
Algorithms and Data Structures

Ulf Leser

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 2

Who am I

• Ulf Leser

• 1995 Diploma in Computer Science, TU München
• 1996-1997 Database developer at MPI-Molecular Genetics
• 1997-2000 Dissertation in Database Integration, TU Berlin
• 2000-2003 Developer and project manager at PSI AG
• 2003- Prof. Knowledge Management in Bioinformatics

• I do answer emails

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 3

Wissensmanagement in der Bioinformatik

• Our topics in research

– Scientific Databases
– Text Mining
– Scientific Data Analysis

• Our topics in teaching
– Bsc: Grundlagen der Bioinformatik
– Bsc: Information Retrieval
– Msc: Algorithmische Bioinformatik
– Msc: Data Warehousing und Data Mining
– Msc: Informationsintegration
– Msc Maschinelle Sprachverarbeitung

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 4

Once upon a Time …

• IT company A develops software for insurance company B

– Volume: ~4M Euros

• B not happy with delivered system; doesn’t want to pay
• A and B call a referee to decide whether requirements

were fulfilled or not
– Volume: ~500K Euros

• Job of referee is to understand requirements (~60 pages)
and specification (~300 pages), survey software and
manuals, judge whether the contract was fulfilled or not

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 5

One Issue

• Requirement: „Allows for smooth operations in daily
routine“

This is hardly testable

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 6

One Issue

• Requirement: „Allows for smooth operations in daily
routine“

• Claim from B
– I search a specific

contract
– I select a region and a

contract type
– I get a list of all

contracts sorted by name
in a drop-down box

– This sometimes takes
minutes! A simple drop-
down box! This performance
is inacceptable for our call centre!

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 7

Discussion

• A: We tried and it worked fined
• B: OK, most of the times it works fine, but sometimes it is

too slow
• A: We cannot reproduce the error; please be more specific

in what you are doing before the problem occurs
• B: Come on, you cannot expect I log all my clicks and take

notes on what is happening
• A: Then we conclude that there is no error
• B: Of course there is an error
• A: Please pay as there is no reproducible error
• …

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 8

A Closer Look

• System has classical two-tier architecture

• Upon selecting a region and a contract, a query is
constructed and send to the database

• Procedure for “query construction” is used a lot
– All contracts in a region, … running out this year, … by first letter

of customer, … sum of all contract revenues per year, …
– “Meta” coding: very complex, hard to understand

 Clients Database

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 9

Query Construction

SELECT CU.name, CO.type, CO.start, CO.end, CO.volume, …
FROM customer CU, contracts CO, c_c CC, region R, …
WHERE CU.ID=CC.CU_ID AND
 CO.ID=CC.CO_ID AND
 CU.regionID = R.ID AND
 …
 CU.ID=4711 AND CO.type=„Hausrat“

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 10

Query Construction

SELECT CU.name, CU.street, CU.status, CU.contact, …
FROM customer CU, contracts CO, c_c CC, region R, …
WHERE CU.ID=CC.CU_ID AND
 CO.ID=CC.CO_ID AND
 CU.regionID = R.ID AND
 …
 R=„Berlin“AND CO.type=„Leben“

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 11

Requirement

• Recall

• After retrieving the list of customers, it has to be sorted

Ulf Leser: Alg&DS, Summer semester 2011 5

One Issue

• Requirement: „Allows for smooth operations in daily
routine“

• Observation from A
– I search a specific

contract
– I select a region and a

contract type
– I get a list of all

contracts sorted by name
in a drop-down box

– „This sometimes takes
minutes! A simple drop-
down box!“

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 12

Code used for Sorting the List of Customer Names

• S: array of Strings, |S|=n
• Sort S alphabetically

– Take the first string and compare to
all others

– Swap whenever a later string is
alphabetically smaller

– Repeat for 2nd, 3rd, … string
– After 1st iteration of outer loop:

S[1] contains smallest string from S
– After 2nd iteration of outer loop: S[2]

contains 2nd smallest string from S
– etc.

S: array_of_names;
n := |S|;
for i = 1..n-1 do
 for j = i+1..n do
 if S[i]>S[j] then
 tmp := S[i];
 S[i] := S[j];
 S[j] := tmp;
 end if;
 end for;
end for;

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 13

Example

5
7
3
9
1
7

5
7
3
9
1
7

5
7
3
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

1
7
5
9
3
7

1
7
5
9
3
7

1
7
5
9
3
7

1
7
5
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
5
9
7
7

1
3
5
9
7
7

S: array_of_names;
n := |S|;
for i = 1..n-1 do
 for j = i+1..n do
 if S[i]>S[j] then
 tmp := S[i];
 S[i] := S[j];
 S[j] := tmp;
 end if;
 end for;
end for;

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 14

Example continued

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
7
9
7

1
3
5
7
9
7

1
3
5
7
9
7

1
3
5
7
9
7

1
3
5
7
7
9

• Seems to work
• This algorithm is called “selection sort”

– Select smallest element and move to front, select second-smallest
and move to 2nd position, …

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 15

Analysis

• How long will it take (depending on n)?
• Which parts of the program take CPU time?

1. Very little, constant time
2. Probably very little, constant time
3. n-1 assignments

4. n-i assignments
5. One comparison

6. One assignment
7. One assignment
8. One assignment

9. No time
10. One increment (j+1); one test

11. One increment (i+1); one test

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 16

Slightly More Abstract

• Assume one assignment/test costs c, one addition d
• Which parts of the program take time?

1. 0
2. c
3. (n-1)*c

4. (n-i)*c (hmmm …)
5. c

6. c (hmmm …)
7. c
8. c

9. 0
10. c+d

11. c+d

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp
9. end if;
10. end for;
11.end for;

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 17

Slightly More Compact

• Assume one assignment/test costs c, one addition d
• Which parts of the program take time?

– Let’s be pessimistic: We
always swap

– How would the list have
to look like in first place?

• c
• (n-1)*c* (

• n-i* (
• 5*c

• c+d) +
• c+d)

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;

This is not yet clear

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 18

Even More Compact

• Assume one assignment/test costs c, one addition d
• Which parts of the program take time?

– We have some cost outside
the loops (out_loops)

– And some cost inside the
loops (in_loops)

– How often do we need to
perform in_loops?

– Total:
c+(n-1)*c* ((n-i)*…)=
out_loops+(n-1)*c*?*in_loops

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;

out_loops

in_loops

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 19

Observations

• The number of comparisons is
independent of the number of
swaps
– We always compare, but we do

not always swap

5
7
3
9
1
7

5
7
3
9
1
7

5
7
3
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

1
7
5
9
3
7

1
7
5
9
3
7

1
7
5
9
3
7

1
7
5
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
7
9
7

1
3
5
7
9
7

1
3
5
7
9
7

1
3
5
7
9
7

1
3
5
7
7
9

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 20

Observations

• The number of comparisons is
independent of the number of
swaps
– We always compare, but we do

not always swap

• How many comparisons do we
perform in total?

5
7
3
9
1
7

5
7
3
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

1
7
5
9
3
7

1
7
5
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
7
9
7

1
3
5
7
9
7

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 21

Observations

• The number of comparisons is
independent of the number of
swaps
– We always compare, but we do

not always swap

• How many comparisons do we
perform in total?

5
7
3
9
1
7

5
7
3
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

1
7
5
9
3
7

1
7
5
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
7
9
7

1
3
5
7
9
7

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 22

Observations

• First string is compared to n-1
other strings
– First row

• Second is compared to n-2
• Second row

• Third is compared to n-3
• …
• n-1’th is compared to 1

5
7
3
9
1
7

5
7
3
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

1
7
5
9
3
7

1
7
5
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
7
9
7

1
3
5
7
9
7

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 23

Together

222
)1(i 13)-(n2)-(n1)-(n

21-n

1i

nnnn
−=

−
==+…+++ ∑

=

• This leads to the following estimation for the total cost
out_loops+(n2-n)*in_loops/2

• Let’s assume c=d=1
n+1+(n2-n)*8/2

out_loops in_loops total
10 11 360 371

100 11 39.600 39.611
500 11 998.000 998.011

1.000 11 3.996.000 3.996.011
2.000 11 15.992.000 15.992.011

0
2.000.000
4.000.000
6.000.000
8.000.000

10.000.000
12.000.000
14.000.000
16.000.000
18.000.000

10 100 500 1.000 2.000

out_loops

in_loops

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 24

What Happened?

• Most combinations (region, contract type) select only a
handful of contracts

• A few combinations select many contracts (2000-5000)
• Time it takes to fill the drop-down list is not proportional to

the number of contracts (n), but proportional to n2/2
– Required time is ”quadratic in n”
– Assume one operation takes 10 nanoseconds (0.000001 sec)
– A handful of contracts (~10): ~500 operations => 0,0005 sec
– Many contracts (~5000) => ~125M operations => 125 sec
– Humans always expect linear time …

• Question: Could they have done it better?

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 25

Of course

• Efficient sorting algorithms need ~n*log(n)*x operations
– Quick sort, merge sort, … see later
– For comparability, let’s assume x=8

0

2.000.000

4.000.000

6.000.000

8.000.000

10.000.000

12.000.000

14.000.000

16.000.000

18.000.000

10 100 500 1.000 2.000

out_loops

in_loops

log

“log-linear”,
“Almost” linear n*log(n)

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 26

So there is an End to Research in Sorting?

• We didn‘t consider how long it takes to compare 2 strings
– We used c=d=1, but we need to compare strings char-by-char
– Time of every comparison is proportional to the length of the

shorter string

• We want algorithms requiring less operations per inner
loop (smaller x)

• We want algorithms that are fast even if we want to sort
1.000.000.000 strings
– Which might not fit into main memory

• We made a pessimistic estimate – what is a realistic
estimate (how often do we swap in the inner loop?)?

• …

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 27

Terasort Benchmark

• 2009: 100 TB in 173 minutes
– Amounts to 0.578 TB/min
– 3452 nodes x (2 Quadcore, 8 GB memory)
– Owen O'Malley and Arun Murthy, Yahoo Inc.

• 2010: 1,000,000,000,000 records in 10,318 seconds
– Amounts to 0.582 TB/min
– 47 nodes x (2 Quadcore, 24 GB memory), Nexus 5020 switch
– Rasmussen, Mysore, Madhyastha, Conley, Porter, Vahdat, Pucher

• Other goals
– PennySort: Amount of data sorted for a penny's worth of system

time
– JouleSort: Minimize amount of energy required during sorting

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 28

Content of this Lecture

• This lecture
• Algorithms and …
• Data Structures
• Concluding Remarks

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 29

Algorithms and Data Structures

• Slides are English
• Vorlesung wird auf Deutsch gehalten
• Lecture: 4 SWS; exercises 2 SWS
• Contact

– Ulf Leser,
– Raum IV.401
– Tel: 2093 – 3902
– eMail: leser (..) informatik . hu…berlin . de

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 30

Schedule

• Lectures: Monday 11-13, Wednesday 11-13, EZ 0115
• Exercises: See webpages / AGNES

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 31

Exercises

• Start only next week
• You will build teams of two students
• There will be an assignment about every two weeks
• You need to work on every assignment
• Each assignment gives 40 points max
• Only groups having >50% of the maximal number of

points over the entire semester are admitted to the exam
• For every assignment and slot, 2-3 students are selected at

random and must present their solution
• Failing to do so more than two times implies exclusion

from exercise

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 32

Literature

• Ottmann, Widmayer: Algorithmen und Datenstrukturen,

Spektrum Verlag, 2002-2012
– 20 copies in library

• Other
– Saake / Sattler: Algorithmen und Datenstrukturen (mit Java),

dpunkt.Verlag, 2006
– Sedgewick: Algorithmen in Java: Teil 1 - 4, Pearson Studium, 2003

• 20 copies in library
– Güting, Dieker: Datenstrukturen und Algorithmen, Teubner, 2004
– Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, MIT

Press, 2003
• 10 copies in library

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 33

Web

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 34

Pseudo Code

• You need to program exercises in Java
• I will use informal pseudo code

– Much more concise than Java
– Goal: You should understand what I mean
– Syntax is not important; don’t try to execute programs from slides

• Translation into Java should be simple

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 35

Topics of the Course

• Machine models and complexity (~2)
• Abstract data types (~2)
• Lists (~3)
• Sorting (~5)
• Selection (~3)
• Hashing (~3)
• Trees (~4)
• Graphs (~4)

April

Mai

June

July

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 36

113 Evaluation Forms

• Very good scores
• Materials could (always) be

better
• Discerning BA, KB, INFOMIT

impossible
• Many liked it a lot, a few

strongly disliked it

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 37

Freitexthinweise

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 38

Highlights

• Danke für MERGESORT, half beim Sortieren von
Blumentöpfen in der Gärtnerei meiner Oma

• Prof. Leser ist vertrauenswürdig. Wenn er sagt, dass etwas
stimmt, glaube ich es auch ohne Beweis. Beweise
weglassen und Zeit sinnvoller nutzen

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 39

Zusammenfassung

• Hochschulpolitik: 12 gut, 11 schlecht
• Alg der Woche: 19 gut, 1 schlecht
• Englische Folien: 2 gut, 11 schlecht
• Tempo: 3 gut, 4 zu langsam, 6 zu schnell
• Formale Beweise: 8 bitte formaler, 7 bitte weniger formal

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 40

Questions?

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 41

Questions

• Diplominformatiker?
• Bachelor?
• Semester?
• Kombibachelor?
• INFOMIT? Biophysics? Beifach?
• Who heard this course before?

• No Nebenhörer 

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 42

Content of this Lecture

• This lecture
• Algorithms and …
• Data Structures
• Concluding Remarks

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 43

What is an Algorithm?

• An algorithm is a recipe for doing something

– Washing a car, sorting a set of strings, preparing a pancake,
employing a student, …

• The recipe is given in a (formal, clearly defined) language
• The recipe consists of atomic steps

– Someone (the machine) must know what to do

• The recipe must be precise
– After every step, it is unambiguously decidable what to do next
– Does not imply that every run has the same sequence of steps

• There can be randomized steps

• The recipe must not be infinitely long

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 44

More Formal

• Definition (general)

An algorithm is a precise and finite description of a process
consisting of elementary steps.

• Definition (Computer Science)
An algorithm is a precise and finite description of a process
that is (a) given in a formal language and (b) consists of
elementary and machine-executable steps.

• Usually we also want: “and (c) solves a given problem”
– But algorithms can be wrong …

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 45

Almost Synonyms

• Rezept
• Ausführungsvorschrift
• Prozessbeschreibung
• Verwaltungsanweisung
• Regelwerk
• Bedienungsanleitung

– Well …

• …

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 46

History

• Word presumably dates back to “Muhammed ibn Musa abu

Djafar alChoresmi”,
– Published a book on calculating in the 8th century in Persia
– See Wikipedia for details

• Given the general meaning of the term, there have been
algorithms since ever
– “To hunt a mammoth, you should …”

• One of the first prominent one in math: Euclidian algorithm
for finding the greatest common divisor (gcd) of two ints
– Assume a,b≥0; define gcd(a,0)=a

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 47

Euclidian Algorithm

• Recipe: Given two integers a, b. As long as neither a nor b
is 0, take the smaller of both and subtract it from the
greater. If this yields 0, return the other number

• Example: (28, 92)
– (28, 64)
– (28, 36)
– (28, 8)
– (20, 8)
– (12, 8)
– (4, 8)
– (4, 4)
– (4, 0)

• Will this always work?

1. a,b: integer;
2. if a=0 return b;
3. while b≠0
4. if a>b
5. a := a-b;
6. else
7. b := b-a;
8. end if;
9. end while;
10.return a;

Actually not really precise

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 48

Proof (sketch) that an Algorithm is Correct

• Assume our function “euclid” returns x
• We write “b|a” if (a mod b)=0

– We say: “b teilt a”

• Note: if c|a and c|b and a>b ⇒ c|(a-b)
• 1st step: We prove that x is a common

divisor of a and b
– Last step: b=0 and x=a!=0 ⇒ x|a, x|b
– Pre-last: It must hold: a=b ⇒ x|a, x|b
– Previous: Either a=2x or b=2x ⇒ x|a, x|b
– Previous: Either (a,b)=(3x,x) or

(a,b)=(2x,3x) or … ⇒ x|a, x|b
– …

1. func euclid(a,b: int)
2. if a=0 return b;
3. while b≠0
4. if a>b
5. a := a-b;
6. else
7. b := b-a;
8. end if;
9. end while;
10. return a;
11.end func;

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 49

Proof (sketch) that an Algorithm is Correct

• 2nd step: We prove that x is the

greatest common divisor
– Assume any y with y|a and y|b
– It follows that y|(a-b) (or y|(b-a))
– It follows that y|((a-b)-b) (or y|((b-a)-b) …)
– …
– It follows that y|x
– Thus, y≤x

1. func euclid(a,b: int)
2. if a=0 return b;
3. while b≠0
4. if a>b
5. a := a-b;
6. else
7. b := b-a;
8. end if;
9. end while;
10. return a;
11.end func;

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 50

Properties of Algorithms

• Definition

An algorithm is called terminating if it stops after a finite
number of steps for every input

• Definition
An algorithm is called deterministic if it always performs
the same series of steps given the same input

• We only study terminating and mostly deterministic algs
– Operating systems are “algorithms” that do not terminate
– Algs which at some point randomly decide about the next step are

not deterministic

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 51

Algorithms and Runtimes

• Usually, one seeks efficient (read for now: fast) algorithms
• We will analyze the efficiency of an algorithm as a function

of the size of its input; this is called its (time-)complexity
– Selection-sort has time-complexity “O(n2)”

• The real runtime of an algorithm on a real machine
depends on many additional factors we gracefully ignore
– Clock rate, processor, programming language, representation of

primitive data types, available main memory, cache lines, …

• But: Complexity in some sense correlates with runtime
– It should correlate well in most cases, but there may be exceptions
– Precise definition follows

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 52

Algorithms, Complexity and Problems

• An (correct) algorithm solves a given problem
• An algorithm has a certain complexity

– Which is a statement about the amount of work it will take to finish
as a function on the size of its input

• Also problems have complexities
– The provably minimal amount of work necessary for solving it
– The complexity of a problem is a lower bound on the complexity of

any algorithm that solves it
– If an algorithm has the same complexity as the problem it solves, it

is optimal – no algorithm can solve this problem faster

• Proving the complexity of a problem usually is much harder
than proving the complexity of an algorithm
– Needs to make a statement on any algorithm for this problem

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 53

Relationships

• There are problems for which we know their complexity, but no
optimal algorithm is known

• There are problems for which we do not know the complexity yet more
and more efficient algorithms are discovered over time

• There are problems for which we only know lower bounds on their
complexity, but not the precise complexity

• There are problems of
which we know that no
algorithm exists
– Undecidable problems
– Example: “Halteproblem”
– Implies that we cannot

check in general if an
algorithm is terminating

Source: S. Albers, Alg&DS; SoSe 2010

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 54

Properties of Algorithms

1. Time consumption – how long will it take?
– Time complexity
– Worst-case, average-case, best-case

2. Space consumption – how much memory will it need?
– Space complexity
– Worst-case, average-case, best-case
– Can be decisive for large inputs

3. Correctness – does the algorithm solve the problem?

Often, one can
trade space for

time – look at both

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 55

Formal Analysis versus Empirical Analysis

• We will usually perform a formal complexity analysis of the
algorithms we study
– Goal: Derive a simple formula which helps to compare the principal

runtime behavior of different algorithms
– Should correlate with the true runtime on any machine

• In some yet-to-be-defined sense

– However, this doesn’t help to decide which of 10 sorting algorithms
with complexity O(n*log(n)) are actually the fastest for your setting

• Machine, nature and amount of data to be sorted, …

• Alternative: Implement carefully and run on reference
machine using reference data set
– Done a lot in practical algorithm engineering
– Not so much in this introductory course

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 56

In This Module

• We will mostly focus on worst-case time complexity
– Best-case is not very interesting
– Average-case often is hard to determine

• What is an „average string list“?
• What is average number of twisted sorts in an arbitrary string list?
• What is the average length of an arbitrary string?
• May depend in the semantic of the input (person names, DNA

sequences, job descriptions, book titles, language, …)

• Keep in mind: Worst-case often is overly pessimistic

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 57

Content of this Lecture

• This lecture
• Algorithms and …
• Data Structures
• Concluding Remarks

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 58

What is a Data Structure?

• Algorithms work on input data, generate intermediate data,

and finally produce result data
• A data structure is a way how data is represented inside

the machine
– In memory or on disc (see Database course)

• Data structures determine what algs may do at what cost
– More precisely: … what a specific step of an algorithm costs

• Complexity of algs is tightly bound to the data structures
they use
– So tightly that one often subsumes both concepts under the term

“algorithm”

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 59

Example: Selection Sort (again)

• We assumed that S is
– a list of strings (abstract), represented
– as an array (concrete data structure)

• Arrays allow us to access the i’th
element with a cost that is
independent of i (and |S|)
– Constant cost, “O(1)”

• Let’s use a linked list for storing S
– Create a class C holding a string and a pointer to an object of C
– Put first s∈S into first object and point to second object, put

second s into second object and point to third object, …
– Keep a pointer p0 to the first object

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 60

Selection Sort with Linked Lists

• How much do the algorithm’s steps
cost now?
– Assume following a pointer costs c
1. One assignment
2. Nothing
3. One assignment, n-1 times
4. Nothing
5. One comparison, … times
6. …

• Apparently no change in
complexity
– Why? Only sequential access

1. i := p0;
2. repeat
3. j := i.next;
4. repeat
5. if i.val > j.val then
6. tmp := i.val;
7. i.val := j.val;
8. j.val := tmp;
9. end if;
10. j = j.next;
11. unil j.next = null;
12. i := i.next;
13.until i.next.next = null;

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 61

Example Continued

• No change in complexity, but

– Previously, we accessed array
elements, performed additions of
integers and comparisons of strings,
and assigned values to integers

– Now, we assign pointers, follow
pointers, compare strings and follow
pointers again

• These differences are not
reflected in our “cost model”, but
may have a big impact in practice

1. i := p0;
2. repeat
3. j := i.next;
4. repeat
5. if i.val > j.val then
6. tmp := i.val;
7. i.val := j.val;
8. j.val := tmp;
9. end if;
10. j = j.next;
11. unil j.next = null;
12. i := i.next;
13.until i.next.next = null;

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 62

Content of this Lecture

• This lecture
• Algorithms and Data Structures
• Concluding Remarks

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 63

Why do you need this?

• You will learn things you will need a lot through all of your
professional life

• Searching, sorting, hashing – cannot Java do this for us?
– Java libraries contain efficient implementations for most of the

(basic) problems we will discuss
– But: Choose the right algorithm / data structure for your problem

• TreeMap? HashMap? Set? Map? Array? …
• “Right” means: Most efficient (space and time) for the expected

operations: Many inserts? Many searches? Biased searches? …

• Few of you will design new algorithms, but all of you often
will need to decide which algorithm to use when

• To prevent problems like the ones we have seen earlier

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 64

Exemplary Questions

• Give a definition of the concept “algorithm”
• What different types of complexity exist?
• Given the following algorithm …, analyze its worst-case

time complexity
• The following algorithm … uses a double-linked list as basic

set data structure. Replace this with an array
• When do we say an algorithm is optimal for a given

problem?
• How does the complexity of an algorithm depend on (a)

the data structures it uses and (b) the complexity of the
problem it solves?

	Foliennummer 1
	Who am I
	Wissensmanagement in der Bioinformatik
	Once upon a Time …
	One Issue
	One Issue
	Discussion
	A Closer Look
	Query Construction
	Query Construction
	Requirement
	Code used for Sorting the List of Customer Names
	Example
	Example continued
	Analysis
	Slightly More Abstract
	Slightly More Compact
	Even More Compact
	Observations
	Observations
	Observations
	Observations
	Together
	What Happened?
	Of course
	So there is an End to Research in Sorting?
	Terasort Benchmark
	Content of this Lecture
	Algorithms and Data Structures
	Schedule
	Exercises
	Literature
	Web
	Pseudo Code
	Topics of the Course
	113 Evaluation Forms	
	Freitexthinweise	
	Highlights
	Zusammenfassung
	Foliennummer 40
	Questions
	Content of this Lecture
	What is an Algorithm?
	More Formal
	Almost Synonyms
	History
	Euclidian Algorithm
	Proof (sketch) that an Algorithm is Correct
	Proof (sketch) that an Algorithm is Correct
	Properties of Algorithms
	Algorithms and Runtimes
	Algorithms, Complexity and Problems
	Relationships
	Properties of Algorithms
	Formal Analysis versus Empirical Analysis
	In This Module
	Content of this Lecture
	What is a Data Structure?
	Example: Selection Sort (again)
	Selection Sort with Linked Lists
	Example Continued
	Content of this Lecture
	Why do you need this?
	Exemplary Questions

