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Abstract. Similarity search and similarity join on strings are important
for applications such as duplicate detection, error detection, data cleans-
ing, or comparison of biological sequences. Especially DNA sequencing
produces large collections of erroneous strings which need to be searched,
compared, and merged. However, current RDBMS offer similarity oper-
ations only in a very limited and inefficient form that does not scale to
the amount of data produced in Life Science projects.

We present PETER, a prefix tree based indexing algorithm supporting
approximate search and approimate joins. Our tool supports Hamming
and edit distance as similarity measure and is available as C++ library,
as Unix command line tool, and as cartridge for a commercial database.
It combines an efficient implementation of compressed prefix trees with
advanced pre-filtering techniques that exclude many candidate strings
early. The achieved speed-ups are dramatic, especially for DNA with
its small alphabet. We evaluate our tool on several collections of long
strings containing up to 5,000,000 entries of length up to 3,500. We com-
pare its performance to agrep, nrgrep, and user-defined functions inside
a relational database. Our experiments reveal that PETER is faster by
orders of magnitudes compared to the command-line tools. Compared
to RDBMS, it computes similarity joins in minutes for which UDFs did
not finish within a day and outperforms the built-in join methods even
in the exact case.

1 Introduction

Similarity search and similarity join on string data has become a topic of inter-
est in the past years [4,10]. Applications arise in duplicate detection [15], error
correction [13] and data cleansing [5], to name only a few. They are also of ut-
termost importance in the Life Sciences. The characteristics of all organisms are
coded in their genomes, which can be represented as a very large string over an
alphabet of four letters. Approximately searching DNA sequences is important
in virtually all fields of modern genomics. In this paper, we will use EST's as our
running example. ESTs(Expressed Sequence Tags) are short DNA sequences with
lengths mostly in the region of 300 to 800 bases that are commonly used to iden-
tify genes and their localization on a chromosome. However, to be cost-effective,



ESTs are obtained by a single sequencing pass which yields in an estimated er-
ror rate of 1% [9]. Thus, few differences in ESTs often are simply due to errors
created by the sequencing process, which implies that searching and joining EST
data sets should always be carried out approximately rather than exactly. Since
the EST sets that are considered go in the millions', efficient execution of such
similarity operations is crucial.

A large number of tools has been developed by the bioinformatics community
to speed-up similarity search [2,20]. Almost all of them focus on computing
local alignments [6] and use heuristics to achieve performance — at the cost
of accuracy. In contrast, we aimed at developing an algorithm that supports
global alignment (i.e., comparison of entire strings and not of substrings) and
that is exact. Furthermore, we want our algorithms to be operations inside a
relational database. The reason for this decision is that advanced analysis of
sequences often depends on the availability of additional information (such as
gene function, genomic annotation, biological pathways etc.), which nowadays
is mostly maintained in RDBMS [11]. Furthermore, our intention is to provide
a universal data structure for similarity operations not restricted to the Life
Sciences.

In this paper, we present PETER, an indexing algorithm for scalable ap-
proximate search and approximate join operations based on Hamming distance
or edit distance. PETER builds on a compressed prefix tree. One advantage of
prefix tree indexing is that the complexity of search queries only depends on the
depth of the tree, i.e., the maximal length of the indexed strings, and not on
the number of indexed strings. Joins between sets of trees can be implemented
efficiently by computing the intersection of two prefix trees. However, it is not
trivial to sustain these advantages when moving from exact to similarity opera-
tions [16]. To this end, we refine algorithms for similarity search in prefix trees
with various pruning and filtering techniques. Since we focus on retrieving very
similar strings, these reduce the search space significantly; this focus also al-
lows us to use a special alignment method (k-banded alignment) which is much
faster than normal edit distance computation. We show that our tool outper-
forms the Unix command line tools agrep and nrgrep by magnitudes and also
show that it enables efficient similarity based search and join queries on large
string collections inside a RDBMS. At the downside, a restriction of our tool is
that it is only efficient for searching highly similar strings; however, this is the
predominant requirement in most applications we are aware of.

Compressed prefix trees [16], k-banded alignment [3] and the filtering tech-
niques we apply [1,4, 16] have been published before. However, this is the first
work that combines these different ideas to speed up similarity search into a
single, homogeneous algorithm supporting both similarity search and similarity
joins. It is also the first work we are aware of that persistently integrates such a
method into an RDBMS, thus offering its capabilities to SQL users.

! The largest collection of publicly available EST sequences is dbEST [14] with more
than 60 million EST sequences from 1745 organisms as of May 2009.



Our paper is structured as follows. Chapter 2 contains an introduction to our
data structures and to similarity search in general. In Chapt. 3 we describe our
techniques for efficient similarity operations on compressed prefix trees. Chapter
4 gives details on the implementation. We present experimental results in Chapt.
5. Related work is discussed in Chapt. 6 and Chapt. 7 concludes the paper.

2 Preliminaries

Let X be an alphabet (we will usually use {a,c, g,t}). We use s, with subscripts
if required, to denote strings in X*. Let n = |s| be the length of s. A substring
of s, denoted by si...j], starts at position ¢ and ends at position j. We call
s[1...7] prefix, s[k...|s|] suffix and s[i..j], (1 <i < j < |s]), infix of s. Any infix
of length ¢ is called g-gram. For a fixed ¢, s contains m =n — g+ 1 ¢g-grams. A
pair (i, 8[é,...,i + g — 1]) is called positional ¢-gram [18].

2.1 Similarity Measures

Similarity-based operations must be based on a concrete similarity measure.
PETER supports Hamming distance and edit distance.

Definition 1 (Hamming distance). The Hamming distance dpq(s1, s2) of two
strings s1, s2 of equal length is the number of mismatching characters in s; and
so: dpa(s1,s2) = |[{ils1]i] # s2li]}|. We say two strings are within Hamming
distance k if dpq(s1,s2) < k.

Obviously, computing the Hamming distance of two strings with |s1| = |s2]| = nis
possible in O(n). However, Hamming distance is only defined for strings of equal
length, and also an inappropriate measure in most bioinformatics applications.
There, we are mostly interested in the minimal number of operations that turn
one string into the other, called the edit distance (or Levenshtein distance).

Definition 2 (Edit distance). The edit distance deq(s1,s2) of two strings
s1, 82 with |s1| = n,|s2] = m is the minimal number of insertions, deletions,
or replacements of single characters needed to transfrom si into so. We say two
strings are within edit distance k, if deq < k.

Using dynamic programming, the edit distance can be computed O(|sy|*]s2]) [13,
19]. However, faster computation is possible when one is only interested in highly
similar strings. The k-banded alignment algorithm finds the edit distance of two
strings with edit distance of at most 2k in O(k * max{|s1], [s2|}).

Definition 3 (k-banded alignment). The k-band of an edit distance matriz
M is defined as: M]Ji, j| € k-band < |i — j| < k. If s1 and sy are within edit
distance k, their optimal alignment path must lie in the k-band of M. Thus, all
cells of M that are not in the k-band can be ignored [3].



2.2 Similarity Operators

There are various forms of defining similarity operator [13]. We support two such
operations: similarity search and similarity join.

Definition 4 (Similarity search). Given a string s, a set S of strings, and a
threshold k, ssearch(s,S) returns all s' € S for which d(s,s’) < k.

Definition 5 (Similarity join). Given two sets S1, Sy of strings and a thresh-
old k, sjoin(S1, S2) returns all pairs (s1,$2), 51 € S1, 82 € Sy for which d(s1,s2) <
k.

As described before, we support Hamming and edit distance as distance function.
Note that both operations naturally also support exact search and exact joins,
simply by setting k£ = 0 for either distance measure. We will see in Chapt. 5 that
even exact joins on large collections of long strings are considerably faster with
PETER than using hash or merge joins.

2.3 Compressed Prefix Trees

Our fundamental data structure are compressed prefix trees [12], built on top
of a set of strings. Let R be a set of tuples (s, ID) where s € ¥* and ID is a
unique identifier for s.

Definition 6 (Prefix tree index). A compressed prefix tree index T for R is
a rooted, directed tree that meets the following conditions:

1. Every node x is labeled with a sequence of characters ¢; € X' of length | > 1.
The labels of any two children y, z of the same node x start with a different
character.

2. Every string s € R maps to some node x € T such that the concatenation of
all labels from T'’s root to x exactly is s. We call x string node and assign
the corresponding ID to x. If a particular string occurs several times in R,
all corresponding IDs are assigned to x.

3. (Compression of suffizes). Let x be the root of a subtree formed by a linear
chain of children x1,...,x,,, where solely x,, is a string node and has no
further children. Then, x,x1,...,2,, are merged to a single node x' whose
label is the concatenation of their labels. The ID of x,, is assigned to x'.

4. (Compression of infizes). Let x be the root of a subtree formed by a linear
chain of children x1,...,x,,, where no node is a string node and only x,,
has more than one child. Then, x,x1,...,Xm_1 are merged to a single node
' whose label is the concatenation of their labels. O

Conceptually, nodes may have labels of arbitrary length. Technically, we store
labels of string nodes without children (e.g., unique suffixes in R) in two parts:
A small part (usually 16 characters) is stored inside the node. The rest of the
suffix is stored in an extra file (see Sect. 4.2 for details). Furthermore, we attach



further information to every node, namely minimum/maximum string lengths
and a frequency vector (see Sects. 3.2 and 3.3).

Figure 1 shows an example of a compressed prefix tree. It has simple nodes
(e.g., “A”), a compressed infix node (“CTG”), and a compressed suffix node
(“TGCCTGGTA”).
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Fig. 1. Compressed prefix tree. Grey nodes are string nodes. Min/max specify mini-
mum and maximum string lengths, fv denotes the frequency vector (see text).

3 Similarity Operations on Prefix Trees

To our knowledge, similarity search in prefix trees based on pre-order traversal
was first studied in [16]. This method computes the similarity for a given pattern
p to all strings indexed in a prefix tree T" while traversing 7. While this does not
change the worst-case complexity of searching, large savings are achieved when
the indexed strings share many prefixes as these prefixes need to be compared
only once to a prefix of the pattern. Thus, the method is very well suited for
small alphabets and for very large string collections, as these properties increase
the number and average lengths of shared prefixes.

Shang et al. described shared prefix analysis in [16]. In the following, we
very briefly repeat the general idea but concentrate on our various extensions
which greatly increase effectiveness: switch from global alignment to k-banded
alignment, addition of filtering techniques for further search space pruning, and
extension of the method to also allow similarity joins. Filtering is performed
at two stages. For edit distance, we use a combination of length and frequency
filtering to prune whole subtrees. Whenever we reach a leaf, we apply a g-gram



pre-selection to suffixes. For Hamming distance, we only use length and frequency
filtering.

All extensions are described below. For space reasons, we focus on similarity
search and only briefly mention changes necessary to compute similarity joins.
Consider a compressed prefix tree T' for a set of strings R. Let p be a search
pattern and S another indexed set of strings. Let ¢t be a node in T'. By slight
abuse of notation, we use t both for the node and for the concatenation of
labels from root to the node t. Let k be a user-defined threshold for similarity
operations.

3.1 Shared Prefix Pruning

Clearly, t represents the shared prefix s[1...[t|]] of a set of strings all of which
must be descendants of ¢. Note that both Hamming and edit distance to p can
only grow with growing prefix length. Thus, the following holds:

1. Hamming-search: If dpq(t,p[l...[t]]) > k, then all strings below ¢ can be
pruned. Thus, traversal does not descend further from t.

2. Hamming-join: Both trees, T' and S, are traversed simultaneously. Only
nodes with |s| = |t| need to be compared to each other. Let s € S have
the same label length as t. If dpq(t, s) > k, then the subtrees starting at ¢ in
T and s in S can be pruned.

3. Edit-search: Let p be aligned horizontal and ¢ vertical in the k-banded dis-
tance matrix. All strings in the subtree below ¢ share the same prefix ¢ and
thus also share rows 0 to || in the matrix. If row |¢| contains only values
larger than k, then no string below ¢ can have a smaller edit distance to p.
This subtree can be ignored for further search.

4. Edit-join: Again, all strings below s share the same prefix. The same argu-
ments as for search hold, except that now we compare to a shared prefix in
S instead of a single p. Additionaly, the subtree also can be pruned if any
row contains only values larger than k.

3.2 Length Filtering

Trivially, ¢ is a candidate for p regarding Hamming distance only if it is of equal
length as p. With respect to edit distance, t and p are worth examining only if
[t| = |p| < k. To quickly check this property, we store two additional attributes at
every node - the minimum (min) and maximum (maz) string length of all strings
below that node. If (|max(t)+k| < |p|)V(|min(t)—k| > |p|) holds, then no string
below t can be edit-similar to p. Similarly, if (|max(t)| < |p|) V (Jjmin(t)| > |p|)
holds, no string below ¢ can be Hamming-similar to p. Thus, traversal will not
descend further. The same argument applies conceptionally to similarity join,
when p is replaced with a shared prefix in the joined tree S.



3.3 Frequency Distance Filtering

Aghili et al. [1] proposed frequency distance based filtering to reduce candidate
sets in similarity searching on strings. Consider a string s € X*. The correspond-
ing frequency vector fuv(s) of s consists of |X| components, where component i
counts the number of occurrences of z; € X' in s.

Definition 7 (Frequency distance). For {si,s2} € X*, the frequency dis-
tance fD(s1,$1) is the minimum of the necessary number of applications of +1
or of —1 needed to transform fuv(sy) into fv(ss).

Ezample 1. Consider s; = acacctccgatt, s = acacatccgaaa with Hamming dis-
tance dpq = 3 and edit distance d.y = 3. The corresponding frequency vectors
for s1,s2 are fu(s1) = [3,5,1,3] and fo(sz) = [6,4,1,1]. To transform fv(s;)
into fv(sa), we need to add 3% (+1) for character a, 1x(—1) for ¢, and 2x(—1) for
t. The frequency distance sums up to fD(s1, s2) = min(|3x(+1)[, [3x(=1)|) = 3.

Actually, frequency distance is a lower bound to Hamming and to edit dis-
tance [1]. Thus, evaluation of frequency vectors gives a third method to stop
traversal of the index tree. We prune a subtree starting at ¢, if fD(t,p) — (Jt| —
|p|) > k on both similarity search settings. Extension to join is straight-forward.

3.4 Q-Gram Filtering

Indexing methods based on g¢-grams are well-known to restrict search spaces
efficiently for edit distance operations. They take advantage of the observation
that two strings are within a small edit distance if they share a large number of
g-grams [17]. Actually, the number of matching g-grams acts as another bound
to edit distance [4].

Definition 8 (Mismatching ¢-grams). Let Qs,, Qs, be sets of positional g-
grams of s1 and sa, Tespectively. s1 and sy are within edit distance k, iff |Qs, N
Qs,| = max(|s1],|s2]) —1—(k—1)*q. A string s1 is not within edit distance k to
S2, if Qs, contains at least |Qmis| = (|s1|—q+1)— (mazx(|s1], |s2]) —1—(k—1)*q)
positional q-grams that are not contained in so.

The choice of ¢ commonly depends on the average string length . In this
work, we follow [13] and use ¢ = log|x|(1). Unlike [4], we do not use g-grams for
indexing, but for suffix pre-selection. As shown in Fig. 2, nearly 90% of all in-
dexed strings in our evaluation data set have large, unique suffixes. Determining
the k-banded edit distance for the whole string needs m * (2k 4+ 1) computations
for the suffix (with m smaller, but often not much smaller than |s|), whereas
the computation of positional g-grams for that suffix takes only m — g + 1 op-
erations. Thus, the costs for comparing mismatching g-grams are on average
smaller than computing the edit distance immediately. Therefore, when a leaf
with suffix s[z...|s|] of length m is reached, we compute all positional g-grams
for this suffix. For similarity searches, we also extract the suffix of length m from



the search pattern and evaluate @),,;s on both sets. For approximate joins, we
evaluate @), only if we have reached a suffix leaf in both relations. We do not
apply ¢-gram filtering to Hamming distance queries as the costs for building and
evaluating g-grams are higher than comparing the suffixes directly.

4 Implementation

In this section, we describe implementation details on the primal functions of
PETER. All algorithms can be executed standalone from the command line, as
operators inside a database, or as a library in other C++ programs. Our imple-
mentation allows for both indexing database relations and flat files. We provide
functionality for index building, searching, and insertion, deletion or modifica-
tion of indexed strings. PETER also contains an index optimization routine that
physically rearranges the trees and the suffix files in order to decrease the num-
ber of disk page accessions during tree traversal. This method should be called
after extensive changes to the index and the string set to prevent index degrada-
tion. Next to approximate search and join operations, we support exact searches
and joins as well as range queries, the SQL 'LIKE’-operator and prefix-based
searches.

4.1 Algorithms

Search. Algorithm 1 shows the pseudocode for similarity searching in a prefix
tree index. PETER essentially performs a depth-first traversal of the prefix tree
applying all pruning techniques presented in Chapt. 3. Before descending from
a node, we apply length and frequency filters. We also prune if we exceed the
allowed distance threshold. In case of edit distance searches, we check for every
reached string node whether the number of mismatching positional ¢g-grams ex-
ceeds Qis- The function getDistance checks a flag whether a Hamming or edit
distance search is performed and computes the new distance. When a match
was found, the pair of matching EST objects (each pair consists of the ESTs
and their UIDs) is added to the result set. Finally, the result set is returned to
the user and by default printed to stdout.

Join. When using the join operator (see Algorithm 2) on two relations, con-
ceptionally the intersection of two trees is computed. Both index trees 7" and S
are traversed concurrently, such that the tree with less nodes is traversed first.
Tree sizes are checked at startup. Length and frequency filtering are applied as in
the search algorithm. Global variables are used to store the number of processed
characters for the currently expanded strings in both trees. If we reach a string
node in tree T (or S, respectively), we fetch the complete string represented by
this node and perform a call to the search function, with the string as pattern,
the remaining subtree S’ of S (T” of T') and the current distance value as param-
eters. We continue the distance computation for the next untreated characters in
the string and S’ (T”). The result set contains all pairs of matching EST objects



and is constructed through the search algorithm. Finally, it is returned to the
user and printed to stdout.

Algorithm 1 searchTree(Node x, EST p, int &, int d)

1: if isLeaf(x) A get Edit Distance()AlpassesQGramFilter(z) then
2 return

3: end if

4: newDistance < getDistance(z,p,d)

5: if newDistance > k then
6.
7
8

: return
: end if
: if hasID(z) then
9:  addMatchingESTsToResultSet(s[1...x],p)
10: end if
11: for all children y of x do
12:  if passesLengthFilter(y,p, k) A passFrequencyFilter(y,p, k) then

13: searchTree(y,p, k, newDistance)
14: end if
15: end for

Algorithm 2 joinTree(Node z, Node y, int k, int d)

newDistance < getDistance(z,y, d)
if hasID(z) then
pattern < getString(1, z)
searchT'ree(y, pattern, k, newDistance)
else if hasID(y) then
pattern < getString(1,y)
searchT'ree(x, pattern, k, newDistance)
end if
for all children x’ of x do
for all children y’ of y do

._.
o ©

11: if passesLengthFilter(x’,y', k) A passesFrequencyFilter(z',y , k) then
12: joinTree(z’,y', k, newDistance)

13: end if

14:  end for

15: end for

4.2 Index Structure

Our index structure is physically stored in two files, the prefix tree and a suffix
file. In the prefix tree file, all nodes are stored contiguously in pre-order arrange-
ment. Nodes may have variable size. Each one consists of a node id, information



on the node type (string node or not), its label, references to all children, max.
and min. lengths, and a frequency vector. If a node is a string node, it also
contains the respective ID; if the node maps to more than one ID, we store a
reference to an index-sequential file that contains all IDs instead.

String nodes also store the length of the remaining suffix and its prefix (of the
suffix). As explained previously, this suffix can be quite large; actually, those suf-
fixes form the bulk of the size of the entire data structure. We therefore decided
to store all but short prefixes of the suffixes in an extra file, which allows us to
keep the prefix tree itself in main memory even for very large string collections.
Actually, the tree file for TX (5,000,000 strings, see Fig. 2) has a size of 549
MB on disk and 943 MB when the prefix tree is kept in main memory. Suffixes
of the suffixes are stored in an external file referenced from string nodes. Suffix
accession follows the lazy evaluation paradigm both for ¢g-gram evaluation and
character comparison: if a suffix node is reached, the internal suffix is examined
first. External suffixes are only loaded when needed. Very often, this method
allows to take decisions without accessing the suffix file.

Insert operations to the index are executed sequentially. First, our insert
algorithm searches by depth-first traversing the index tree the appropriate insert
position for the new EST string. We update the values for min/mazx for all
ancestors while descending. Existing nodes might be modified, all newly created
nodes are appended to the end of the index file. In case the index file gets too
fragmented, we manually launch an optimizing routine that rearranges the index
and suffix file in preorder accession.

4.3 Integration into RDBMS

We integrated our programs as a shared library into a commercial RDBMS (name
omitted) using its built-in extension capabilities. These include user-defined in-
dexes (used for prefix tree) and user-defined table functions necessary to imple-
ment similarity joins. Integrating user-defined functions and indexes consists of
two parts: The first part is the program code, compiled as a shared library and
saved at a specific position in the file system. The second part involves decla-
rations and definitions directly executed on the server, including a reference to
the library.

When index and query functions are accessed for the first time in a session,
the server determines the location of the shared library. A listener process invokes
a session-specific agent and passes over the call including procedure and library
name and any parameters, if present. The agent loads the library and runs the
desired function, that, in our case, in turn opens the index (and later on the suffix
file if required). Any return values are passed back via the agent. Throughout
the session, this agent remains alive, which implies that initialization costs for
the agent emerge only once.

However, only the code is kept in memory, while any data loaded during exe-
cuting of the call are discarded by the agent. Caching or buffering of user-loaded
data is not supported. This is a severe drawback of the extension mechanism,
since it implies that, in our case, the entire prefix tree is loaded again for every



single call of a similarity search. As we will see in the next Chapter, this method
incurs a large penalty on any user-defined index compared to the server’s build-in
methods.

5 Experiments

We use ESTs (see Introduction) to evaluate the performance of PETER both
for similarity and for exact operations (kK = 0). To this end, we extracted a
subset from dbEST as of 28.05.2009. We fixed |o| = 4 and removed all sequences
containing characters other than A ;C,G or T. Figure 2 shows properties of the
sets we used during the evaluation. T; consists of EST sequences from the i-th
dbEST archive, T;; consists of a subset j of randomly chosen EST strings from
T;, TX consists of randomly chosen EST strings from the dbEST archives 20 to
26. We show results for varying numbers of indexed strings,for varying k, and for
each filter technique (see Chapt. 3) in isolation. Index creation and optimization
was performed in advance and is not included in the measured times (but see
Fig.2). We observed that the time for index creation grows, as expected, linear
with the number of indexed strings.

We compare the performance of PETER against two competitors: The Unix
tools command line tools grep, agrep, and nrgrep, and build-in or user-defined
functions inside the RDBMS. We also tried to compare to other recently pub-
lished methods, such as [5,21], but none of these is available for download. In
particular, we acknowledge that comparison against Unix command line tools
are not completely satisfactory, as our method first builds an index of the set to
be searched. Therefore, it is more suited for searching the same set of strings mul-
tiple times. However, we will show that index creation time is leveraged already
for very few searches (see Section 4.3). Note that [16] also compared against
agrep.

All experiments were performed on a Pentium-M 740 processor with 2 GB
RAM. For each experiment, we report the average of ten runs.
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Fig. 2. Left: Properties of EST sets. Right: Index creation (line) wrt. set size (bar).



5.1 Effect of Pruning Strategies

We evaluated the effects of length, frequency, and g-gram filtering individually
and in all possible combinations using sets T; and T5. For search queries, we per-
formed searches for all EST strings taken from T3 in T} with different similarity
thresholds. For joins, we computed 77 > T3.

Search results are shown in Fig.3. Overall, frequency filtering did not lead to
significant runtime improvements. We suppose that this is caused by the small
alphabet which makes the compared vectors very small. Length filtering leads
to improvements for Hamming distance searches in the range of 5% for k = 1
growing up to 76% for k = 8. Looking at edit distance searches, length filtering
performed even better, with improvements in the range of 10% for k = 1 growing
up to 86% for k = 8. Interestingly, g-gram filtering in edit distance searches
improved the execution time significantly only for k¥ = 1 (10%) and k = 3
(13%). But combining length and ¢-gram filtering for small & improves average
execution times in the range of 18% for k=1, for £k = 2 up to 58% and 81%
for £ = 3. There is also a clear tendency that runtime improvements achieved
by filtering increase with increasing similarity thershold, i.e., they are the more
effective, the more differences are allowed.
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Fig. 3. Search execution time of p € T5 with k € {1,2,3,8} in T} wrt. filters (log-scale).

In terms of join algorithms, frequency filtering again only has a neglible im-
pact(see Fig.4). For joins on Hamming distance, we observed that length filtering
improved the join execution time from 18% (k = 0) up to 40 % (k = 3). For edit
distance joins, single g-gram filtering leads to improvements in the range of 50%
for k = 0. For growing k, standalone length filtering was more effective. Again,
speed-ups roughly correlate with allowed differences.

Overall, a combination of length and ¢-gram filtering seems to be the best
configuration. Therefore, in all following experiments with PETER we always
used length filtering for Hamming distance and a combination of length and
g-gram filtering for edit distance.
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5.2 Performance of Search

We compared the execution times of PETER for Hamming and edit distance
for various tresholds to Unix command line tools. We used grep for k£ = 0,
and agrep and nrgrep for k € {1,2,3,8}, respectively. First, we performed
individual searches for each pattern p € T3 in the indexed EST set T;. When
searching with the Unix tools all searches were started to match only complete
strings to the given pattern. As agrep is bounded with a maximum pattern
length of 32 characters, we used nrgrep to handle longer patterns.
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Fig. 5. Search in PETER vs. Unix tools for p € T5, k € {1,2, 3,8} (log-scale).

For exact search, we outperform grep significantly with a factor of 63 for
Hamming distance and a factor of 50 for edit distance scoring enabled. As shown
in Fig.6(a), the impact of the pattern length was negligible for exact searches
in all tested methods. Figure 5 contrasts the average execution times of inexact
searches to agrep and nrgrep. For very short patterns, we outperform agrep
with factors in the range of 640 for £k = 1 up to 1063 for £ = 8 on Hamming
distance and a factor up to 450 for edit distance constraints. When searching
with patterns of arbitrary length, we are up to 60 times faster than nrgrep for
Hamming distance and up to 45 times faster for edit distance.



We observed a small influence of pattern lengths with growing tresholds (data
not shown). Searching for patterns of lengths 200 to 600 took slightly longer than
searching for shorter or longer patterns. This is not surprising as strings with
lengths in this range make up most of all strings in 7. Searching with Hamming
distance constraints has always better response times than edit distance, in the
range of 5% (k = 0) to 65 % with growing k. This is caused by costs for initializing
and computing the edit distance matrix.

Even if we add the costs for index creation to the evaluation, PETER amor-
tizes quite fast. For example, if we run multiple Hamming distance (edit distance,
respectively) searches in 77 with k& = 1, it takes only 10 (15) searches to outper-
form the cumulated runtimes of agrep. Compared to nrgrep, it takes 125 (105)
Hamming distance (edit distance) queries until PETER is profitable.
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Fig. 6. Avg. execution times for exact searches (log-scale) and joins, k=0.

5.3 Performance of Similarity Join

We compared the execution time of a natural join on 77 <1 Ty; in PETER to
the Unix command join. All joins were highly selective even for large tresholds
as indicated in Fig.7. Since join expects sorted flat-files as input, we performed
a preprocessing step on the corresponding EST sets that is not included in the
execution time of join. We thought this to be fair, as index creation times also
are not included in the measurements with PETER. Join almost always out-
performs our algorithm with d.y; = 0. For Hamming distance d, = 0 PETER
beats join if the joined sets differ in size with a factor of at least 1.7, as pre-
sented in Fig.6(b). Both observations are not surprising since an exact join on
sorted input only requires to linearly scan both files. For approximate joins, we
are not aware of any Unix command line tool that could handle this problem.
Comparing edit distance to Hamming distance joins, the latter always performed
in a range of 30% to 60 % better, mostly dependent on the given treshold (see
Fig.8). We observe an exponential growth of join execution times with respect
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Fig. 7. Join cardinalities for Hamming distance (<inq) and edit distance (P<eq) join.

to the treshold although the result sets don’t grow exponentially. The reason for
this is that the search space increases exponentially with growing k. While tree
traversal, PETER descends further as k grows and for every additional node,
that is reached in T, there are |o| additional subtrees examined in S.
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5.4 Performance of PETER Inside a RDBMS

We compared PETER’s performance against exact and similarity-based search
and joins inside the RDBMS. For searching, we performed single SELECT queries
on the B*-indexed relation 77 for each EST string in T5. At all times and for
different pattern length, the built-in SELECT-operator achieves better runtimes
than a prefix tree based search, see Fig.9(a). Factors vary dependent on the pat-
tern length, in a range of 2 (|p| < 400) to 1.3 (|p| > 800). There are mostly two
reasons for this result. First, the operations in the prefix tree index are handled
via the extension interface which produces overhead for every call. Second, the
extension interface does not allow caching of data. While the internal implemen-
tation uses the internal buffer pool of the database to cache the most important
parts of the B*-index, this is not possible for user-defined indexing. Given these
severe drawbacks, it is noteably that PETER is only so little slower. Although
the page cache of the OS significantly speeds up the response times of subsequent
queries on the command-line (25-30% speedup on avg.), we could not observe



this effect inside the RDBMS (5-8% speedup on avg.). This indicates that a
more tight integration into the database kernel could give a data structure like
PETER significant advantages over B*-indexes (for large sets of long strings).
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Fig. 9. PETER vs. RDBMS built-in operators for £ = 0. For result sizes see Fig.7.

Regarding joins, we computed T; > T5; as a Hash join and as a Sort-Merge
join and compared these results to PETER. Joins on the prefix tree index always
outperformed both Hash join (with factors between 1.5 and 4) and Sort-Merge
join (with factors 3.8 to 10), see Fig. 9(b). Note that the problem of caching is
not a severe one here, as computing the join requires to load both indexes only
once. We find PETER’s performance for exact strings quite remarkable as they
— for large sets of long strings — beat the highly-tuned joins of a commercial
database system.

As there are no built-in functions for similarity operations inside the database,
we implemented them as user-defined functions (UDF) in the database’s pro-
gramming language. The edit distance function computes the k-banded align-
ment score for two strings. Length filtering is included in both UDFs. We com-
pared the execution time of UDF-based similarity search and joins to PETER.
Fig.10 shows that PETER for similarity searches performs better by an order
of magnitude than using just UDFs. For Hamming distance search, prefix tree
indexing leads to a runtime improvement factor of about 520, for edit distance
searches of about 890. We also tried to perform similarity joins for k = 1 with
UDFs on T2, < T'3, but as the join operations did not finish within a day, we
aborted the execution. Similarity joins with prefix trees finished for k € {1, 2}
in less than one minute.

6 Related Work

Prefix trees, compressed or uncompressed, have applications in many areas. They
are well known for representing multiple search patterns in exact pattern match-
ing [6], but have also been shown to perform well in frequent itemset mining
algorithms [7] or set joins [8].

Shang et al. [16] were the first that extended prefix trees with dynamic pro-
gramming techniques to perform inexact string matching. They have shown that
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Fig. 10. Comparison of prefix tree search to UDFs (log-scale).

searches with one or no error perform several times better than agrep, but as
they do not apply any filtering techniques, agrep outperforms their implemen-
tation for larger k. Schallehn et al. [15] describe a prefix trie based index for
similarity search, joins and group operations for Oracle DB. The authors in-
troduce operators, all based on depth-first traversal, for duplicate detection in
heterogenous integration scenarios that outperform non-indexed similarity oper-
ators. They did not consider any pruning. Furthermore, prefix trees are generated
on-the-fly, while PETER computes them only once.

The filtering techniqes we use are contained in several other algorithms. Gra-
vano et al. [4] introduced an efficient similarity join algorithm that uses a g-gram
index to preselect similar strings. We could not compare PETER with this al-
gorithm as there is no implementation available. The benefit of using positional
g-grams was shown in [5]. As the authors implemented a sampling-based approx-
imation for similarity string joins, one cannot directly compare PETER to their
tool. Furthermore, the system was specifically designed for use in Microsoft SQL
Server, whereas PETER  is built on top of another RDBMS.

Xiao et al. [21] proposed to analyze mismatching g-grams for candidate pres-
election in near-duplicate detection. They derived two new lower bounds for edit
distance, one of which we also use for suffix filtering. A direct comparison be-
tween PETER and this method would be difficult, as it directly targets duplicate
detection within one relation, while we have a far more general data structure.

Aghili et al. [1] use frequency filtering as part of a vector transformation.
They apply discrete wavelet and discrete fourier transformation for pre-filtering
approximate join candidates in biological databases. We could not compare PE-
TER with Aghili et al. since no implementation is available.

7 Conclusion

We presented PETER, an efficient data structure for similarity search and sim-
ilarity joins on large sets of long strings. We showed that PETER outperforms
all other methods we compared to, either inside or outside a RDBMS, in all per-
formed similarity operations. Interestingly, it also outperforms exact joins inside
a RDBMS.
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