
Diplomarbeit

Exposé

Humboldt-Universität zu Berlin

Mathematisch-Naturwissenschaftliche Fakultät II

Institut für Informatik

eingereicht von: Max Schultze

Betreuer: Prof. Dr. Ulf Leser

2

1.1 Abstract

During the last years the amount of unstructured or semi-structured data generated through so-
cial networks, business applications and scienti�c research has grown rapidly. Typical data base
management systems were no longer or only insu�ciently able to process all that data in a timely
fashion, which lead to the development of new Big Data management systems. Google's MapRe-
duce programming paradigm [DG04] was a recent suggestion on how to break down computations
in smaller tasks and run them in parallel on big clusters. Since then multiple systems have been
developed to extend the initial MapReduce approach creating environments for the application of
complex analysis pipelines on very large data sets.

AsterixDB [AST] and Apache Flink [AFL] are two systems that were developed around the
same time in di�erent research projects. AsterixDB runs on the Hyracks data-parallel plat-
form [BCG+11] and has its own query language AQL. Apache Flink was �rst developed as the
Stratosphere project [STR] and later on included into the Apache software foundation. Flink runs
on Hadoop's YARN [YRN] and is embraced by a Java API and a Scala API.

The goal of this diploma thesis is to develop a module that translates AQL queries into ex-
ecutable Scala code for Apache Flink and to compare the two systems with each other running
certain queries in their respective environments, yet on the same hardware.

1.2 AsterixDB

This section gives a very brief overview about the AsterixDB system as well as its query language
AQL. AsterixDB is a Big Data management system developed by researchers at UC Irvine, UC
Riverside and UC San Diego. It was initiated as the NSF-sponsored Asterix project in 2009 and
was designed to develop new technologies for ingesting, storing, managing, indexing, querying and
analyzing vast quantities of semi-structured information [AST]. The �rst system beta was released
in June 2013 and a �rst full description of the system was published at the Very Large Data Bases
Conference in september 2014 [AAA+14].

Figure 1.1: AsterixDB System Overview [AAA+14]

1.2. ASTERIXDB 3

Figure 1.1 shows an overview of AsterixDB and its logical architecture. Data is inserted via
loading, continuous feeds and/or insertion queries. It is accessed via queries through AsterixDB's
own query language AQL. The logical entry point for user queries is the cluster controller. Herein
lies the Asterix client interface, which is a HTTP-based API that receives the queries and re-
turns the results either synchronously or asynchronously. The cluster controller also contains
the AQL compiler, that translates AQL queries into job descriptions, as well as the job executor
that distributes those job descriptions to the node controllers. The data �ow execution engine
is Hyracks [BCG+11]. Once AQL queries are compiled into DAGs of operators and connectors
they are submitted as a Hyracks job. Hyracks than manages the computational resources of the
underlying cluster as well as the data access and storage.

Asterix Query Language - AQL

AQL is AsterixDB's own query language to access and return data. In the contrary to other
Big Data systems like Flink [AFL] and Hive [AHV] that use SQL like query languages, AQL is
based on XQuery to have an easier access to non-�at data with a lack of a priori schemas as well as
to have a good approach for nested queries. AQL queries are based on the FLWOR structure that
was taken from XQuery. FLWOR stands for for-let-where-order by-return which are the �ve
most common clauses of the AQL query syntax. for in AQL is like a FROM clause in SQL whereas
return is like the SELECT clause.

Query 1

1: for $ds in dataset d return $ds;

Query 1 shows the simplest query that uses the for and return clauses to return all instances of
a target AsterixDB dataset d.

Query 2

1: for $user in dataset Users

2: where $user.latest-login >= datetime('2015-01-01T00:00:00')

3: order by $user.language asc

4: return $user;

The where clause and the order by clause are similar to the ones used in SQL. Query 2 shows
a simple �lter condition to return all users from a dataset User that have been active since the
beginning of 2015 sorted by their languages.

Query 3 from [AS2]

1: for $user in dataset Users

2: let $messages :=

3: for $message in dataset Messages

4: where $message.author-id = $user.id

5: return $message.message

6: return

7: {

8: �uname�: $user.name,

9: �messages�: $messages

10: };

4

The let clause is similar to the WITH clause used in SQL. It is an easy way to construct nested
queries. Query 3 shows an example where for each user in a dataset Users all the messages from
a dataset Messages that he is assigned as an author for are returned together with his user name.

1.3 Apache Flink

Flink is a data processing system incubated in the Apache Software Foundation. It was originally
developed as the DFG-funded Stratosphere project at TU Berlin, HU Berlin and HPI Potsdam
to build a fast, reliable, expressive, easy to use and scalable alternative to Hadoop's MapReduce
component. A �rst Stratosphere beta was released in 2012 and the Apache Flink system was most
recently approved as a top-level Apache project.

Figure 1.2: Flink in the Open Source Landscape [AFL]

Figure 1.2 shows where to locate Flink in the open source landscape. It is an alternative to
Hadoop's MapReduce data processing engine that runs on top of Hadoop's YARN [YRN]. YARN
manages the resources and nodes of the underlying Hadoop Distributed File System (HDFS). Flink
supports a Java API and a Scala API. Previous versions of Stratosphere also had its own query
language Meteor [HRL+12].

Scala

Scala is a functional, object-oriented, extendable and strongly typed programming language. It �ts
in seamlessly with Java and .NET-platforms as it runs on a JVM or .NET VM such that already
existing frameworks and libraries can be used. A short list of programming constructs will be
shown to give an overview of what can be done with Scala. Following that there is an example
within the Apache Flink context.

There are two types of variables in Scala which are both shown above. var de�nes a variable that
can be changed whereas val de�nes a �xed constant. As said before Scala is strongly typed. The
type can be given explicitly or be implied from the initial value.

1.4. COMPARISON 5

Classes in Scala are syntactically similar to Java classes and de�ned as shown above.

In Scala there are no static variables or methods. Instead object classi�es a class with only a
single instance, a singleton. E.g. an application can be realized as an object as shown above.

Functions in Scala are de�ned with the keyword def. It is not necessary to write a return statement
as the value of the last expression is automatically returned. A id:type syntax is used for the
de�nition as shown above.

Figure 1.3 shows the Flink wordcount example written in Scala which was taken from the
Apache Flink Scala API documentation [AFL]. A given text is split into its single words that are
each counted separate as one. Afterwards it is grouped by those words and summed up over each
group. The example shows how functions can be concatenated in Scala and the result of their
computations are stored in a single variable.

1.4 Comparison

The main goal of this thesis is to compare AsterixDB and Flink to each other. This section gives
a brief overview about the main di�erences between the two systems.

As seen in Figure 1.4 the two systems are build on a similar architecture stack as they both
have a data processing engine, a resource management layer and a storage layer. While Flink runs
Hadoop's Yarn and uses the underlying HDFS, AsterixDB has its own resource management plat-
form that already includes the data storage. The data processing engines are the main components
Flink and AsterixDB. On top of that AsterixDB has its own query language AQL. In the contraire
Flink only has a build in Java API and a Scala API that can be used to write and run queries.
The red dashed arrow symbolizes the translation module that shall be written for this thesis to
connect AQL to the Scala API of Flink.

Scala is a functional and object-oriented programming language. The Scala API of Flink
also supports transformational functions like Map, Reduce and several joins for processed data
sets. AQL does not support external User De�ned Functions (UDFs), but only has a �xed set of
commands. Because of that the aim is to fully translate AQL into Scala.

1.5 Thesis

The goal of this diploma thesis is to develop a module that translates AQL queries into executable
Scala code for Apache Flink and to compare the two systems with each other running certain

6

Figure 1.3: Scala Wordcount example in Flink [AFL]

queries in their respective environments, yet on the same hardware.

Procedure

To achieve the goal several steps have to be taken. First of all the two systems need to be setup
in a local environment for development and testing. After that the existing interfaces need to be
analysed to �gure out the detailed speci�cation for the translation module. This is partially done
already and will be �nished soon. To write the module it is necessary to parse AQL queries and
analyse them semantically to automatically generate Scala code for the Flink system. Once this is
done �rst queries will be run locally on both systems to get a �rst comparison. The last step will
be to setup both systems separate on a big cluster environment and run representative queries on
big underlying data to get a comparative look at their performances.

Evaluation

To evaluate the work of this thesis and to compare the two systems to each other several queries
will be run. First of all the functionality of the two systems will be tested with complex queries
that reach over the possibilities AQL has to o�er. Second in order will be scalability, i.e. running
those queries on di�erent sized data sets as well as on cluster environments of di�erent size. These
tests should be comparable between the two systems.

On top of that some more queries will be run that favor one of the systems. First of all some
queries with huge selectivity will be run. That should favor AsterixDB, as those will make use of
AsterixDB's Indexes whereas Flink does not have any of those. To get use cases that reach into
the specialties of each system a set of TPC-H queries will be run to represent classic relational
processing, as well as some queries on XML data. The XML request should favor AsterixDB as it
is specialized on handling AQL queries which are based on XQuery.

1.5. THESIS 7

Figure 1.4: Comparison of Flink and AsterixDB

In addition some data inserts will be run on AsterixDB, that will not be translatable to Flink.
Updates will not be tested as they are not the typical use case for those two systems.

Bibliography

[AAA+14] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu, M. J. Carey,
I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y.-S. Kim,
C. Li, G. Li, J. M. Ok, N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and
T. Westmann. Asterixdb: A scalable, open source BDMS. In VLDB, 2014.

[AFL] http://flink.incubator.apache.org/.

[AHV] http://hive.apache.org/.

[AS2] https://asterixdb.ics.uci.edu/documentation/aql/manual.html.

[AST] https://asterixdb.ics.uci.edu/.

[BCG+11] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks: A Flexible and
Extensible Foundation for Data-intensive Computing. In ICDE, page 1151 1162, 2011.

[DG04] J. Dean and S. Ghemawat. MapReduce: Simpli�ed Data Processing on Large Clusters.
In OSDI, pages 137-150, 2004.

[HRL+12] Arvid Heise, Astrid Rheinländer, Marcus Leich, Ulf Leser, and Felix Naumann. Me-
teor/sopremo: An extensible query language and operator model. In Workshop on

End-to-end Management of Big Data, Istanbul, Turkey, 2012.

[STR] http://www.stratosphere.eu/.

[YRN] http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/

YARN.html.

8

http://flink.incubator.apache.org/
http://hive.apache.org/
https://asterixdb.ics.uci.edu/documentation/aql/manual.html
https://asterixdb.ics.uci.edu/
http://www.stratosphere.eu/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

	Abstract
	AsterixDB
	Apache Flink
	Comparison
	Thesis

