

Maschinelle Sprachverarbeitung

Retrieval Models and Implementation

Ulf Leser

Content of this Lecture

- Information Retrieval Models
 - Boolean Model
 - Vector Space Model
- Inverted Files

Information Retrieval Core

- The core question in IR:
 Which of a given set of (normalized) documents is relevant for a given query?
- Ranking: How relevant for a given query is each document?

How can Relevance be Judged?

Notation

- Most of the models we discuss use the "Bag of Words"
- Definition
 - Let D be the set of all normalized documents, d∈D is a document
 - Let K be the set of all terms in D, $k_i \in K$ is a term
 - Let w be the function that maps a given document d to its multiset of distinct terms in K (its bag-of-words)
 - The bag of words of d is a vector v_d of size |K| with
 - $V_d[i]=0$ iff $k_i \notin W(d)$
 - $V_d[i]=1$ iff $k_i \in W(d)$
 - Often, we use weights instead of a Boolean membership
 - $V_d[i]=0$ iff $k_i \notin w(d)$
 - $V_d[i]=W_{ij}$ iff $k_i \in W(d)$

Boolean Model

- Simple model based on set theory
- Queries are specified as Boolean expressions over terms
 - Terms connected by AND, OR, NOT, (XOR, ...)
 - Parenthesis are possible (but ignored here)
- Relevance of a document is either 0 or 1
 - Let q contain the atoms (terms) $\langle k_1, k_2, ... \rangle$
 - An atom k_i evaluates to true for a document d iff $v_d[k_i]=1$
 - Compute truth values of all atoms for each d
 - Compute truth of q for each d as the logical expression over atoms
- Example: "(kaufen AND rad) OR NOT wir"
 - "wir kaufen ein rad" <(T AND T) OR NOT T> = T
 - "sei kaufen ein auto" <(T AND F) OR NOT F> = T

Properties

- Simple, clear semantics, widely used in early systems
- Disadvantages
 - No partial matching
 - Suppose query k₁∧k₂∧... ∧k₉
 - A doc d with $\mathbf{k}_1 \wedge \mathbf{k}_2 \dots \mathbf{k}_8$ is as irrelevant as one with none of the terms
 - No ranking
 - Terms cannot be weighted
 - No synonyms, homonyms, semantically close words
 - Lay users don't understand Boolean expressions
- Results: Often unsatisfactory
 - Too many documents (too few restrictions, many OR)
 - Too few documents (too many restrictions, many AND)

Content of this Lecture

- Information Retrieval Models
 - Boolean Model
 - Vector Space Model
- Inverted Files

Vector Space Model

- Salton, G., Wong, A. and Yang, C. S. (1975). "A Vector Space Model for Automatic Indexing." *Communications of the ACM* **18**(11): 613-620.
 - A breakthrough in IR
- General idea
 - Fix vocabulary K (the dictionary)
 - View each doc (and the query) as point in a |K|-dimensional space
 - Rank docs according to distance from the query in that space
- Main advantages
 - Inherent ranking (according to distance)
 - Naturally supports partial matching (increases distance)

Vector Space

Each term is one dimension

- Different suggestions for determining co-ordinates, i.e., term weights
- The closest docs are the most relevant ones
 - Rationale: Vectors correspond to themes which are loosely related to sets of terms
 - Set of terms interpreted as vector/point in |K|-dim space
 - Distance between vectors ~
 distance between themes
 - Different "distances"

The Angle between Two Vectors

 Recall: The scalar product between two vectors v and w of equal dimension is defined as

$$v \circ w = |v| * |w| * \cos(v, w)$$

This gives us the angle

$$\cos(v, w) = \frac{v \circ w}{|v| * |w|}$$

With

$$|v| = \sqrt{\sum_{i=1..n} v_i^2} \qquad v \circ w = \sum_{i=1..n} v_i^* w_i$$

Distance as Angle

Distance = cosine of the angle between doc d and query q

$$sim(d,q) = \cos(v_d,v_q) = \frac{v_d \circ v_q}{\left|v_d\right|*\left|v_q\right|} = \frac{\sum \left(v_q[i]*v_d[i]\right)}{\sqrt{\sum v_d[i]^2}*\sqrt{\sum v_q[i]^2}}$$
Length normalization
Can be dropped for ranking

Example

Assume stop word removal, stemming, Boolean weights

	Text	verkauf	haus	italien	gart	miet	blüh	woll
1	Wir verkaufen Häuser in Italien	1	1	1				
2	Häuser mit Gärten zu vermieten		1		1	1		
3	Häuser: In Italien, um Italien, um Italien herum		1	1				
4	Die italienschen Gärtner sind im Garten			1	1			
5	Der Garten in unserem italienschen Haus blüht		1	1	1		1	
Q	Wir wollen ein Haus mit Garten in Italien mieten		1	1	1	1		1

Ranking

$$sim(d,q) = \frac{\sum (v_q[i] * v_d[i])}{\sqrt{\sum v_d[i]^2}}$$

1	1	1	1				
2		1		1	1		
3		1	1				
4			1	1			
5		1	1	1		1	
Q		1	1	1	1		1

•
$$sim(d_1,q) = (1*0+1*1+1*1+0*1+0*1+0*0+0*1) / \sqrt{3}$$

$$\sim 1.15$$

•
$$sim(d_2,q) = (1+1+1) / \sqrt{3}$$

•
$$sim(d_3,q) = (1+1) / \sqrt{2}$$

•
$$sim(d_4,q) = (1+1) / \sqrt{2}$$

•
$$sim(d_5,q) = (1+1+1) / \sqrt{4}$$

$$\sim 1.5$$

Rg	Q: Wir wollen ein Haus mit Garten in Italien mieten						
1	d ₂ : Häuser mit Gärten zu vermieten						
2	d ₅ : Der Garten in unserem italienschen Haus blüht						
	d ₄ : Die italienschen Gärtner sind im Garten						
3	d ₃ : Häuser : In Italien , um Italien , um Italien herum						
5	d ₁ : Wir verkaufen Häuser in Italien						

Term Weights

- Definition
 Let D be a document collection, K be the set of all terms in D,
 d∈D and k∈K
 - The relative term frequency tf_{dk} is the relative frequency of k in d
 - The document frequency df_k is the frequency of docs in D containing k
 - May also be defined as the frequency of occurrences of k in D
 - The inverse document frequency is defined as $idf_k = |D| / df_k$
 - In practice, one usually uses $idf_k = log(|D| / (1+df_k))$
 - The tf*idf score w_{dk} of a term k in document d is defined as

$$w_{dk} = t f_{dk} * i d f_k$$

Example TF*IDF

$$sim(d,q) = \frac{\sum (v_q[i] * v_d[i])}{\sqrt{\sum v_d[i]^2}}$$

	IDF	5	5/4	5/4	5/3	5	5	DIV-0
_	1 (tf)	1/3	1/3	1/3				
Ī	2 (tf)		1/3		1/3	1/3		
Ī	3 (tf)		1/4	3/4				
I	4 (tf)			1/3	2/3			
I	5 (tf)		1/4	1/4	1/4		1/4	
I	Q		1	1	1	1		1

•
$$sim(d_1,q)=(5/4*1/3 + 5/4*1/3) / \sqrt{3.13}$$
 ~ 1.51

•
$$sim(d_2,q)=(5/4*1/3+5/3*1/3+5*1/3) / \sqrt{3.26}$$
 ~ 4,80

•
$$sim(d_3,q)=(5/4*1/4+5/4*3/4) / \sqrt{0.98}$$
 ~ 1,57

•
$$sim(d_4,q)=(5/4*1/3 + 5/3*2/3) / \sqrt{1.41}$$
 ~ 2,08

•
$$sim(d_5,q)=(5/4*1/4+5/4*1/4+5/3*1/4) / \sqrt{1.93} \sim 2.08$$

wollen ein Haus mit Garten in Italien mieten

Häuser mit Gärten zu vermieten

Der **Garten** in unserem **italienschen Haus** blüht Die **italienschen Gärtner** sind im **Garten**

Häuser: In **Italien**, um **Italien**, um **Italien** herum

Wir verkaufen **Häuser** in **Italien**

TF*IDF in Short

- Give terms in a doc d high weights which are ...
 - frequent in d and
 - infrequent in D
- IDF deals with the consequences of Zipf's law
 - The few very frequent (and unspecific) terms get lower scores
 - The many infrequent (and specific) terms get higher scores
- Interferes with stop word removal
 - If stop words are removed, IDF might not be necessary any more
 - If IDF is used, stop word removal might not be necessary any more

Shortcomings

- No treatment of synonyms (query expansion, ...)
- No treatment of homonyms
 - Different senses = different dimensions
 - We would need to disambiguate terms into their senses (later)
- No consideration of term order
 - But order carries semantic meaning
- Assumes that all terms are independent
 - Clearly wrong: some terms are semantically closer than others
 - Their co-appearance doesn't mean more than only one appearance
 - The appearance of "red" in a doc with "wine" doesn't mean much
 - Extension: Topic-based Vector Space Model
 - Latent Semantic Indexing (see IR lecture)

Content of this Lecture

- Information Retrieval Models
 - Boolean Model
 - Vector Space Model
- Inverted Files

Full-Text Indexing

- Fundamental operation for all IR models: find(k, D)
 - Given a query term k, find all docs from D containing it
- Can be implemented using online search
 - Search all occurrence of k in all docs from D
 - Algorithms: Boyer-Moore, Knuth-Morris-Pratt, etc.
- But
 - We generally assume that D is stable (compared to k)
 - We only search for discrete terms (after tokenization)
- Consequence: Better to pre-compute a term index over D
 - Also called "full-text index"

Inverted Files (or Inverted Index)

- Simple and effective index structure for terms
- Builds on the Bag of words approach
 - We give up the order of terms in docs (see positional index later)
- Start from "docs containing terms" (~ "docs") and invert to "terms appearing in docs" (~ "inverted docs")

```
d1: t1,t3
d2: t1
d3: t2,t3
d4: t1
d5: t1,t2,t3
d6: t1,t2
d7: t2
d8: t2
```

Building an Inverted File [Andreas Nürnberger, IR-2007]

was

Dictionary and Posting List

- Split up inverted file into dictionary and posting list
 - Dictionary is not very large keep in memory
 - Each entry maintains a pointer to its posting list
 - Posting lists are on disk
 - One IO for finding posting list for a given term

Adding Term Weighting

- VSM with TF*IDF requires term frequencies
 - Dictionary stores IDF per term
 - Postings store lists of pairs (docID, tf)

Dictionary

Postings

Searching in VSM

- Assume we want to retrieve the top-r docs
- Algorithm
 - Initialize an empty doc-list S (as hash table or priority queue)
 - Iterate through query terms k_i
 - Walk through posting list of k_i (elements (docID, TF))
 - If docID∈S: S[docID] =+ IDF[k_i]*TF
 - else: $S = S.append((docID, IDF[k_i]*TF))$
 - Length-normalize values and compute cosine
 - Return top-r docs in S
- S contains all and only those docs containing at least one k_i

Space

- Size of dictionary: O(|K|)
 - Zipf's law: From a certain corpus size on, new terms appear only very infrequently
 - But there are always new terms, no matter how large D
 - Example: 1GB text (TREC-2) generates only 5MB dictionary
 - Typically: <1 Million
 - Many more in multi-lingual corpora, web corpora, etc.
- Size of posting list
 - Theoretic worst case: O(|K|*|D|)
 - Practical: A few hundred entries for each doc in D

Storing the Dictionary

- Dictionary as array (keyword, DF, ptr)
- Since keywords have different lengths: Implementation will be (ptr1, DF, ptr2)
 - ptr1: To string (the keyword)
 - ptr2: To posting list
- Search: Compute log(|K|) memory addresses, follow ptr1, compare strings: O(log(|K|)*|k|)
- Construction: O(|K|*log(|K|))
- Alternatives: Hashing, Keyword Trees

Term	DF	
а	1	ptr
aid	1	ptr
all	1	ptr
and	1	ptr
come	1	ptr
country	2	ptr
dark	1	ptr
for	1	ptr
good	1	ptr
in	1	ptr
is	1	ptr
it	1	ptr
manor	1	ptr
men	1	ptr
midnight	1	ptr
night	1	ptr
now	1	ptr

Storing the Posting File

- Posting file is usually kept on disk
- Thus, we need an IO-optimized data structure
- Static
 - Store posting lists one after the other in large file
 - Posting-ptr is (large) offset in this file
- Prepare for inserts
 - Reserve additional space per posting
 - Good idea: Large initial posting lists get large extra space
 - Many inserts can be handled internally
 - Upon overflow, append entire posting list at the end of the file
 - Place pointer at old position at most two access per posting list
 - Can lead to many holes requires regular reorganization

Positional Information

- What if we search for phrases: "Bill Clinton", "Ulf Leser"
 - − ~10% of web searches are phrase queries
- What if we search by proximity "car AND rent/5"
 - "We rent cars", "cars for rent", "special care rent", "if you want to rent a car, click here", "Cars and motorcycles for rent", ...
- We need positional information

Effects

- Dictionary is not affected
- Posting lists get much larger
 - Store <docID, TF, <pos>> instead of <docID,TF>
 - Index with positional information typically 30-50% larger than the corpus itself
 - Especially frequent words (stop words) require excessive storage
- Use compression or remove stop words

Self Assessment

- Explain the vector space model
- How is the size of K (vocabulary) influenced by preprocessing?
- Describe some variations of deducing term weights
- How could we extend the VSM to also consider the order of terms (to a certain degree)?
- Explain idea and structure of inverted files?
- What are possible data structures for the dictionary?
 Advantages / disadvantages?
- What decisions influence the size of posting lists?