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Abstract

Microarrays are state technologies of the art for the mea-

surement of expression of thousands of genes in a single

experiment. The treatment of these data are typically per-

formed with a wide range of tools, but the understanding

of complex biological system by means of gene expression

usually requires integrating different types of data frommul-

tiple sources and different services and tools. Many efforts

are being developed on the new area of scientific workflows

in order to create a technology that links both data and tools

to create workflows that can easily be used by researchers.

Currently technologies in this area aren’t mature yet, mak-

ing arduous the use of these technologies by the researcher.

In this paper we present an architecture that helps the re-

searchers to make large-scale gene expression data anal-

ysis with cutting edge technologies. The main underlying

idea is to automate and rearrange the activities involved in

gene expression data analysis, in order to freeing the user

of superfluous technological details and tedious and error-

prone tasks.

1. Introduction

The study of gene expression is a very active research

area in Genomics and Bioinformatics. Gene expression is

the process by which inheritable information from a gene

(the DNA sequence) is turned into a functional gene prod-

uct (protein or RNA). Microarrays are the state -of -the -

art technology for the measurement of the expression of

thousands of genes in a single experiment. The analysis of

microarray experimental data is typically performed with

a wide range of tools, ranging from simple command-line

tools to complex graphical programs and web-services. Fur-

thermore, data analysis often requires to link the primary

microarray data with information stemming from other ex-

periments or from databases. The integration of different

types of data from multiple sources using into a data set

that has to be analyzed with heterogeneous tools is a well

known, yet unsolved, issue [9].

The “cut and paste” approach, which still is the predomi-

nant mode of working for the average biological researcher,

is error-prone and tedious, especially for large amounts of

data. Moreover, it requires some programming skills which

most researchers do not have, e.g. the statistical program-

ming environment Bioconductor [6] (based on R) offers

an extensive and flexible set of tools, but also has a high

startup/learning cost.

There is a clear need for technologies linking both data

and tools through workflows that can be used easily by we-

lab researchers. Such technologies are generally called Sci-

entific Workflow Management Systems (sWFMS). Many

efforts are currently on the way to develop such systems,

such as Triana [17], Kepler [10] or Taverna[18].

However, in those systems a researcher still has to deal

with technological details, e.g., the workflow concepts and

web services with their binding and their limitations. An-

other problem is the platform on which the WFMS runs.

Thus, a researcher that wants to perform an analysis on

microarray data typically must: (1) Select and retrieve an

appropriate workflow from a remote repository, (2) ac-

cess/start the WFMS and interact directly with him, (3) re-

trieve the data to be analyzed from a microarray database

or a file system, (4) launch the workflow and (5) analyze

the results. However, we argue that for most scenarios the

phases of workflow selection and data retrieval could be au-

tomatized, and that it is possible to provide an easy to use

interface that completely hides the underlying details.

These issues are expanded and analyzed in this paper.

We present an architecture that helps a researcher to per-

form large-scale gene expression data analysis with cutting

edge technologies using a simple graphical interface. The

objective is to facilitate the use of analysis workflows for

microarray experiments by wrapping all its components,

such as a workflow repository, a set of data sources and



Figure 1. Microarray Data Analysis steps.

analysis tools. Particular attention was given to the models

of implementing data transfers between the various compo-

nents.

2. Microarray Data Analysis

A Microarray contains up to several thousands of frag-

ments of DNA [13]. Each fragment is a probe for capturing

the expression of a gene. Each probe will hybridize with

a specific sequence of complementary RNA. The genes ex-

tracted from the tissues to be studied are first labeled with

fluorescent dyes and then hybridized to the array. The genes

which are more activated will be evident on the array as they

will light up. Biological studies are aimed at explaining how

the genes are differentially expressed under different condi-

tions, e.g., by comparing healthy and sick tissues, or treated

and not treated tissues.

2.1. Microarray Data Analysis Workflow

The primary result of a microarray experiment is a digi-

tal image, which is only a rough and indirect picture of how

the genes in a given tissue or culture are expressed. After a

series of analysis steps a clear result relating the observation

to the phenomenon to be studied is produced. An exemplary

(and very generic) such workflow is depicted in Figure 1.

The Preprocessing step involves the generation of gene ex-

pression values from the raw image [11]. The step consists

of three phases which are background correction, normal-

ization and summarization. The filtering step filters out un-

interesting or very low expression values [2]. The succes-

sive step is Significance, where differences in expression are

tested for statistical significance [7]. Thereafter, a number

of further steps are possible, such as supervised (classifica-

tion) or unsupervised learning (clustering). Finally, the list

of significantly expressed genes needs to be combined with

information from other biological databases.

2.2. Microarray Data: Type and Size

The output of low level analysis performed on the image

file is an intensity file (e.g., CEL file) where every probe is

Figure 2. The state of the art for Bioinformatics

tools.

Figure 3. The adopted architecture.

represented with its spatial coordinates and its expression

value. File size changes according to gene numbers and ar-

ray design (e.g., for a chip with 40.000 probe set/genes, the

intensity file has about 450.000 probe expression values).

Then a gene (probe set) level summarization is performed

resulting in a binary file which contains probe set expres-

sion values and quality control data [15]. Thereafter, further

analysis steps are performed and according to them, many

different file formats may be created. Usually the output

is an annotated gene file where genes are associated with

statistical significance score and further information on the

gene. This typically contains 1.000 genes with 10 attributes.

3. Bioinformatic Tools

All of the steps described above may be performed with

different tools: command-line tools, web services, pack-

aged applications, spreadsheets etc. However, today most

methods are also available in BioConductor [6], a suite of

programs for the R system. R is a language and environ-

ment for statistical computing and graphics. BioConductor

is an open-source software project for the analysis and com-

prehension of biomedical and genomic data.

Figure 2 gives an overall picture of the current usage

of WFMS for gene expression analysis. Raw and prepro-

cessed data is often stored in microarray databases. These

may be public repositories, like ArrayExpress [16], GEO

[1] or systems that are installed locally, like BASE2 [8].

Analysis programs are available as web services, for in-

stance through the BioMoby suite. Tools that are available

only at the command-line, such as R/BioConductor, may be
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wrapped by SoapLab [14], which puts a web service inter-

face to them. All these services are managed and coordi-

nated by a sWFMS. Various WFMS have been described

in the literature, such as Kepler, Taverna, Triana. In this

work, we only consider Taverna; for a detailed survey on

the strengths and weaknesses of the other systems, see [3].

3.1. A Typical Use Case

In a setting as sketched in Figure 2, a researcher that

wants to perform an analysis on microarray data must:

1. Retrieve the needed workflow. Find the appropriate

workflow in a, public or private, workflow repository.

This task may also involve small changes to or config-

uration of an existing workflow.

2. Access/start the WFMS. Access to the host on which

the WFMS runs (researcher’s laptop, a specific com-

puter in its research center or, in few cases, a remote

computer accessed via web).

3. Retrieve microarray data. Find all needed raw data

files (e.g. CEL files for a Quality Control experiment

in a microarray analysis). Usually they are down-

loaded from a database.

4. Launch the workflow and analyze the results. The

researcher launches the workflow and analyzes the re-

sults; possibly re-performs the analysis modifying pa-

rameters and/or data.

In this typical use case some critical issues can be iden-

tified. First, the researcher need to perform all tasks manu-

ally using different tools, which requires great effort and is

error-prone and tedious. Second, the phases of choosing a

workflow and retrieving data could be substantially reduced

in complexity if the lab environment of the researcher is

taken into account. Third, the researches has to use dif-

ferent interfaces, while it would be more comfortable if all

functions would be available through a single and homoge-

neous interface which should completely hide the underly-

ing technological details. Finally, it would be advantageous

if such an interface could be accessed remotely through a

programmatic interface.

4. The Proposed Architecture

We developed a new architecture to microarray analysis

using a sWFMS. It is depicted in Figure 3. It consists of the

following components:

WFMS Service Provider

It is composed by a WFMS, a workflows repository, and a

wrapper offering a programmatic access to the services of-

fered by the WFMS. For reasons described in [12], Taverna

was chosen for a prototype implementation.

Services Provider

This component is revised version of the system described

in [5]. We use SoapLab to access R scripts as web services.

Another service is used that handles data transferring from

data sources (e.g. a microarray database) to data consumer

(e.g. a Services Provider). Data transfer is modelled as a

proper workflow task (see below).

Microarray Database

It could be any database with a programmatically interface.

In our prototype implementation, we use BASE2.

Client

We developed a proper client. This decision was partly

based on the experience that, despite the powerful GUI Tav-

erna is offering, the average user does not want to be con-

fronted with workflow models. Instead, it is much faster

to have a simpler, lab-tailored small application which dis-

plays only few pre-selected workflows from the repository

to the user and encapsulates all further interactions into a

proper GUI. Furthermore, data selection is also performed

through this interface, which means that it offers a single

point of access to the researcher.

4.1. Walk through

A researcher goes on web and downloads the client ap-

plication. The application starts and Client retrieves the

preselected workflows from the WFMS Service Provider

(WFMS-SP) (see Figure 4 (a)). User selects a workflow

from the retrieved list; then, the Client connects again to

the WFMS-SP and retrieves the list of parameters of the

workflow (b). Often this task involves the connection to a

database instance for select one or more raw data files on

which analysis should be performed. So the Client con-

nects to a BASE2 instance by the user and retrieves the list

of available data sets. Only identifiers and connection pa-

rameters are transferred from Client to WFMS-SP and from

WFMS-SP to Services Provider (c). Researcher specifies

the appropriate parameters and launches the workflow. The

WFMS performs the setup phase that involves the download

of files from BASE2 according to the connection parame-

ters and the identifiers given (d). All analysis steps of the

workflow are performed and finally the results are sent to

WFMS. They are rearranged, compressed, and finally sent

to the Client and displayed (see Figure 4 (e) and (f)).

4.2. Modeling Data Transfer (DT)

Microarray studies generate and analyze large amount

of data. Experiment often consist of several hundreds of

megabytes of measurements. Indeed, the data transport

problem still is one of the main questions to be addressed

in developing an architecture for large scale scientific data
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(a) (b) (c)

(d) (e) (f)

Figure 4. Microarray analysis using our system (a). User selects a workflow from a pre-selected list. (b) Client

retrieves the list of parameters of the chosen workflow and lets the user chose proper values through a GUI.

(c) Client connects to a BASE2 instance and retrieves list of available data sets. (d) Researcher launches the

workflow. This triggers a setup phase where the Service Provider retrieves the chosen data from the database.

(e) The WFMS orchestrates data analysis. (f) Final results are retrieved and returned to the Client for display.

analysis. There are various possible approaches; we discuss

them in detail in [12] and only give a short survey here.

DT through service invocation

Data are passed as parameters to the programs that perform

the analysis steps. This is the most straight-forward and

simple model. However, it implies that a large amount of

data must be exchanged between the various analysis pro-

cedures. Furthermore, all data must be passed through the

WFMS, which often causes memory problems.

DT through handle passing

Using data handles removes the problem of memory over-

flow. However, it does not help with the problem of sending

large amounts of data back and force between a tasks imple-

mentation and a server as many analysis steps transform the

data. These transformed data sets must again be transfered

to the next step.

DT through stateful sessions

Another possibility would be to use stateful sessions. This

would require the development of a suitable wrapper around

each integrated service which is able to recognize the ses-

sion encoded in a call and to provide the data attached to

the session. This mechanism avoids both the multiple pass-

ing of data across the network and the necessity to pipe data

through the WFMS, but also it needs a service wrapper on

each “analysis” machine.

Explicitly modeling DT

A fourth method is the explicit modeling of data transfers

as a workflow task in its own. This approach was chosen in

the system described here. A special task (“setup”) is mod-

eled at the start of the analysis workflow and implemented

through a script which runs on the machine performing the

analysis. This script obtains the data sets to be analyzed

from its input parameter, and stores them in a workflow

instance-specific working directory. All tasks later in the

workflow pass their data as files in this directory. A fi-

nal step in the workflow cleans the working directory and

transfers the final result back to the client. This approach

offers good performance with low development cost. But

there are also some drawbacks: data transport has become

a side effect of task invocation, so it cannot be monitored,

optimized etc. by the WFMS; furthermore, the workflows

become cluttered with administrative tasks. Finally, the ap-

proach only works if all analysis is performed on the same

machine, which impedes parallelization and load distribu-

tion at the workflow level.

4



5. Microarray Workflow Design

An analysis of the actual analysis workflows performed

in our labs identified the following fundamental steps [4],

[5]: (1) Setup, which including identifying the data sets

to be analyzed and preparation of R, (2) quality control,

which includes certain tests to ensure that data is compa-

rable and not badly influenced by technical or biological

problems, (3) preprocessing, which comprises background

correction, normalization, and summarization and produces

gene-specific signals, and (4) data analysis, which performs

one of the three tasks described in Section 2.

5.1. Exemplary Workflow

An exemplary workflow, affy Expressions LIMMA, is

shown in Figure 5. This workflow moves the CEL files

from a microarray database to the server, loads them into

R, normalizes them according to a method selected by the

user, and then runs a moderated t-test with multiple testing

correction to find genes of interest . The Setup, Affy Pre-

processing and Classification boxes are nested workflows:

they are expanded in Figures 6, 7, 8 and will be described

below. The last one, cleanup, is responsible for deleting all

files in the working directory.

Setup

During the Setup (see Figure 6) all necessary actions are

taken to prepare for the later analysis. This includes initial-

izing R by starting it, loading the data, transforming it into

a R workspace and storing it for the subsequent steps. Each

of these steps calls R, loads the workspace, performs its cal-

culations and saves the results together with a new version

of the workspace. The output is a string that indicates the

working directory for the following steps.

Affy Preprocessing

This sub-workflow (see Figure 7) performs preprocessing

for Affymetrix data. Three preprocessing methods are im-

plemented, i.e. RMA, GCRMA, MAS5. Each of them is

encapsulated into a single R function, each comprising a

different method for normalization, background correction,

summarization, and PM-correction. It is possible to man-

ually decide which method should be used at every step,

e.g. use the RMA method for normalization, but the MAS5

method for background correction.

Finding differentially expressed genes with LIMMA

The processor limma ebayes performs a statistical test be-

tween known groups of genes, see Figure 8. With the pa-

rameters it is possible to adjust the parameters of the test.

For instance, “mode” specifies whether an all-pair-wise or

a simple comparison should be conducted. The follow-up

processors produce and return different representations of

the result of the test (Venn-Diagrams, heat maps, tables).

Figure 5. The workflow affy Expressions LIMMA.

Figure 6. The Setup sub-workflow.

Figure 7. Preprocessing for Affymetrix chips (im-

age trimmed).

Figure 8. Finding differentially expressed genes

with LIMMA.

6. Performance Evaluation

We describe here an installation of our system in Bio-

gem’s Bioinformatics laboratory. The system runs on a

Hewlett Packard Compaq ProLiant 8500R Server with 8

processors Pentium III Xeon 550 MHz with 4GB of main

memory. The servers run a BASE2 database and two vir-

tual machines for the WFMS SP and the Service Provider.

The launch is the most expensive functionality in terms of

execution time. Therefore is interesting to analyze it in

more detail. We examine three steps in more detail: (1) The
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setup sub-workflow. This time includes the time needed

to connect and download the files from the database; (2)

The analysis steps. This is the time needed for executing

the analysis (e.i. the other sub-workflows); (3) The passing

back of the results. Total launch time is defined as the in-

stant when the incoming request is received and the instant

when the outcoming response is sent.

A small benchmark was performed, using a represen-

tative workflow, affy Expressions LIMMA. We used two

datasets. The simple set consists of 6 CEL files (∼70 MB),

and the medium set consists of 12 CEL files (∼140MB to

execute the analysis and to perform the setup step.

Total Setup Analysis Decoding

Simple ∼110sec 10% 89% 1%

Medium ∼150sec 15% 84% 1%

7. Conclusion And Future Works

The treatment of gene expression data resulting from

a microarray experiment are typically performed with a

multitude of heterogeneous tools. Some of them offer

extensive functionalities, but these usually require a high

startup/learning time. Others only implement a single small

function, and connecting them requires programming skills

or tedious manual work. The need for a technology that

links both data and tools has triggered the Bioinformatics

community to investigate Scientific Workflow intensively.

We presented that focuses on automizing and simplify-

ing tasks involved in large-scale gene expression experi-

ment. Using our approach, researchers may perform such

analysis using only an user-friendly and light-weight client

application. All technological details are hidden. The per-

formance evaluation shows that execution times are favor-

able despite the underlying complexity of the infrastructure.

The actual workflows use a static binding to the Services

Provider, while it would be preferable a dynamic binding

based on availability, load balancing and/or others criteria.

Another challenge is the development of ex-novoworkflows

for large-scale gene expression analysis: several issues are

involved, e.g. limitations correlated with cutting edge tech-

nologies and with the lack of standards, but also the need of

tools for service discovery and data adapting.

Availability and Requirements

Project details are available on our Bioinformatics Team

web site http://bioinformatics.biogem.it. It is also possible

to freely try the architecture, using the Client component

provided as a Java Web Start application.
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