	Properties
	Examples
	MF: Average Cost
	FC: Average Cost
	T: Average Cost
	Worst Case Complexity
	Optimal Strategies
	Exemplary Questions

