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Ulf Leser: Information Retrieval       3 

A Probabilistic Interpretation of Relevance 

 
• VSM is fairly heuristic – some kind of similarity with some 

kind of weighting in some vector space 
• Probabilistic models build on well-established and 

mathematically consistent probability theory 
– Derive relevance formulas from a few basic and sound principles 

• Probabilistic model 
– Words appearing in docs are seen as independent events 
– A doc (or query) is a conjunction of events 
– Compute the probability that a doc d is relevant to query q 

• Actually, we will compute a score (using probabilities) 
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Basic Model 

• Given a corpus D and a vocabulary K 
• Let R be a set of docs, d be a doc, k be a term, and n=|d| 
• We model terms as events and documents as conjunction 

of events 
– p(R) = |R| / |D| 
– p(k|R) = {d | k∈d ∧ d ∈ R} / |R| 
– p(d) = p(k1,k2,…kn) = p(k1)*p(k2)*…p(kn) 

• Assuming statistical independence 

– p(d|R) = p(k1,k2,…kn|R) = p(k1|R)*p(k2|R)*…p(kn|R) 
– p(k|d) = 1 if k∈d else 0 

• We actually won’t need this quantity 

 



Ulf Leser: Information Retrieval       5 

Process 

 
• Initial queries too short for probabilistic reasoning  

– We need relevant docs to learn about “relevance” 
– Determined iteratively using feedback (automatic, explicit, implicit) 

• Similar to VSM with relevance feedback 

• Process for answering q 
– Subset R⊆D of only relevant documents  
– Subset N⊆D of only irrelevant documents 
– Compute p(R|d), the probability that document d belongs to R 
– Typically performed iteratively 
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Odds-Score 

• We want to compute rel(d,q), the relevance of d for q 
• Since words ki of d appear both in relevant and in 

irrelevant docs, we look at the ratio p(R|d) / p(N|d) 
– Also called odds-score 

 
 
 

• Assuming statistical independence of words, we get 
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Using Bayes 

• Using Bayes Theorem 
 
 

 

 
• p(R), p(N): relative frequency of (ir-)relevant docs in D 

– A-Priori probability of a doc to be (ir-)relevant 
– Constant for a given q and thus irrelevant for ranking docs 

• p(d|R) is the probability of drawing the combination of 
words forming d when drawing words at random from R 
– We need the probability of drawing the words in d from R 
– And we need the probability of not drawing the other words from R 
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Binary Independence Model 

• p(d|R) is the probability of drawing words from d from R 
and not drawing words not in d from R 

• Binary Independence Model 
 
 
 
 
 

– Having words that are frequent in R raises the relevance of d 
– Not having words that are frequent in R lowers the relevance of d 
– Having words that are frequent in N lowers the relevance of d 
– Not having words that are frequent in N raises the relevance of d 
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Binary Independence Model 
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Continuation 

• Rephrasing using q 
 
 
 

 

 

• Since we are not sure about R and N: Focus on terms in q 
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Last Step 

 
 
 

 

• Some reformulating (duplicating the terms in q) 
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Problem 

 
• Last quotient is identical for all d and can be dropped 

 
 
 

• But: Computing rel(d,q) requires knowledge of R and N 
– If R and N were known for sure, we could simply use p(k|R) / 

p(k|N) as relative frequencies of terms in R/N and use these 
weights for ranking 

– [Also called maximum likelihood estimation] 

• In reality, we actually want to find R and N 
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Back to Reality 

• Idea: Approximation using an iterative process 
– Start with “educated guess” for R and set N=D\R 

• E.g. R ~ “all docs containing at least one word from q” 

– Compute relevance of all docs with respect to q 
– Chose relevant docs (by user feedback) or hopefully relevant docs 

(by selecting the top-r docs) 
– This gives new sets R and N 

• If top-r docs are chosen, we may decide to only change probabilities of 
terms in R (and disregard the questionable negative information) 

– Compute new conditional probabilities and new ranking  
– Iterate until satisfied 

• [Variant of the Expectation Maximization Algorithm (EM)] 
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Initialization 

• Typical simplifying assumptions for the start 
– Terms in non-relevant docs are equally distributed: p(k|N)~dfk/|D| 
– Terms in relevant doc get equal probability: p(k|R)=0.5 
– Much less computation, less weight to unstable first values 
– [But leaves axiomatic probability theory] 

• Iterations: Assume we have a new R’ and N’. Then 
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Example 

Text verkauf haus italien gart miet blüh woll 

1 Wir verkaufen Häuser in 
Italien 

1 1 1 

2 Häuser mit Gärten zu 
vermieten 

1 1 1 

3 Häuser: In Italien, um 
Italien, um Italien herum 

1 1 

4 Die italienschen Gärtner 
sind im Garten 

1 1 

5 Um unser italiensches 
Haus blüht‘s 

1 1 1 

6 Wir verkaufen Blühendes 1 1 

Q Wir wollen ein Haus mit 
Garten in Italien mieten 

1 1 1 1 1 
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Example:  
Initialization 

• All docs with at least one word from q 
– R={1,2,3,4,5}, N={6} 

• Initial estimations 
– p(k|R)=0.5, p(k|N)= dfk/|D| -> p(verkauf|N)=p(blüh|N)=2/6 
– Smoothing: If p(k|X)=0, set p(k|X)=0.01 

• Initial ranking 
– rel(1,q)= p(haus|R)*(1-p(haus|N))*p(italien|R)*(1-p(italien|N)) / 

                p(haus|N)*(1-p(haus|R))*p(italien|N)*(1-p(italien|R)) 
            = .5*(1-4/6)*.5*(1-4/6) / (4/6*(1-0.5)*4/6*(1-0.5))= 
     = 0,66 

– rel(2,q)= p(haus|R)*(1-p(haus|N)*p(garten|R)*(1-
p(garten|N)*p(mieten|R)*(1-p(mieten|N) / … 

– rel(3,q)= …  
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Adjustment 

• Let’s use the top-2 docs as new R 
– Second chosen arbitrarily among 1,3,4,5 
– R={1,2}, N={3,4,5,6} 

• Adjust scores 
– p(verkauf|R)=.5,   p(verkauf|N)=(2-1)/(6-2)=1/4 
– p(haus|R)=1 (~.99),  p(haus|N)=(4-2)/(6-2)=2/4 
– p(italien|R)=.5,   p(italien|N)=(4-1)/(6-2)=3/4 
– p(gart|R)=.5,   p(gart|N)=(2-1)/(6-2)=1/4 
– p(miet|R)=.5,   p(miet|N)=(1-1)/(6-2)=0~0.01 
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Re-Ranking 

 
 
 

• New ranking 
– rel(1,q) = p(haus|R)*(1-p(haus|N))*p(italien|R)*(1-p(italien|N)) 

                p(haus|N)*(1-p(haus|R))*p(italien|N)*(1-p(italien|R)) 
            = … 

– rel(2,q) =  … 
– … 
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Pros and Cons 

 
• Advantages 

– Sound (probabilistic) framework 
• Many researchers feel more comfortable – explanations for all steps 
• But: Several steps are very heuristic 

– Results converge to most relevant docs (empirically shown) 
• Under the assumption that relevant docs are similar by sharing term 

distributions that are different from distributions in irrelevant docs 

• Disadvantages 
– First guesses often are pretty bad – slow convergence 
– Assumes statistical independence of terms (as many methods) 
– “Has never worked convincingly better in practice” [MS07] 
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Probabilistic Model versus VSM with Rel. Feedback 

• Published 1990 by 
Salton & Buckley 

• Comparison  
based on various 
corpora 

• Improvement  
after 1 feedback 
iteration 

• Probabilistic model (BIR) in general worse than VSM+rel 
feedback (IDE) 
– Probabilistic model does not weight terms in documents  
– Probabilistic model does not allow to weight terms in queries 
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Content of this Lecture 

 
• IR Models 
• Boolean Model 
• Vector Space Model 
• Relevance Feedback in the VSM  
• Probabilistic Model 
• Latent Semantic Indexing 
• Other IR Models 
• Outlook: Word Semantics and Word Embeddings 
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Latent Semantic Indexing 

• We so-far ignored semantic relationships between terms 
– Homonyms: bank (money, river, place ) 
– Synonyms: House, building, hut, villa, … 
– Hyperonyms: officer – lieutenant 

• Latent Semantic Indexing (LSI) 
– Deerwester et al. (1990). "Indexing by  

latent semantic analysis." JASIS 41(6): 391-407. 
• 2011: ~7500 cit.; 2014: ~9400, 2018: ~13500 

– Map (many) terms into (fewer) semantic  
concepts 

• Discover the concepts hidden  
( “latent”) in the docs 

– Compare docs and query in concept space instead of term space 

• May find docs that don’t contain a single query term 
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Terms and Concepts 

 
• Concepts are more abstract than terms 
• Concepts are related to terms and to docs 
• LSI models concepts as sets of strongly co-occurring terms 

– Can be computed using matrix manipulations  
– Concepts from LSI cannot be “spelled out”, but are matrix columns 

Quelle: K. Aberer, IR 
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Term-Document Matrix 

• Definition 
The term-document matrix M for docs D and terms K has 
n=|D| columns and m=|K| rows. M[i,j]=1 iff document dj 
contains term ki. 
– Works equally well for TF or TF*IDF values 
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Term-Document Matrix and VSM 

• VSM uses the transposed document-term matrix (=Mt) 
• Having M, we can in principle compute the vector v of the 

VSM-scores for q of all docs as v=Mt • q  
– Only the dot product, normalization missing 

= 
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What to do with a Term-Document Matrix 

• M is not just a comfortable way of representing the term 
vectors of all documents  

• In the following, we approximate M by a particular M’ 
– M’ should be smaller than M 

• Less dimensions; faster computations; abstraction 

– M’ should abstract from terms to concepts 
• The fewer dimensions capture the most frequent co-occurrences  

– Approach: Find an M’ such that M’t*q’ ≈ Mt*q  
• Produce the least error among all M’ of the same dimension 

D1 D2 D3 D4 

and 1 1 

cat 1 1 1 

eat 1 1 1 

… 1 

zoo 1 1 

D1 D2 D3 D4 

C1 0,3 0,2 0 0,4 

C2 0,7 0 0,1 0,9 

C3 0,1 0 0,5 0,3 
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Term and Document Correlation 

• M • Mt is called the term correlation matrix 
– Has |K| columns and |K| rows 
– “Similarity” of terms: how often do they co-occur in a doc? 

• Mt • M is called the document correlation matrix 
– Has |D| columns and |D| rows 
– “Similarity” of docs: how many terms do they share? 

• Example 
1 2 3 4 5 

A 1 1 1 

B 1 1 1 1 

C 1 1 

D 1 1 

A B C D 

1 1 1 

2 1 1 1 

3 1 1 1 

4 1 

5 1 1 

A B C D 

A 3 3 2 0 

B 3 4 2 1 

C 2 2 2 0 

D 0 1 0 2 

M (A..: terms; 1…: docs) 

• 

Mt 

= 

Term correlation matrix 



Ulf Leser: Information Retrieval       28 

Some Linear Algebra 

• The rank r of a matrix M is the maximal number of linearly 
independent rows of M  

• If Mx-λx=0 for a vector x≠0, then λ is called an Eigenvalue 
of M and x is his associated Eigenvector 
– Eigenvectors/-werte are useful for many things 
– In particular, a matrix M can be transformed into a diagonal  

matrix L with L=U-1*M*U with U formed from the Eigenvectors of 
M iff M has “enough” Eigenvectors 

• L represents M in another vector space, based on another basis 
• L can be used in many cases instead of M and is easier to handle 

– However, our M usually will not have “enough” Eigenvectors 
– We use another factorization of M 
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S 

Singular Value Decomposition (SVD) 

• SVD decomposes any matrix into M = X • S • Yt 

– S is the diagonal matrix of the singular values of M in descending 
order and has size rxr  (with r=rank(M)) 

– X is the matrix of Eigenvectors of M • Mt 

– Y is the matrix of Eigenvectors of Mt • M 
– This decomposition is unique and can be computed in O(r3) 

• Use approximation in practice 

Yt m=|K| 

n=|D| 

n=|D| 

r M = X 

r 

r 

• • 
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Example 

• Assume for now M is quadratic and has full rank 
– Example for r=|K|=|D|=3 

 
 
 
 

• M11 = (x11*s11+x12*s12+x13*s13)*y11 + 
         (x11*s21+x12*s22+x13*s23)*y21 + 
         (x11*s31+x12*s32+x13*s33)*y31 
      = x11*s11*y11 + x12*s22*y21 + x13*s33*y31 

• M12 = ... 
 

x11 … … 

x21 … … 

… … x33 

s11 0 0 

0 s22 0 

0 0 s33 

y11 … … 

y21 … … 

… … y33 

M11 M12 M13 

M21 … … 

M31 … M33 

= • • 
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Approximating M 

• LSI idea: What if we stop the sums earlier? 
– sii are sorted by descending value 
– Aggregating only over the first sii–values captures “most” of M 

 
 
 

• M11 = x11*s11*y11 + x12*s22*y21 + x13*s33*y31 

 
 

• What if M11’ = x11*s11*y11 + x12*s22*y21 

x11 … … 

x21 … … 

… … x33 

s11 0 0 

0 s22 0 

0 0 s33 

y11 … … 

y21 … … 

… … y33 

M11 M12 M13 

M21 … … 

M31 … M33 

= • • 

largest sij 2nd largest sij 3rd largest sij 
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General Case 

• In general, M is not quadratic and r < min(|K|,|D|) 
– All sums range from 1 to r 

 
 
 
 

 
 
 
 

s11 0 0 

0 s22 0 

0 0 s33 

Σ X1iSiiYi1 
… Σ X1iSiiYim 

Σ XniSiiYim Σ XniSiiYim 

m=|D| 

n=|K| 

r 

= • • 
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Approximating M 

• LSI: Use S to approximate M 
• Fix some s<r; Compute Ms = Xs • Ss • Ys

t 

– Xs : First s columns in X 

– Ss : First s columns and first s rows in S 

– Ys : First s rows in Y 

• Ms has the same size as M, but different values 
– In fact, we don’t need to compute Ms, but only need Xs, Ss and Ys 

Xs 

S 

Yt s Ms = 

s 

s 

• • Ss 
Ys 
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s-Approximations 

• Formal: Ms is the matrix where ||M-Ms||2 is the smallest 
 

• Since the sii are sorted in decreasing order 
– The approximation is the better, the larger s 
– The computation is the faster, the smaller s 

• LSI: Only consider the top-s singular values 
– s must be small enough to filter out noise (spurious co-

occurrences) and to provide “semantic reduction” 
– s must be large enough to represent the diversity in the documents 
– Typical value: 200-500 

• While r is typically >100.000 

• Universal idea: LSI has ample applications outside IR 
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LSI for Information Retrieval 

• We map document vectors from a m-dimensional space 
into a s-dimensional space 
– Approximated docs (still) are represented by columns in Ys

t  

• SVD as much as possible preserves distances between 
docs (depending on number of shared co-occurring terms) 

• To this end, SVD (in a way) maps frequently co-occurring 
terms onto the same dimensions 
– Because these terms have little impact on distance 

• Linear terms-combinations can be seen as concepts 
– But they cannot easily be “named” 
– We cannot easily abstract the terms that are mapped into a new 

dimension – it is always a bit of everything (a linear combination) 
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Query Evaluation 

• After LSI, docs are represented by columns in Ys
t  

• How can we compute the distance between a query and a 
doc in concept space? 
– Transform q into concept space 
– Assume q as a new column in M 

• Of course, we can transform M offline, but need to transform q online 

– This would generate a new column in Ys
t  

– To only compute this column, we apply the same transformations 
to q as we did to all other columns of M 

– With a little algebra, we get: q’ = qt • Xs • Ss
-1 

– This vector is compared to the transformed doc vectors as usual 
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Example: Term-Document Matrix 

• Taken from Mi Islita: “Tutorials on SVD & LSI” 
– http://www.miislita.com/information-retrieval-tutorial/svd-lsi-

tutorial-1-understanding.html 
• Who took if from the Grossman and Frieder book 

Query: „gold silver truck“ M 
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Singular Value Decomposition 

M = X • S • Yt 

X S 

Y Yt 
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A Two-Approximation (s=2) 

X2 
S2 

Y2 Y2
t 

d1         d2     d3 
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Transforming the Query 

q’ = qt • X2 • S2
-1 

q‘ 
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Computing the Cosine of the Angle 
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Visualization of Results in 2D 

M 

Very large distance 
in original space 
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Pros and Cons 

• Pro 
– Practical implementations exist, but not if corpus is very large 

• [MPS08] says: “no more than 1M docs” 

– Increases recall (and usually decreases precision) 

• Contra 
– Computing SVD is expensive 

• Fast approximations exist, especially for extremely sparse matrices 
• Use stemming, stop-word removal etc. to shrink the original matrix 

– Ranking requires less dimensions than |D|, but more than |q| 
• Mapping the query turns a few keywords into an s-dimensional vector 
• We cannot simply index the “concepts” of Ms using inverted files etc. 
• Thus, LSI needs other techniques than inverted files 

– Means: lots of memory 

• Query speed is not reduced (despite less dimensions) 
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Content of this Lecture 

 
 

• IR Models 
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• Relevance Feedback in the VSM  
• Probabilistic Model 
• Latent Semantic Indexing 
• Other Classical IR Models 
• Outlook: Word Semantics and Word Embeddings 
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Extended Boolean Model 

 
• Critique to Boolean Model: If 1 conjunctive term out of 10 

is missing, we get same result as if 10 were missing 
• Idea: Measure “distance” for each conjunctive / disjunctive 

subterm of the query expression to the document 
– Example: X-ary AND: use a projection into x-dim space 
– Query expression is (1,1,1,…,1) 
– Doc is (a1,a2,…,ax)=(0/1?,0/1?,…)  
– Similarity is distance between these two points 
– Other formulas for OR and NOT 

• This model mimics the VSM 
– But no terms weights 
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Generalized Vector Space Model 

 
• One critique to the VSM: Terms are not independent  
• Thus, term vectors cannot be assumed to be orthogonal 
• Generalized Vector Space Model 

– Build a much larger vector space with 2|K| dimensions 
• Each dimension (“minterm”) stands for all docs containing a particular 

set of terms 
• Minterms are not orthogonal but correlated by term co-occurrences 

– Convert query and docs into minterm space 
– Finally, rel(q, d) is the cosine of the angel in minterm space 

• Nice theory, considers term co-occurrence, much more 
complex than ordinary VSM, no proven advantage 
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Content of this Lecture 
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• Latent Semantic Indexing 
• Other Classical IR Models 
• Outlook: Word Semantics and Word Embeddings 
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Word Semantics 

 
• VSM considers two tokens as different when they have 

different spelling 
– No shades: Equal or not, dimensions in VSM are orthogonal 
– King, princess, earl, milk, butter, cow, white, crown, emperor, … 

• This makes models very specific – bad generalization 
• Humans do compare words in a multi-facetted way 

– King is similar to princess to earl to queen, but not to cow 
• But all are mammals 

– Kings use crowns much more often than cows 

• How can we capture word semantics to derive meaningful 
similarity scores? 
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Knowledge-based: WordNet, Wikipedia, … 

• Let‘s dream: A comprehensive resource of all words and 
their relationships 
– Specialization, synonymy, partonomy, relatedness, is_required_for, 

develops_into, is_possible_with, … 
– Example: WordNet 

• Roughly 150K concepts, 200K senses, 117K synsets 
• Specialization, partonomy, antonomy 

– Can be turned into a semantic similarity measure, e.g., length of 
shortest path between two concepts 

• Problem: Incomplete, costly, outdated 
– Especially in specific domains like Biomedicine 

• Much research to automatically expand WordNet, but no 
real breakthrough 
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Distributional Semantics 

 
• „You shall know a word by the company it keeps” [Firth, 1957] 

– The distribution of words co-occurring (context) with a given word 
X is characteristic for X 

– To learn about X, look at its context 
– If X and Y are semantically similar, also their contexts are similar 
– If X and Y are a bit different, also their contexts will be a bit 

different 
– Holds in all domains and all corpora of sufficient size 

• Central idea: Represent a word by its context 
• For similarity: Compare contexts, not strings 
• How can we do this efficiently and effectively? 
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Naive Approach 

• Given a large corpus D and a vocabulary K 
• Define a context window (typically sentence) 
• Represent every k∈K as a |K|-dimensional vector vk 

– Find set W of all context windows in D containing k 
– For every k’≠k, count frequency of k’ in W: vk[k’] = freq(k’, W) 
– May be normalized, e.g. tf*idf 

• Similarity: Compute cosine similarity between word-vectors 
• Problem: Our model for each d∈D grew from |K| to |K|2 

– Infeasible 
– We need an efficient and conservative dimensionality reduction 

• Efficient: Fast to compute; conservative: Distances are preserved 

– LSD too expensive 
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Word Embeddings 

 
 

• Very popular technique since app. 2015 
• Goal: Learning word vectors (“word embeddings”)  

– Low dimensional – typically 100-500 (a hyper parameter) 
– Unsupervised learning – may use extremely large corpora 
– Specific techniques to scale-up training (e.g. GPUs) 
– Can be precomputed and used without re-training in apps 

• Approach: Use Machine Learning, not algebra 
– Though the border is not clear at all  
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Word2Vec [Mikolov et al. 2013] 

• Recall language models 
– Goal: Given a prefix of a sentence, predict next word 
– Can be understood as multi-class classification problem 

• As many classes as words 

– We computed word probabilities using a simple N-gram model 

• Idea of Word2Vec 
– Cast the problem as classification 
– Given the context of a word – predict the word 

• Obviously related to language modelling  
• Note the “context” – we are close to distributional semantics 

 

K2 is the second ? mountain in the world. 
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Does it Work? 

      king – man ~ queen – woman 
 walking – walked ~ swimming – swam 
Russia – Moscow ~ Vietnam – Hanoi 

man - computer programmer ~ woman – homemaker 
father - doctor ~ mother - nurse 
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Usage in Information Retrieval? 

• Problem: We want to compare a query to a doc, not a 
word to a word 

• Simple 
– Represent a doc by the average of all its word vectors 
– Same for query 
– Compute cosine of vectors  

• More advanced 
– Compute sentence embeddings as average over words in sentence 
– Cluster sentence embeddings to find document segments 
– Match doc segments to query vector 

• Fancy: Compute document embeddings 
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Self Assessment 

• Explain the general approach of the probabilistic relevance 
model in IR 

• How does one typically bootstrap this model? 
• Which relevance model we discussed does consider the 

non-existent of terms in docs not existing in the query? 
• Discuss the performance (speed) of the LSI approach to IR 
• What is the difference between concept space and term 

space in LSI? 
• Explain the Extended Boolean Model. Which of the 

shortcomings of the Boolean Model does it address? 
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