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e "... The research breakthrough was labeling the clusters,

l.e., grouping search results into folder topics ...”
— [Clusty.com blog]
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Clustering

e (lustering groups objects (docs) into (usually disjoint) sets
e Intuitively, each set should contain objects that are similar
to each other and dissimilar to objects in any other set
— We need a similarity or distance function
— That is the only text-specific bit — the rest is “just” clustering
e Often called “unsupervised learning”
— We don’t know how many sets/classes/clusters exist

— We don't know how those sets should look like
— We don't know if homogeneous sets exist at all
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Nice — Not Nice
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Text Clustering Applications

Explorative data analysis
— Learn about the structure within your document collection
e Corpus preprocessing
— Clustering provides a “semantic index” to a corpus
— Group docs into clusters to ease navigation
— Retrieval speed: Index only one representative per cluster (e.g. KNN)
e Processing of search results
— Cluster all hits into groups of similar hits (in particular: duplicates)
e Improving recall
— Return doc and all members of its cluster
— Has similarity to automatic relevance feedback using top-k docs
e Word sense disambiguation
— The different senses of a word should appear as clusters

e Assess “classifyability”
— Cluster training data and compare clusters to predefined classes
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Similarity between Documents

e (lustering requires a distance function
— Should always be a metric

— d(x,x)=0, d(x,y)=d(y,x), d(x,y)=d(x,2)+d(z,y)
e In contrast to search, we compare two docs
— And not a document and a query

e Nevertheless, often the same methods are used
— Vector space , TF*IDF, cosine distance, feature selection, ...

diod, D (d[i1*d,[i])
d\|*|d, \/Zdl[i]z*\/zdz[i]z
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Clustering Speed

e In Information Retrieval

— We compare a vector of 100K dimensions with very few (<3?) non-
null values (nnv) with one with many more (500?) nnvs

— Use inverted index to pick docs that have an overlap with the query
e In clustering

— We compare a vector with ~500 nnv with one with ~500 nnv

— We need to compare many (all) docs with many (all) docs
e Depends on the clustering algorithm

— Inverted indexes offer much less, if any, speed-up

o Feature selection or dimensionality reduction is essential
— E.g., use the 1.000 “most descriptive” terms
— E.g., perform Latent Semantic Indexing (LSI) before clustering
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Cluster Labels (Finding Key Phrases)

e For user interaction, clusters need to have a name
e Names should capture the topic (semantic) of the cluster
e Some possibilities
— Chose term (or n-gram) with highest TF*IDF value in cluster
e E.g. TF computed as average or considering all docs in cluster as one

— Chose term with highest TF*IDF value in cluster centre

— Apply statistical method to find terms whose TF*IDF distribution
deviates the most between clusters
e E.g. Chi2-Test, Kullback—Leibler divergence
e Requires comparison of each cluster with each cluster for each term
e Only possible when strict term-pre-filtering was applied

— Report top-K token or top-K terms (by whatever method)
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Maybe 27?
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Maybe 4?
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Maybe 4 and One Outlier?
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Maybe 57?

G
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Maybe 4 and 2 — at Different Levels?

SN
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Which Distance Measure did you Use?
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Quality of a Clustering

e There is no “true” number of clusters

e In real data sets, one cannot determine the number of
clusters by “looking at the data”
— Too many dimensions
— Distance function need not map nicely to visualization
— Clustering should help you in looking at the data
e We need to define the quality of a clustering

o Ideally, this quality score peaks at the intuitively best
number of clusters
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Distance to a Cluster

e We frequently will have to compute the distance between a
point o (a doc) and a cluster ¢, d(o,c)
— And sometimes distances between clusters — later

e Various methods

— Distance to numerical d(o,c)=d(o,c, )
center of a cluster ’ e

— Distance to the most central d(o,c)=d(o,c )
’ >~ median

point of a cluster

— Average distance to all points _ * ]
in cluster d(0,¢) Zd(o,p) /c|

pEec
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Quality of a Clustering — First Approach

e Compute average distance between all cluster members
(objects = docs) in all clusters

o Definition
Let f be a clustering of a set of objects O into a set C of
classes with /[C/=k. The k-score g, of ' Is

q.(f) = D d(o, f(0))

i=1..k

— Any measure for point-to-cluster distance may be used
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6-Score

A

SN
() )

e Certainly better than the 2/4/5-score we have seen
e Thus: Chose the k with the best k-score?
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Disadvantage

>
e Always has a trivially optimal solution: k=|O|

e Points in a cluster should be close to each other but also far away from
points in other clusters

o Still useful to compare different clusterings for the same k
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Silhouette

o Alternative: Silhouette
— Punish points that are not “clearly” assigned to one cluster
e Definition
Let f: O—C with /C/ arbitrary. We define
— Inner score: in(o) = d(o, (o))
— Quter score: out(o) = min( d(o,c;)) with c#f(o)
out(o) —in(o)
max(in(o),out(0))

— The silhouette of o, s(o), is defined as ° (0) =

— The silhouette of £, s(f), is defined as s(f)=)_s(0)
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out(o)—in(o)

max(in(o),out(0))

Intuition s(o) =

e It holds: -1 < s(o0) <1 ©co o 4
— s(0) = 0: Point right between two cluster (K@ C}( o c)‘o
II ®

— s(0) ~ 1: Point very close to only one (1)
(its own) cluster @

— s(0) ~ -1: Point far away from its own cluster (3) _'_\:\"‘ ®
e Computing the silhouette is in O(kmn) ° %

— If clusters are represented by centroids

— m: Dimensionality, n: Number of objects, k: Number of clusters

— Compare each object to each centroid
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Behavior

e Silhouette is not always better / worse for more clusters

S
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» 5(0) probably higher
 5(0) probably lower
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Not the End

e In general, clusters need
not be hyper-spheres

e (lusters need not even
have convex shapes

e (Cluster centre need not be
part of a cluster

e Requires completely
different quality metrics

e Definition must fit to the
data/application

e Not used in text clustering
— To my knowledge

Source: [FPPS96]
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Classes of Cluster Algorithms

e Hierarchical clustering
— Iteratively creates a hierarchy of clusters
— Bottom-Up: Start from |O]| cluster and merge until only 1 remains
— Top-Down: Start from one cluster and split
— (... or until some stop criterion is met)
e Partitioning
— Heuiristically partition all objects in k clusters
— Guess a first partitioning and improve iteratively
— k is a parameter of the method, not a result

e Other
— Graph-Theoretic: Min-Cut (optimal partitioning) etc.
— Density-base clustering
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Hierarchical Clustering

e Also called UPGMA: Unweighted Pair-group
method with arithmetic mean

e Computes a binary tree (dendrogram)
e Algorithm

— Compute distance matrix M (expensive)
— Choose pair d;, d, with smallest distance
— Define x as centre point of d; and d,

e Coordinates need not be computed _
— Remove d,, d, from M I | r_\
— Insert x into M

e Distance between x and any d in M: Average A B C D E F

distance between d; and d and d, and d
— Loop until M has size 2x2
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Visual

a) Six Clusters
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Intuition

e Hierarchical clustering organizes a doc collection

e Ideally, hierarchical clustering directly creates a
hierarchical and intuitive directory of the corpus

* Not easy 2 SYAHOOLY et
— Many, many ways to group e Ll

objects — hierarchical clustering m?n":m 2 |
will choose just one i [_]m, ,,

— No guarantee that clusters CETECLmeTe  OZmI

Directory, Investments, Clissifisds, Taces, ... Sports [Xural], Games, Travel, Awtos, ...
make sense semantically v, v Tt Lot i, Phoe b, .
® Education # Regional
- - Undversities, K-12, Cowrses, ... Countries, Regions, U8, States, ...
— Problem of finding labels o Eaeruimnenimny o scence
TV, Movies, Music, Magazines, . C#, Biology, Astronomy, Engineering, ...
( - d I recto ry na meS) * g].;t"?;nr:: Agencies, Law, Military, .. g :::ri\;i:;yi,exilm, Economies, ...
# Health #® Society and Culture
Medicine, Drugs, Diseases, Fitness, ... People, Environment, Religion, ...

Text-Only Yahoo ~ Contibutors
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Visualization: Branch Length

e Use branch length to symbolize distance

e Qutlier detection

Outlier / T

/'

/

) ] p————
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Variations

e We used the distance between the centers of two clusters
to decide about distance between clusters

e Other alternatives (incurring different complexities)

— Single Link: Distance of the two closest
docs in both clusters

— Complete Link:
Distance of the two furthest docs

— Average Link: .7 AN
Average distance between pairs -+~ RN / o
of docs from both clusters ! o k ! }

— Centroid: ! \ ' ° K
Distance between centre l® | el Lt
points \‘ h

\\ o /'
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Variations
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Variations

e We used the distance between the centers of two clusters
to decide about distance between clusters

e Other alternatives (incurring different complexities)

— Single Link: Distance of the two closest
docs in both clusters

— Complete Link:
Distance of the two furthest docs

— Average Link: .7 AN
Average distance between pairs //’ RN J® *
of docs from both clusters ! o N ! }

— Centroid: ! ® ' ° K
Distance between centre K | e LT
points ) h

' ® /'
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Comparison

e Single-link
— Optimizes a local criterion
e Only look at the closest pair — clusters must be similar in some point

— Similar to computing a minimal spanning tree
— Creates elongated clusters (chaining effect)

e Complete-link

— Optimizes a global criterion
e Look at the worst pair — all points within clusters must be similar

— Creates more compact, "more” convex, spherical clusters

Single Linkage Complete Linkage
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Single-link versus Complete-link

O >
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Properties of Hierarchical Clustering

e Advantages
— Simple and intuitive
— Number of clusters is not an input of the method
— Usually good quality clusters (which clusters?)

e Disadvantage
— Does not really generate clusters
— Very expensive; let n=|0]|, m: dimensionality|
e Computing M requires O(n2) space and O(mn2) time
» Naive implementation is in O(m*n2*log(n))
e Can be achieved in O(m*n?2) (for single-link and complete-link)
— Not applicable as such to large doc sets
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Content of this Lecture

e Text clustering
o Cluster quality

e (lustering algorithms
— Hierarchical clustering
— K-means
— Soft clustering: EM algorithm

e Application
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Min-k-Cut Clustering

e (lustering in graph-theoretic concepts
e Definition
Let G=(V,E) be a complete, weighted, undirected graph
with V=0 and w(<o,,0,>) = sim(o,, 0,).
— A k-cut of G Is a set S of edges such G'=(V,E|S) has k connected
components.
— A min-k-cut of G is a k-cut of G such that w(S) is minimal

e Notes

— Every k-cut is a clustering of G into k clusters
e We use distance, not similarity, and maximize, not minimize

— Finding a min-k-cut is in O(|V|¥"2)
— Not feasible in practice
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Partitioning: K-Means

e Probably the most popular clustering algorithm
e Heuristic for solving the min-k-cut problem
e Requires the number k of clusters to be predefined

e Algorithm
— Fix k
— Guess k cluster centers
e Can use k randomly chosen docs or k random points in feature-space
— Loop forever

e Assign all docs to their closest cluster center

e If no doc has changed its assignment, stop
— K-Means always converges, but possibly very slowly
— Alternative: Stop once sufficiently few docs have changed their assignment

e Otherwise, compute new cluster centers
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Example 1

o k=3
e Choose random start o
points
@
® o
e® O
@
@ @
@
0® ©
@ @
® @ @
Quelle: Stanford, CS 262 .
Computational Genomics
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Example 2

e Assign docs to closest

cluster centre O
O OO
o © O
®
O O
®
0® @
O ®
o © ®
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Example 3

e Compute new cluster
centre

+
.‘:: O e®
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Example 4

0® @ O
® O
2® @ ®
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Example 5
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Example 6

e Converged

O
@)
o O
P ©
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Properties

e Usually, k-Means converges quite fast
e Reasonable complexity: O(I*k*n*m)
— Let | be the number of iterations
— Assignment: n*k distance computations with O(m) each

— New centers: Summing up n vectors of size m in k partitions
— | is in principle unbounded, but small in practice (<100)

e Choosing the “right” start points is important
— k-Means is a greedy heuristic and only finds local optima
— Option 1: Start several times with different start points

— Option 2: Compute hierarchical clustering on small random sample
and choose cluster centers as start points ("Buckshot” algorithm)

e How to choose k?
— Try for different k and compare quality score(s)
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k-Means and Outlier

Assume k=3 ®
. ®
.Q. ~
®
® 04
0® © o o
% .:.o? o ®
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Help: K-Medoid

e Chose the doc in the middle of a cluster as representative
— Kaufman, Rousseeuw (1990): "Partitioning around medoids (pam).
in Finding groups in data: an introduction to cluster analysis
e Advantage
— Less sensitive to outliers
— Also works for non-metric spaces as no “new” center point need to
be computed
e Disadvantage: Increased complexity

— Finding the median doc requires computing all pair-wise distances
in each cluster in each round

— Complexity is O(n3) in each step
e We can save re-computations at the expense of more space
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k-Medoid and Outlier
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Content of this Lecture
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e (lustering algorithms
— Hierarchical clustering
— K-means
— Soft clustering: EM algorithm

e Application
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Soft Clustering

e We assumed docs are assigned to exactly one cluster

e Probabilistic interpretation: All docs pertain to all clusters
with a certain probability

e (Generative model

— Assume we have k “doc-producing” devices
e Such as authors, topics, ...

— Each device produces docs that are normally distributed in feature
space with device-specific mean and variance

— Assume that k devices produced |D| documents
— Clustering: Re-discovery of mean and variance of each device

e Solution: Expectation Maximization Algorithm (EM)
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Expectation Maximization (rough sketch)

e EM optimizes set of parameters P of a multivariate normal
distribution (mean and variance, k clusters) given the data

e Iterative process with two phases
— @Guess an initial P
— Expectation: Assign all docs its most likely generator based on P

— Maximization: Compute new optimal P based on assignment
e Using MLE or other estimation techniques

— Iterate through both steps until convergence
e Finds a local optimum, convergence guaranteed

e K-Means: Special case of EM
— Clusters with different means but equal variance
— K-Means assumes all clusters have the same error model
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Content of this Lecture

e Text clustering
o Cluster quality
e (lustering algorithms
e Application
— Clustering Phenotypes
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Mining Phenotypes for Function Prediction
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Or ...

Source: http://www.guy-sports.com/humor/videos/powerpoint_presentation_dogs.htm
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Mining Phenotypes: General Idea

Established

Function Gene A

Phenotype

Function Gene B

Phenotype

|

e Known: Genes with sim. functions produce sim. phenotypes
e Question: If genes generate very similar phenotypes — do

they have the same functions?

— Groth et al. (2008). "Mining phenotypes for gene function

prediction." BMC Bioinformatics 9: 136.
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Approach

GO

Annotation

.

GO

Gene A

\ 4

Annotation
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Phenotype
Description

A\ 4

Phenotype
Description
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Phenodocs

411,102 phenotype texts

Short: <250 words

Remove all phenotypes
associated to more
than one gene (~500)

39,610 ‘phenodocs’ for
15,426 genes
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PhenomicDB

Remove small phenotypes

Remove multi-gene phenotypes

Remove stop words

Stemming

Phenodocs
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K-Means Clustering

e Hierarchical clustering would require
~ 40.000*40.000 = 1.600.000.000 comparisons

e K-Means: Simple, iterative algorithm

o Number of clusters must be predefined
— We experimented with 250 ... 3000 clusters
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Properties: Phenodoc Similarity of Genes
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e Pair-wise similarity scores of phenodocs of genes in the
same cluster, sorted by score

e Result: Phenodocs of genes in phenoclusters are highly
similar to each other
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PPI: Inter-Connectedness

e Interacting proteins often
share function

e PPI from BIOGRID database
— Not at all a complete dataset

e In >200 clusters, >30% of
genes interact with each other

e Control (random groups): 3

clusters .
e Result: Genes in phenoclusters

interact with each other much Proteins and interactions from
BioGrid. Red proteins have no

more often than expected by phenotypes in PhenomicDB
chance

41124
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Coherence of Functional Annotation

e Comparison of GO annotation of
genes in phenoclusters

— Data from Entrez Gene

Gene Ontology

Biological Process
Physiological Process
Cellular Process

Metabolism

Protein Metabolism

Cell Communication ]\[\ﬁ
[ Signal Transduct&q ][ Protein MOdI/ ation ]

— Similarity of two GO terms:
Normalized number of shared
ancestors _

— Similarity of two genes: Average LT [] ;
of the top-k GO pairs

e >200 clusters with score >0.4

— Control: 2 clusters

e Results: Genes in phenoclusters
have a much higher coherence
in functional annotation than
expected by chance

Binding

a

Kinase Activity
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Function Prediction

e (Can increased functional coherence of clusters be exploited
for function prediction?

e Approach
— Compute phenoclusters
— For each cluster, compute set of associated genes (gene cluster)

— In each gene cluster, predict frequent GO terms to all genes
e Frequent: annotated to >50% of genes in the cluster

e Some filtering of clusters required / useful

— Filter 1: Only clusters with >2 members and at least one common
GO term
— Filter 2: Only clusters with GO coherence>0.4

— Filter 3: Only clusters with PPI-connectedness >33%
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Evaluation

e How can we know how good we are?

e Cross-validation
— Separate genes in training (90%) and test (10%)
— Remove annotation from genes in test set
— Build clusters and predict functions on entire set

— Compare predicted with removed annotations
e Precision and recall

— Repeat and average results
e Macro-average
e Note: This punishes new and
potentially valid annotations
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Results for Different Filters

(Filter 1) (Filter 1 & Filter 2) (Filter 1 & Filter 3)

# of clusters 196 74 53

# of terms 345 159 102

# of genes 3213 711 409
Precision 67.91% 62.52% 60.52%
Recall 22.98% 26.16% 19.78%

e What if we consider predicted terms to be correct that are
a little more general than the removed terms (filter 1)?
— One step more general: 75.6% precision, 28.7% recall
— Two steps: 76.3% precision, 30.7% recall

e The less stringent "GO equality”, the better the results
— This is @a common “trick” in studies using GO
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Results for Different Cluster Sizes

K 250 500 750 1,000 2,750 3,000

Cluster w/ GO-Sim > 1| 14 (5.6%) 26 (5.2%) 44 (5.9%) 71 (7.1%) 273 (9.9%) 309 (10.3%)
# Genes 561 781 943 1155 2094 2221

Cluster w/ PPi>75%| 12 (4.8%) 34 (6.8%) 65(8.7%) 88 (8.8%) 314 (11.4%) 353 (11.8%)
# Genes 785 988 1166 1263 1810 1914

Cluster w/ PPi >33%]49 (19.6%) 119 (23.8%) 193 (25.7%) 252 (25.2% 662 (24.1%) 717 (23.9%)

A ]

# Genes 3 3
Cluster for GO-Pred.|73 (29.2%) 153 (30.6%) 230 (30.7%) 295 (29.5%) . 748 (27.2%) 816 (27.2%)
# Genes 3465 4139 4344 4438 5016 5115
# Terms 123 247 383 489 1436 1557

Precision 81.53% 77.16% 74.26% 71.73% 63.92% 62.89%
Recall 16.90% 20.22% 24.45% 26.36% 34.64% 34.61%
. Genes/Cluster 52 26 17 13 4 4

e With increasing k
— Clusters are smaller

— Number of predicted terms increases
o (Clusters are more homogeneous

— Number of genes which receive annotations increases

— Precision decreases slowly, recall increases
e Effect of the rapid increase in number of predictions
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Selbsttest

e Gegeben der folgende Datensatz. Wenden Sie den
hierarchischen Cluster-Algorithmus an und zeichnen Sie die
entstandenen Cluster. Verwenden Sie Euklidischen Abstand

e Welche Komplexitat hat hierarchisches Clustering?
Begrlinden Sie.

e Beschreiben Sie drei verschiedene Methoden, mit denen
man den k-Means Algorithmus initialisieren kann. Was sind
Vor-/Nachteile?

e \Was ist der Unterschied zwischen k-Means und k-Mediod?
Wie andert sich die Komplexitat von k-Means zu k-Medoid
— und warum?
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