
An adaptive test for the two-sample scale problem
where the common quantile may be different from the

median
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Abstract

In the usual two-sample scale problem it is assumed that the two populations have
a common median. We consider the case where the common quantile may be
other than a half. We investigate a quite general class, all members are based on U-
statistics where the minima and maxima of subsamples of various sizes are used.
The asymptotic efficacies are investigated in detail. We construct an adaptive test
where all statistics involved are suitably chosen. It is shown that the proposed
adaptive test has good asymptotic and finite power properties.
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1. Introduction

Let X1, . . . , Xn1 and Y1, . . . , Yn2 be independent random samples from a pop-
ulation with absolutely continuous distribution functions F (x) and F (x/eϑ). We
wish to test

H0 : ϑ = 0

against the alternative
H1 : ϑ 6= 0.

The general two-sample scale problem was considered by Kochar and Gupta
(1986), Kössler (1994, 1999), Hall et. al. (1997), Ramsey and Ramsey (2007),
and more recently, by Kössler and Kumar (2010) and Marozzi (2011, 2012).

∗Corresponding Author, Rudower Chaussee 25, D-12489 Berlin, Tel.:+49 3020933087

Preprint submitted to Statistical Methodology August 17, 2015



Here, we consider the scale case when the populations have a common known
quantile that may be of an order other than half. Such problems have many prac-
tical applications. As an example, cf. Deshpande and Kusum (1984) , let us have
two filling machines that shall fill half of kg cans of dried milk. According to a
given laid down criterion not more than five percent of the cans be under filled.
Therefore both the machines are adjusted in such a way that five percent of the
cans contain less than half kg and 95 percents can contain more than half kg of
dried milk. In this case we can say that the distribution of the amount filled by the
machines have a common quantile of order 0.05 and the more efficient machine is
the one with smaller dispersion around this quantile.

Another field where such problem may occur is the pharmaceutical industry.
Liu et.al. (2013) report on a drug-drug interaction study on a rheumatoid arthritis
test drug where the test compound is taken by patients which are already under
a particular medication (MTX, in this case). However the test compounds may
result in a delayed elimination of MTX which is toxic if it remains too long in the
body. Therefore the 24h MTX plasma level should not exceed a certain threshold
value t, say 5picograms, with given probability q, e.q. q = 0.9. Assume now we
have two test drugs under study, both satisfy the quantile condition F (t) = q for
the MTX level. Then the question is whether the MTX levels of the two test drugs
differ in scale.

The ranked-set setting of such a question was considered in Öztürk and Desh-
pande (2004) and in Gaur et al. (2013).

Assume without restriction to the generality the common quantile is zero, i.e.
F (0) = α. Mehra and Rao (1992) suggested the follwing kernel

Φ(x1, . . . , xk, y1, . . . , yk) =



1 if 0 ≤ x(k)k < y(k)k and 0 ≤ x(1)k, y(1)k

1 if y(1)k < x(1)k < 0 and x(k)k, y(k)k < 0

−1 if 0 ≤ y(k)k < x(k)k and 0 ≤ x(1)k, y(1)k

−1 if x(1)k < y(1)k < 0 and x(k)k, y(k)k < 0

0 otherwise,

where x(i)k is the ith order statistic in a subsample of size k from the X-sample
(and likewise for y’s). The suggested test statistic is

Uk =
n1n2(

n1

k

)
·
(
n2

k

)∑Φ(Xr1 , . . . , Xrk , Ys1 , . . . , Ysk),

where the summation extends over all possible combinations (r1, . . . , rk) of k
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integers from {1, . . . , n1} and all possible combinations (s1, . . . , sk) of k integers
from {1, . . . , n2}. Obviously, large values of Uk speak for more scaled Y -sample.

Note that the kernel presented is a natural extension of Despande and Kusum
(1984) [1] and Kusum (1985) [12].

The article is organized as follows. In Section 2 we give a rank representation
of the test statistic that simplifies their computation considerably. In Section 3 we
compute their asymptotic efficacies and intend to determine a suitable choice of
subsample size k w.r.t. tail behaviour of the underlying distribution. The results
are used to define an adaptive test in Section 4. A simulation study is performed
in Section 5. Section 6 gives a short example of the application of our test. Con-
clusions are drawn in Section 7.

2. Rank representation of Uk

Let us consider the positive and negative observations separately and let n<
j

and n≥j , j = 1, 2 the numbers of the negative and nonnegative observations, re-
spectively. Let R(s) be the rank of the Y(s) observation in the pooled sample and
Q(s) = R(s) − n<

1 − n<
2 . Assume first that we have no tied observations.

Then we may write Uk as

Uk =
n1n2(

n1

k

)
·
(
n2

k

)((T1k + T2k)− (T3k + T4k)

)
,

with

T1k = =

n≥
2∑

s=k

(
s− 1

k − 1

)(
Q(s) − s

k

)
T3k =

(
n≥1
k

)(
n≥2
k

)
− T1k

T4k =

n<
2∑

s=1

k∑
j=1

(
n<
2 − s
k − 1

)(
R(s) − s

j

)(
n<
1 + s−R(s)

k − j

)
T2k =

(
n<
1

k

)(
n<
2

k

)
− T4k

where the rank representations of the components are derived from Kumar, et al.
(2003), cf. also Kössler and Kumar (2010). Note that Mehra and Rao (1992)
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obtained a different rank representation of Uk.
There are several opportunities to handle ties, cf. e.g. Hajek et.al. (1999).

We prefer to assign random ranks to the tied observations. This procedure is
equivalent to add a very small random error to the tied observations and it has the
advantage that the (asymptotic) distribution properties of Uk are preserved.

3. Asymptotic distributions and asymptotic efficacies

LetN = n1+n2. The asymptotic distribution of
√
N(Uk−E(Uk)) asN →∞

in such a way that n1/N → λ, 0 < λ < 1, is normal with mean zero and variance

σ2
k =

k2η10
λ

+
k2η01
1− λ

where

η10 = var(φ1,0(X))

η01 = var(φ0,1(X))

φ1,0(x) = E(Φ(x,X2, . . . , Xk, Y1, . . . , Yk)

φ0,1(x) = E(Φ(X1, . . . , Xk, y, Y2, . . . , Yk).

Under H0 we see that E(Uk) = 0 and

σ2
k =

k2

(4k − 1)λ(1− λ)

(
α4k−1 + (1− α)4k−1

)
,

cf. Mehra and Rao (1992) [16]. Moreover, under the sequence of alternatives
θN = θN−1/2 the asymptotic efficacy (AEk) of Uk is

AEk =
η2k
σ2
k

where
ηk = λ(1− λ) · 2k2

∫ ∞
−∞
|x|(F (x)− α)2k−2f 2(x) dx

For k = 1 the statistic Uk reduces to Despande and Kusum (1984)[1] and for
k = 2 it reduces to Kusum (1985) [12].

In the following we provide some AEk (except for the factor λ(1 − λ)) for
some values of k, various densities, and for α = 0.5, 0.1, 0.05, 0.01. That AEk
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that are the largest for a given density and a given α value are written in bold style.
We see from Table 1 that for the uniform we have the largest AEk for k as

large as possible, which is not surprising. For the other densities we always have
optimal values for some k, all k are less than or equal to 4. Moreover, for densities
with shorter tails (normal, exponential) the choice of k = 3 or k = 4 is the best,
for densities with medium tails (logistic, Gumbel) the choice of k = 2 is the best,
for that with longer tails (DE, t2) k = 1 (or k = 2, dependent on α) should be
chosen. To confirm these findings we performed further calculations, for various
t-densities, especially for the Cauchy, cf. Table 2.

4. An adaptive test

Considering our original examples, values of α about 0.05 or 0.1 are of most
interest here, and the calculations of the previous section suggest to introduce the
following adaptive test. We apply the concept of Hogg (1974) , which was already
applied for the ordinary two-sample scale problem by Kössler (1994), Hall et al.
(1997) and, more recently by Marozzi (2012). That is, we classify at first the type
of the underlying density with respect to one measure of tailweight t, which is
defined by

t =
F−1(0.95)− F−1(0.05)

F−1(0.85)− F−1(0.15)
. (1)

An estimate t̂, is obtained by inserting Q̂(u), the so-called classical quantile esti-
mate of F−1(u)in (1), with

Q̂(u) =


X(1) − (1− δ) · (X(2) −X(1)) if u < 1/(2 ·N)

(1− δ) ·X(j) + δ ·X(j+1) if 1
2·N ≤ u ≤ 2·N−1

2·N
X(N) + δ(X(N) −X(N−1)) if u > (2 ·N − 1)/(2 ·N),

(2)

where δ = N · u+ 1/2− j and j = bN · u+ 1/2c.
Define regions E1, . . . , E4 which separate the space of continuous distribu-

tions into four disjunct subsets, E1 = {t > 2.0} (long tails), E2 = {1.6 ≤ t ≤
2.0} (medium tails), E3 = {1.4 ≤ t < 1.6} (short tails), and E4 = {t < 1.4}
(very short tails).

The cutoff values of the regions are determined in such a way that the vast
majority of densities is classified correctly, i.e. they fall in the class that has the
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Table 1: AEk (except for the factor λ(1 − λ)) for k = 1, . . . , 8, uniform, normal, Gumbel,
exponential, logistic, DE, t2 distribution

density tailw. α k=1 k=2 k=3 k=4 k=5 k=5 k=7 k=8
uniform 1.286 0.50 3 7 11 15 19 23 27 31

0.10 2.76 6.30 9.90 13.5 17.1 20.7 24.3 27.9
0.05 2.87 6.65 10.45 14.25 18.05 21.85 25.45 29.45
0.01 2.97 6.93 10.89 14.85 18.81 22.77 26.73 30.69

normal 1.587 0.50 1.22 1.68 1.82 1.85 1.84 1.81 1.78 1.75
0.10 2.21 3.05 3.27 3.28 3.25 3.15 3.08 2.99
0.05 3.03 4.13 4.35 4.34 4.24 4.13 4.00 3.87
0.01 5.33 6.81 6.96 6.81 6.57 6.32 6.01 5.85

Gumbel 1.655 0.50 1.23 1.72 1.87 1.92 1.91 1.89 1.86 1.83
0.10 1.31 1.56 1.54 1.47 1.40 1.32 1.26 1.20
0.05 1.65 1.94 1.89 1.78 1.68 1.58 1.50 1.42
0.01 2.50 2.73 2.57 2.38 2.20 2.05 1.93 1.81

exponen. 1.697 0.50 2.36 4.95 7.31 9.55 11.73 13.82 15.98 18.06
0.10 0.71 0.82 0.83 0.81 0.79 0.76 0.73 0.70
0.05 0.72 0.87 0.88 0.86 0.83 0.80 0.77 0.74
0.01 0.74 0.90 0.92 0.90 0.86 0.83 0.80 0.77

logistic 1.697 0.50 1.05 1.33 1.36 1.33 1.28 1.22 1.18 1.13
0.10 2.27 2.85 2.83 2.69 2.38 2.24 2.12
0.05 3.39 4.18 4.08 3.82 3.56 3.32 3.11 2.92
0.01 7.26 8.31 7.77 7.08 6.45 5.94 5.11

DE 1.912 0.50 0.75 0.91 0.93 0.90 0.87 0.84 0.81 0.78
0.10 2.72 2.78 2.34 2.06 1.83 1.67 1.54 1.44
0.05 4.66 4.73 3.92 3.30 2.87 2.33 2.23 2.14
0.01 11.83 11.52 9.09 7.33 6.16 5.35 4.75 4.29

t2 2.107 0.50 0.75 0.78 0.69 0.60 0.53 0.47 0.42 0.38
0.10 2.59 2.63 2.18 1.79 1.49 1.26 1.09 0.95
0.05 5.19 5.11 4.09 3.26 2.66 2.21 1.87 1.61
0.01 26.0 23.4 17.5 13.3 10.3 8.28 6.79 5.69
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Table 2: AEk (except for the factor λ(1− λ)) for k = 1, 2, 3, various tν densities

density tailweight α k=1 k=2 k=3
t1 3.217 0.50 0.49 0.41 0.31

0.10 4.00 3.08 1.98
0.05 14.15 10.77 6.60
0.01 317.2 237.6 138.8

t2 2.107 0.50 0.75 0.78 0.69
0.10 2.59 2.63 2.18
0.05 5.19 5.11 4.09
0.01 26.0 23.4 17.5

t3 1.798 0.50 0.88 0.99 0.93
0.10 2.38 2.67 2.42
0.05 4.11 4.49 3.95
0.01 13.5 13.4 11.1

t4 1.786 0.50 0.95 1.13 1.10
0.10 2.31 2.73 2.58
0.05 3.73 4.30 3.97
0.01 10.1 10.7 9.36

t5 1.737 0.50 1.00 1.22 1.21
0.10 2.28 2.78 2.69
0.05 3.54 4.23 4.00
0.01 8.69 9.52 8.60
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highest asymptotic power (cf. Tables 1 and 2). For example, the normal (tail-
weight t=1.59) is classified to E3, and the test U3, which is the best among the
considered tests, is performed. The logistic is mapped to region E2 and the 1test
U2 is performed. Similar observations for the other densities lead to the given cut-
off values. In few cases, if the classification doesn’t be correct, then the efficacy
loss is very small in almost all cases.

Now, we propose the simple Adaptive test A which is based on the four U-
statistics Uk, k = 1, 2, 3, 4 and on the selector statistic S = t̂,

choose Uk if S ∈ Ek.

Since the Adaptive test A is based on the concept of Hogg (1974) it is asymptot-
ically distribution-free, and the asymptotic power of the Adaptive test A is that
of the test Uk when the underlying density belongs to region Ek, cf. e.g. Kössler
(2006).

5. Simulation study

In order to assess whether the asymptotic theory can also be applied for medium
to small sample sizes a simulation study (10,000 replications each for the null
case, 1,000 replications each for the alternative cases) is performed. We choose
the following eight distributions:

- Uniform distribution (density with very small tailweight),
- Normal distribution (density with small tailweight),
- Exponential distribution (skew density with small tailweight),
- Logistic distribution (density with medium tailweight),
- Doubleexponential distribution (density with large tailweight),
- Cauchy distribution (density with very large tailweight),
- Gumbel distribution (skew density),
- a scale contaminated normal (density with medium tailweight)

We consider the four single U-tests Uk, and the Adaptive test A(t̂).
The sample sizes n1 = n2 = 10, 25, 50, 100, 400 as well as n1 = 100, n2 =

200 and n1 = 200, n2 = 100 (the latter only for α = 0.05) and the alternatives
θN = N−1/2θ with various θ are considered. Estimated levels of significance
are summarized in Table 3 for the uniform density. For the other densities we get
similar values except for the adaptive test. For the adaptive test the estimated level
is similar to that for the best test for the respective density. E.g. for the uniform

8



Table 3: Estimated levels of significance for the various tests, common α quantile, uniform density

α n1 = n2 U1 U2 U3 U4 Adaptive
0.1 25 0.0538 0.0582 0.0678 0.0765 0.0753

50 0.0488 0.0527 0.0599 0.0648 0.0637
100 0.0512 0.0521 0.0542 0.0585 0.0585
400 0.0489 0.0478 0.0513 0.0507 0.0507

0.05 25 0.0509 0.0575 0.0615 0.0693 0.0686
50 0.0509 0.0516 0.0561 0.0600 0.0592

100 0.0498 0.0473 0.0522 0.0536 0.0537
400 0.0534 0.0521 0.0505 0.0523 0.0523

n1=100, n2=200 0.0489 0.0496 0.0516 0.0539 0.0538
n1=200, n2=100 0.0510 0.0522 0.0522 0.0537 0.0537

the adaptive test satisfies the level if and only if the test U4 satisfies it, for the
normal adaptive test satisfies the level if and only if the test U3 satisfies it.

For n1 = n2 = 400 the level is satisfied for all tests, for n1, n2 ≥ 100 this
fact is true for U1, U2 and perhaps for U3. U4 is slightly anticonservative, for n1 =
n2 = 50 U3 is also slightly anticonservative. For n1 = n2 = 25 all tests are more
or less anticonservative, where the degree of anticonservativity of Ui increases
with the index i. Generally, the degree of anticonservativity of Ui increases with
the index i and decreases with the sample size.

The power is as expected, the adaptive test is always the best or the second
best (after the asymptotically best) among the four single tests Uk, k = 1, 2, 3, 4.
This assertion is true for all sample sizes.

To get an impression, for n1 = n2 = 400 the results of the simulation study
are summarized in Figure 1. For some densities, such as for the normal or con-
taminated normal the power curves of various tests look very similar.

6. Illustrative example

To illustrate our procedure we consider a factory that produces 500ml milk
packets. The packages are filled in such a way that they consist at least the critical
value of 500ml with probability of at least 95%. Assume, there are two machines
of maybe different costs. The management of the factory has to decide which
of the two machines is to use. They prefer that machine with significantly lower
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Figure 1: Power functions for m = n = 400 of the various U-tests and for the adaptive test.
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Figure 2: Two normals with different scales and common 0.05-quantile at point x0 = 500

variance as in this case less milk is used.
In our simulation we used two normals, each with 0.05-quantile at point 500,

X ∼ N (505, 3.042) and Y ∼ N (510, 6.082) (cf. Figure 2) In our example we
obtain U1 = 0.511, U2 = 0.646, U3 = 0.649, U4 = 0.613 and the adaptive test
chooses test U2 which is asymptotically almost as good as the best test. All p-
values are very small, p < 0.0001.

7. Conclusions

The asymptotics works well for sample sizes from 400 on. That seems to be
rather large, however, as we use small quantiles as small as 0.01, 0.05 and 0.1,
that result might be expected. Note that we also, for smaller sample sizes, tried to
estimate the variance or to use permutation methods, but the results did not turn
better.

The results of our study may be summarized as follows.

• use single or adaptive test if n1 = n2 ≥ 400

• if i = 1, 2 then use single or adaptive test if n1 = n2 ≥ 100

• if there are long tails take k=1, for medium tails take k = 2 or k = 3, and
for short tails take k = 4 (or, perhaps, more)
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• if density is unknown use the adaptive test
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