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Who am I 

• Ulf Leser  
 

• 1995  Diploma in Computer Science, TU München 
• 1996-1997  Database developer at MPI-Molecular Genetics 
• 1997-2000 Dissertation in Database Integration, TU Berlin 
• 2000-2003 Developer and project manager at PSI AG 
• 2003-  Prof. Knowledge Management in Bioinformatics 

 
• I do answer emails 
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Wissensmanagement in der Bioinformatik 

 
• Our topics in research 

– Scientific Databases 
– Text Mining 
– Scientific Data Analysis 

• Our topics in teaching 
– Bsc: Grundlagen der Bioinformatik 
– Bsc: Information Retrieval 
– Msc: Algorithmische Bioinformatik 
– Msc: Data Warehousing und Data Mining 
– Msc: Informationsintegration 
– Msc Maschinelle Sprachverarbeitung 



Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017     4 

Once upon a Time … 

 
• IT company A develops software for insurance company B 

– Volume: ~4M Euros 

• B not happy with delivered system; doesn’t want to pay 
• A and B call a referee to decide whether requirements 

were fulfilled or not 
– Volume: ~500K Euros 

• Job of referee is to understand requirements (~60 pages) 
and specification (~300 pages), survey software and 
manuals, judge whether the contract was fulfilled or not 
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One Issue 

• Requirement: „Allows for smooth operations in daily 
routine“ 

This is hardly testable 
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One Issue 

• Requirement: „Allows for smooth operations in daily 
routine“ 

• Claim from B 
– I search a specific  

contract 
– I select a region and a 

contract type 
– I get a list of all  

contracts sorted by name 
in a drop-down box 

– This sometimes takes 
minutes! A simple drop- 
down box! This performance  
is inacceptable for our call centre!  
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Discussion 

• A: We tried and it worked fined 
• B: OK, most of the times it works fine, but sometimes it is 

too slow 
• A: We cannot reproduce the error; please be more specific 

in what you are doing before the problem occurs 
• B: Come on, you cannot expect I log all my clicks and take 

notes on what is happening 
• A: Then we conclude that there is no error 
• B: Of course there is an error 
• A: Please pay as there is no reproducible error 
• … 
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A Closer Look 

• System has classical two-tier architecture 
 
 
 
 
 

• Upon selecting a region and a contract, a query is 
constructed and send to the database 

• Procedure for “query construction” is used a lot 
– All contracts in a region, … running out this year, … by first letter 

of customer, … sum of all contract revenues per year, … 
– “Meta” coding: very complex, hard to understand 

   Clients                Database 
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Query Construction 

SELECT CU.name, CO.type, CO.start, CO.end, CO.volume, … 
FROM customer CU, contracts CO, c_c CC, region R, … 
WHERE  CU.ID=CC.CU_ID AND 
 CO.ID=CC.CO_ID AND 
 CU.regionID = R.ID AND 
 … 
 CU.ID=4711 AND CO.type=„Hausrat“ 
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Query Construction 

SELECT CU.name, CU.street, CU.status, CU.contact, … 
FROM customer CU, contracts CO, c_c CC, region R, … 
WHERE  CU.ID=CC.CU_ID AND 
 CO.ID=CC.CO_ID AND 
 CU.regionID = R.ID AND 
 … 
 R=„Berlin“AND CO.type=„Leben“ 
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Requirement 

• Recall 
 
 
 
 
 
 
 
 

• After retrieving the list of customers, it has to be sorted 

Ulf Leser: Alg&DS, Summer semester 2011 5

One Issue

• Requirement: „Allows for smooth operations in daily 
routine“

• Observation from A
– I search a specific 

contract
– I select a region and a

contract type
– I get a list of all 

contracts sorted by name
in a drop-down box

– „This sometimes takes
minutes! A simple drop-
down box!“
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Code used for Sorting the List of Customer Names 

• S: array of Strings, |S|=n 
• Sort S alphabetically 

– Take the first string and compare to 
all others 

– Swap whenever a later string is 
alphabetically smaller 

– Repeat for 2nd, 3rd, … string 
– After 1st iteration of outer loop: 

S[1] contains smallest string from S 
– After 2nd iteration of outer loop: S[2] 

contains 2nd smallest string from S 
– etc. 

S: array_of_names; 
n := |S|; 
for i = 1..n-1 do 
  for j = i+1..n do 
    if S[i]>S[j] then 
      tmp := S[i]; 
      S[i] := S[j]; 
      S[j] := tmp; 
    end if; 
  end for; 
end for; 
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Example 
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S: array_of_names; 
n := |S|; 
for i = 1..n-1 do 
  for j = i+1..n do 
    if S[i]>S[j] then 
      tmp := S[i]; 
      S[i] := S[j]; 
      S[j] := tmp; 
    end if; 
  end for; 
end for; 
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Example continued 
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• Seems to work 
• This algorithm is called “selection sort” 

– Select smallest element and move to front, select second-smallest 
and move to 2nd position, … 
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Analysis 

• How long will it take (depending on n)? 
• Which parts of the program take CPU time? 

1. Very little, constant time 
2. Probably very little, constant time 
3. n-1 assignments 

4. n-i assignments 
5. One comparison 

6. One assignment 
7. One assignment 
8. One assignment 

9. No time 
10. One increment (j+1); one test 

11. One increment (i+1); one test 

1. S: array_of_names; 
2. n := |S|; 
3. for i = 1..n-1 do 
4.   for j = i+1..n do 
5.     if S[i]>S[j] then 
6.       tmp := S[i]; 
7.       S[i] := S[j]; 
8.       S[j] := tmp; 
9.     end if; 
10.  end for; 
11.end for; 
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Slightly More Abstract 

• Assume one assignment/test costs c, one addition d 
• Which parts of the program take time? 

1. 0 
2. c 
3. (n-1)*c 

4. (n-i)*c (hmmm …) 
5. c 

6. c (hmmm …) 
7. c 
8. c 

9. 0 
10. c+d 

11. c+d 

1. S: array_of_names; 
2. n := |S|; 
3. for i = 1..n-1 do 
4.   for j = i+1..n do 
5.     if S[i]>S[j] then 
6.       tmp := S[i]; 
7.       S[i] := S[j]; 
8.       S[j] := tmp 
9.     end if; 
10.  end for; 
11.end for; 
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Slightly More Compact 

• Assume one assignment/test costs c, one addition d 
• Which parts of the program take time? 

– Let’s be pessimistic: We  
always swap 

– How would the list have  
to look like in first place? 

• c 
• (n-1)*c* ( 

• n-i* ( 
• 5*c 

• c+d) + 
• c+d) 

1. S: array_of_names; 
2. n := |S|; 
3. for i = 1..n-1 do 
4.   for j = i+1..n do 
5.     if S[i]>S[j] then 
6.       tmp := S[i]; 
7.       S[i] := S[j]; 
8.       S[j] := tmp; 
9.     end if; 
10.  end for; 
11.end for; 

This is not yet clear 
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Even More Compact 

• Assume one assignment/test costs c, one addition d 
• Which parts of the program take time? 

– We have some cost outside 
the loops (out_loops) 

– And some cost inside the  
loops (in_loops) 

– How often do we need to  
perform in_loops? 

– Total: 
c+(n-1)*c* ((n-i)*…)= 
out_loops+(n-1)*c*?*in_loops 

 

1. S: array_of_names; 
2. n := |S|; 
3. for i = 1..n-1 do 
4.   for j = i+1..n do 
5.     if S[i]>S[j] then 
6.       tmp := S[i]; 
7.       S[i] := S[j]; 
8.       S[j] := tmp; 
9.     end if; 
10.  end for; 
11.end for; 

out_loops 

in_loops 
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Observations 

• The number of comparisons is 
independent of the number of 
swaps 
– We always compare, but we do 

not always swap 

5 
7 
3 
9 
1 
7 

5 
7 
3 
9 
1 
7 

5 
7 
3 
9 
1 
7 

3 
7 
5 
9 
1 
7 

3 
7 
5 
9 
1 
7 

3 
7 
5 
9 
1 
7 

1 
7 
5 
9 
3 
7 

1 
7 
5 
9 
3 
7 

1 
7 
5 
9 
3 
7 

1 
7 
5 
9 
3 
7 

1 
5 
7 
9 
3 
7 

1 
5 
7 
9 
3 
7 

1 
5 
7 
9 
3 
7 

1 
3 
7 
9 
5 
7 

1 
3 
7 
9 
5 
7 

1 
3 
7 
9 
5 
7 

1 
3 
7 
9 
5 
7 

1 
3 
7 
9 
5 
7 

1 
3 
5 
9 
7 
7 

1 
3 
5 
9 
7 
7 

1 
3 
5 
9 
7 
7 

1 
3 
5 
9 
7 
7 

1 
3 
5 
7 
9 
7 

1 
3 
5 
7 
9 
7 

1 
3 
5 
7 
9 
7 

1 
3 
5 
7 
9 
7 

1 
3 
5 
7 
7 
9 



Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017     20 

Observations 

• The number of comparisons is 
independent of the number of 
swaps 
– We always compare, but we do 

not always swap 

• How many comparisons do we 
perform in total? 
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Observations 

• The number of comparisons is 
independent of the number of 
swaps 
– We always compare, but we do 

not always swap 

• How many comparisons do we 
perform in total? 
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Observations 

 
 

• First string is compared to n-1 
other strings  
– First row 

• Second is compared to n-2 
• Second row 

• Third is compared to n-3 
• … 
• n-1’th is compared to 1 
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Together 

222
)1(i  13)-(n2)-(n1)-(n

21-n

1i

nnnn
−=

−
==+…+++ ∑

=

• This leads to the following estimation for the total cost  
out_loops+(n2-n)*in_loops/2 

• Let’s assume c=d=1 
n+1+(n2-n)*8/2 

 
 
 

out_loops in_loops total 
10 11 360 371 

100 11 39.600 39.611 
500 11 998.000 998.011 

1.000 11 3.996.000 3.996.011 
2.000 11 15.992.000 15.992.011 

0
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6.000.000
8.000.000

10.000.000
12.000.000
14.000.000
16.000.000
18.000.000

10 100 500 1.000 2.000
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What Happened? 

• Most combinations (region, contract type) select only a 
handful of contracts 

• A few combinations select many contracts (2000-5000) 
• Time it takes to fill the drop-down list is not proportional to 

the number of contracts (n), but proportional to n2/2 
– Required time is ”quadratic in n” 
– Assume one operation takes 10 nanoseconds (0.000001 sec) 
– A handful of contracts (~10): ~500 operations => 0,0005 sec 
– Many contracts (~5000) => ~125M operations => 125 sec 
– Humans always expect linear time … 

• Question: Could they have done it better? 
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Of course 

• Efficient sorting algorithms need ~n*log(n)*x operations 
– Quick sort, merge sort, … see later 
– For comparability, let’s assume x=8 
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“log-linear”,  
“Almost” linear n*log(n) 
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So there is an End to Research in Sorting? 

• We didn‘t consider how long it takes to compare 2 strings 
– We used c=d=1, but we need to compare strings char-by-char 
– Time of every comparison is proportional to the length of the 

shorter string 

• We want algorithms requiring less operations per inner 
loop (smaller x) 

• We want algorithms that are fast even if we want to sort 
1.000.000.000 strings  
– Which might not fit into main memory 

• We made a pessimistic estimate – what is a realistic 
estimate (how often do we swap in the inner loop?)? 

• … 
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Terasort Benchmark 

• 2009: 100 TB in 173 minutes  
– Amounts to 0.578 TB/min 
– 3452 nodes x (2 Quadcore, 8 GB memory) 
– Owen O'Malley and Arun Murthy, Yahoo Inc.  

• 2010: 1,000,000,000,000 records in 10,318 seconds  
– Amounts to 0.582 TB/min 
– 47 nodes x (2 Quadcore, 24 GB memory), Nexus 5020 switch 
– Rasmussen, Mysore, Madhyastha, Conley, Porter, Vahdat, Pucher 

• Other goals 
– PennySort: Amount of data sorted for a penny's worth of system 

time 
– JouleSort: Minimize amount of energy required during sorting 
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Content of this Lecture 

 
 
 

• This lecture 
• Algorithms and … 
• Data Structures 
• Concluding Remarks 
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Algorithms and Data Structures 

 
• Slides are English 
• Vorlesung wird auf Deutsch gehalten 
• Lecture: 4 SWS; exercises 2 SWS 
• Contact 

– Ulf Leser,  
– Raum IV.401 
– Tel: 2093 – 3902 
– eMail: leser (..) informatik . hu…berlin . de 
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Schedule 

 
 
 

• Lectures: Monday 11-13, Wednesday 11-13, EZ 0115 
• Exercises: See webpages / AGNES 
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Exercises 

• Start only next week 
• You will build teams of two students 
• There will be an assignment about every two weeks 
• You need to work on every assignment 
• Each assignment gives 40 points max 
• Only groups having >50% of the maximal number of 

points over the entire semester are admitted to the exam 
• For every assignment and slot, 2-3 students are selected at 

random and must present their solution 
• Failing to do so more than two times implies exclusion 

from exercise 
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Literature  

 
• Ottmann, Widmayer: Algorithmen und Datenstrukturen, 

Spektrum Verlag, 2002-2012 
– 20 copies in library 

• Other 
– Saake / Sattler: Algorithmen und Datenstrukturen (mit Java), 

dpunkt.Verlag, 2006 
– Sedgewick: Algorithmen in Java: Teil 1 - 4, Pearson Studium, 2003 

• 20 copies in library 
– Güting, Dieker: Datenstrukturen und Algorithmen, Teubner, 2004 
– Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, MIT 

Press, 2003 
• 10 copies in library 
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Web  
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Pseudo Code 

 
 

• You need to program exercises in Java 
• I will use informal pseudo code 

– Much more concise than Java 
– Goal: You should understand what I mean 
– Syntax is not important; don’t try to execute programs from slides 

• Translation into Java should be simple 
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Topics of the Course 

 
 

• Machine models and complexity (~2) 
• Abstract data types (~2) 
• Lists  (~3) 
• Sorting (~5) 
• Selection (~3) 
• Hashing (~3) 
• Trees (~4) 
• Graphs (~4) 

 
 

April 

Mai 

June 

July 
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113 Evaluation Forms  

 
• Very good scores 
• Materials could (always) be 

better 
• Discerning BA, KB, INFOMIT 

impossible 
• Many liked it a lot, a few 

strongly disliked it 
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Freitexthinweise  



Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017     38 

Highlights 

 
 

• Danke für MERGESORT, half beim Sortieren von 
Blumentöpfen in der Gärtnerei meiner Oma 

• Prof. Leser ist vertrauenswürdig. Wenn er sagt, dass etwas 
stimmt, glaube ich es auch ohne Beweis. Beweise 
weglassen und Zeit sinnvoller nutzen 
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Zusammenfassung 

 
 

• Hochschulpolitik: 12 gut, 11 schlecht 
• Alg der Woche: 19 gut, 1 schlecht 
• Englische Folien: 2 gut, 11 schlecht 
• Tempo: 3 gut, 4 zu langsam, 6 zu schnell 
• Formale Beweise: 8 bitte formaler, 7 bitte weniger formal 
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Questions? 
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Questions 

 
• Diplominformatiker?  
• Bachelor? 
• Semester? 
• Kombibachelor? 
• INFOMIT? Biophysics? Beifach? 
• Who heard this course before? 

 
• No Nebenhörer  
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Content of this Lecture 

 
 
 

• This lecture 
• Algorithms and … 
• Data Structures 
• Concluding Remarks 
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What is an Algorithm? 

 
• An algorithm is a recipe for doing something 

– Washing a car, sorting a set of strings, preparing a pancake, 
employing a student, … 

• The recipe is given in a (formal, clearly defined) language 
• The recipe consists of atomic steps 

– Someone (the machine) must know what to do 

• The recipe must be precise 
– After every step, it is unambiguously decidable what to do next 
– Does not imply that every run has the same sequence of steps 

• There can be randomized steps 

• The recipe must not be infinitely long 
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More Formal 

 
• Definition (general) 

An algorithm is a precise and finite description of a process 
consisting of elementary steps. 

• Definition (Computer Science) 
An algorithm is a precise and finite description of a process 
that is (a) given in a formal language and (b) consists of 
elementary and machine-executable steps. 
 

• Usually we also want: “and (c) solves a given problem” 
– But algorithms can be wrong … 



Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017     45 

Almost Synonyms 

 
 

• Rezept 
• Ausführungsvorschrift 
• Prozessbeschreibung 
• Verwaltungsanweisung 
• Regelwerk 
• Bedienungsanleitung 

– Well … 

• … 
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History 

 
• Word presumably dates back to “Muhammed ibn Musa abu 

Djafar alChoresmi”, 
– Published a book on calculating in the 8th century in Persia 
– See Wikipedia for details 

• Given the general meaning of the term, there have been 
algorithms since ever 
– “To hunt a mammoth, you should …” 

• One of the first prominent one in math: Euclidian algorithm 
for finding the greatest common divisor (gcd) of two ints 
– Assume a,b≥0; define gcd(a,0)=a 

 
 



Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017     47 

Euclidian Algorithm 

• Recipe: Given two integers a, b. As long as neither a nor b 
is 0, take the smaller of both and subtract it from the 
greater. If this yields 0, return the other number 

• Example: (28, 92) 
– (28, 64) 
– (28, 36) 
– (28, 8) 
– (20, 8) 
– (12, 8) 
– (4, 8) 
– (4, 4) 
– (4, 0) 

• Will this always work? 

1. a,b: integer; 
2. if a=0 return b; 
3. while b≠0 
4.   if a>b 
5.     a := a-b; 
6.   else 
7.     b := b-a; 
8.   end if; 
9. end while; 
10.return a; 

Actually not really precise 
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Proof (sketch) that an Algorithm is Correct 

• Assume our function “euclid” returns x 
• We write “b|a” if (a mod b)=0 

– We say: “b teilt a” 

• Note: if c|a and c|b and a>b ⇒ c|(a-b) 
• 1st step: We prove that x is a common 

divisor of a and b 
– Last step: b=0 and x=a!=0 ⇒ x|a, x|b 
– Pre-last: It must hold: a=b ⇒ x|a, x|b 
– Previous: Either a=2x or b=2x ⇒ x|a, x|b 
– Previous: Either (a,b)=(3x,x) or 

(a,b)=(2x,3x) or … ⇒ x|a, x|b 
– … 

1. func euclid(a,b: int) 
2.   if a=0 return b; 
3.   while b≠0 
4.     if a>b 
5.       a := a-b; 
6.     else 
7.       b := b-a; 
8.     end if; 
9.   end while; 
10.  return a; 
11.end func; 
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Proof (sketch) that an Algorithm is Correct 

 
 

 

 
• 2nd step: We prove that x is the 

greatest common divisor 
– Assume any y with y|a and y|b 
– It follows that y|(a-b) (or y|(b-a)) 
– It follows that y|((a-b)-b) (or y|((b-a)-b) …) 
– … 
– It follows that y|x 
– Thus, y≤x 

 

1. func euclid(a,b: int) 
2.   if a=0 return b; 
3.   while b≠0 
4.     if a>b 
5.       a := a-b; 
6.     else 
7.       b := b-a; 
8.     end if; 
9.   end while; 
10.  return a; 
11.end func; 
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Properties of Algorithms 

 
• Definition 

An algorithm is called terminating if it stops after a finite 
number of steps for every input 

• Definition 
An algorithm is called deterministic if it always performs 
the same series of steps given the same input 
 

• We only study terminating and mostly deterministic algs 
– Operating systems are “algorithms” that do not terminate 
– Algs which at some point randomly decide about the next step are 

not deterministic 
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Algorithms and Runtimes 

 
• Usually, one seeks efficient (read for now: fast) algorithms 
• We will analyze the efficiency of an algorithm as a function 

of the size of its input; this is called its (time-)complexity  
– Selection-sort has time-complexity “O(n2)” 

• The real runtime of an algorithm on a real machine 
depends on many additional factors we gracefully ignore 
– Clock rate, processor, programming language, representation of 

primitive data types, available main memory, cache lines, … 

• But: Complexity in some sense correlates with runtime 
– It should correlate well in most cases, but there may be exceptions 
– Precise definition follows  
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Algorithms, Complexity and Problems 

• An (correct) algorithm solves a given problem 
• An algorithm has a certain complexity 

– Which is a statement about the amount of work it will take to finish 
as a function on the size of its input 

• Also problems have complexities 
– The provably minimal amount of work necessary for solving it 
– The complexity of a problem is a lower bound on the complexity of 

any algorithm that solves it 
– If an algorithm has the same complexity as the problem it solves, it 

is optimal – no algorithm can solve this problem faster 

• Proving the complexity of a problem usually is much harder 
than proving the complexity of an algorithm 
– Needs to make a statement on any algorithm for this problem 
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Relationships 

• There are problems for which we know their complexity, but no 
optimal algorithm is known 

• There are problems for which we do not know the complexity yet more 
and more efficient algorithms are discovered over time 

• There are problems for which we only know lower bounds on their 
complexity, but not the precise complexity 

• There are problems of  
which we know that no  
algorithm exists  
– Undecidable problems 
– Example: “Halteproblem” 
– Implies that we cannot  

check in general if an  
algorithm is terminating 

Source: S. Albers, Alg&DS; SoSe 2010 
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Properties of Algorithms 

 
 

1. Time consumption – how long will it take? 
– Time complexity 
– Worst-case, average-case, best-case 

2. Space consumption – how much memory will it need? 
– Space complexity 
– Worst-case, average-case, best-case 
– Can be decisive for large inputs 

3. Correctness – does the algorithm solve the problem? 

Often, one can 
trade space for 

time – look at both 
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Formal Analysis versus Empirical Analysis 

• We will usually perform a formal complexity analysis of the 
algorithms we study 
– Goal: Derive a simple formula which helps to compare the principal 

runtime behavior of different algorithms 
– Should correlate with the true runtime on any machine  

• In some yet-to-be-defined sense 

– However, this doesn’t help to decide which of 10 sorting algorithms 
with complexity O(n*log(n)) are actually the fastest for your setting 

• Machine, nature and amount of data to be sorted, … 

• Alternative: Implement carefully and run on reference 
machine using reference data set 
– Done a lot in practical algorithm engineering 
– Not so much in this introductory course 
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In This Module 

 
 

• We will mostly focus on worst-case time complexity 
– Best-case is not very interesting 
– Average-case often is hard to determine 

• What is an „average string list“?  
• What is average number of twisted sorts in an arbitrary string list?  
• What is the average length of an arbitrary string? 
• May depend in the semantic of the input (person names, DNA 

sequences, job descriptions, book titles, language, …) 

• Keep in mind: Worst-case often is overly pessimistic 
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Content of this Lecture 

 
 
 

• This lecture 
• Algorithms and … 
• Data Structures 
• Concluding Remarks 
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What is a Data Structure? 

 
• Algorithms work on input data, generate intermediate data, 

and finally produce result data 
• A data structure is a way how data is represented inside 

the machine 
– In memory or on disc (see Database course) 

• Data structures determine what algs may do at what cost 
– More precisely: … what a specific step of an algorithm costs 

• Complexity of algs is tightly bound to the data structures 
they use 
– So tightly that one often subsumes both concepts under the term 

“algorithm” 
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Example: Selection Sort (again) 

• We assumed that S is  
– a list of strings (abstract), represented  
– as an array (concrete data structure) 

• Arrays allow us to access the i’th  
element with a cost that is 
independent of i (and |S|) 
– Constant cost, “O(1)” 

• Let’s use a linked list for storing S 
– Create a class C holding a string and a pointer to an object of C 
– Put first s∈S into first object and point to second object, put 

second s into second object and point to third object, … 
– Keep a pointer p0 to the first object 

1. S: array_of_names; 
2. n := |S|; 
3. for i = 1..n-1 do 
4.   for j = i+1..n do 
5.     if S[i]>S[j] then 
6.       tmp := S[i]; 
7.       S[i] := S[j]; 
8.       S[j] := tmp; 
9.     end if; 
10.  end for; 
11.end for; 
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Selection Sort with Linked Lists  

• How much do the algorithm’s steps 
cost now? 
– Assume following a pointer costs c 
1. One assignment 
2. Nothing 
3. One assignment, n-1 times 
4. Nothing 
5. One comparison, … times 
6. … 

• Apparently no change in 
complexity 
– Why? Only sequential access 

1. i := p0; 
2. repeat 
3.   j := i.next; 
4.   repeat 
5.     if i.val > j.val then 
6.       tmp := i.val; 
7.       i.val := j.val; 
8.       j.val := tmp; 
9.     end if; 
10.    j = j.next; 
11.  unil j.next = null; 
12.  i := i.next; 
13.until i.next.next = null; 
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Example Continued 

 
• No change in complexity, but 

– Previously, we accessed array 
elements, performed additions of 
integers and comparisons of strings, 
and assigned values to integers 

– Now, we assign pointers, follow 
pointers, compare strings and follow 
pointers again 

• These differences are not 
reflected in our “cost model”, but 
may have a big impact in practice 

1. i := p0; 
2. repeat 
3.   j := i.next; 
4.   repeat 
5.     if i.val > j.val then 
6.       tmp := i.val; 
7.       i.val := j.val; 
8.       j.val := tmp; 
9.     end if; 
10.    j = j.next; 
11.  unil j.next = null; 
12.  i := i.next; 
13.until i.next.next = null; 
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Content of this Lecture 

 
 
 

• This lecture 
• Algorithms and Data Structures 
• Concluding Remarks  
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Why do you need this? 

• You will learn things you will need a lot through all of your 
professional life 

• Searching, sorting, hashing – cannot Java do this for us? 
– Java libraries contain efficient implementations for most of the 

(basic) problems we will discuss  
– But: Choose the right algorithm / data structure for your problem 

• TreeMap? HashMap? Set? Map? Array? … 
• “Right” means: Most efficient (space and time) for the expected 

operations: Many inserts? Many searches? Biased searches? … 

• Few of you will design new algorithms, but all of you often 
will need to decide which algorithm to use when 

• To prevent problems like the ones we have seen earlier 
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Exemplary Questions 

• Give a definition of the concept “algorithm” 
• What different types of complexity exist? 
• Given the following algorithm …, analyze its worst-case 

time complexity 
• The following algorithm … uses a double-linked list as basic 

set data structure. Replace this with an array 
• When do we say an algorithm is optimal for a given 

problem? 
• How does the complexity of an algorithm depend on (a) 

the data structures it uses and (b) the complexity of the 
problem it solves? 
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