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How Fast can we Search an Element in a List?

Searching by 
Key Inserting Pre-processing

Unsorted array O(n) O(1) 0

Sorted array O(log(n)) O(n) O(n*log(n))

Sorted linked 
list O(n) O(n) O(n*log(n))

Priority Queue O(1) for min O(log(n)) O(n)

Our dream O(1) O(1) 0
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Beyond log(n) in Searching

• Assume you have a company and ~2000 employees
• You often search employees by name to get their ID
• No employee is more important than any other 

– No differences in access frequencies, SOL or PQ don’t help
• Best we can do until now

– Sort list in array
– Binsearch will require log(n)~11 comparisons per search
– Interpolation search might be faster, but WC is the same

• Can we do better?
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Recall Bucket Sort

• Bucket Sort
– Assume |S|=n, the length of the longest value in S is m, alphabet ∑ 

with |∑|=k
– We first sort S on first position into k buckets
– Then sort every bucket again for second position
– Etc.
– After at most m iterations, we are done
– Time complexity: O(m*(|S|+k))

• Fundamental idea: For finite alphabets, the characters give 
us a sorted partitioning of all possible values
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Bucket Sort Idea for Searching

• Fix an m (e.g. m=3)
• There are “only” 263~18.000 different prefixes of length 3 

that a (German) name can start with
• Thus, we can sort any name s with prefix s[1..m] in 

constant time into an array A with |A|=km

– Index in A: A[(s[0]-1)*k0 + (s[1]-1)*k1 + … +(s[m-1]-1)*km-1]
• We can use the same formula to look-up names
• Cool: Search and insert complexity is O(1) for a fixed m

– Actually rather in O(m) – we need to compute the index
– Pre-processing is O(m*|S|), inserting is O(m)

• But … what if two names start with the same m-prefix?
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Collisions 

• Assume we use the first m characters
• <Müller, Peter>, <Müller, Hans>, <Müllheim, Ursula>, …

– All start with the same 4-prefix
– All are mapped to the same position of A if m<5
– Such cases are called collisions

• To reduce collisions, we can increase m
– Requires exponentially more space (a=|Σ|m)
– But we have only 2000 employees – what a waste
– Can’t we find better ways to map a name into an array?
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Abstraction: Dictionary Problem

• Dictionary problem: Manage a list S of |S| keys
– We use an array A with |A|=a (important: a~n? a>n? a>>n?)
– We want to support three operations

• Store a key k in A
• Look-up a key in A
• Delete a key from A

• Applications
– Compilers: Symbol tables over variables, function names, …
– Databases: Lists of attribute values, e.g. names, ages, incomes, …
– Search engines: Lists of words appearing in documents
– …
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Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter
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Hash Function

• Definition
Let S with |S|=n be a set of keys from a universe U and let 
A be an array with a=|A|
– A hash function h is a total function h: U→[0…a-1]
– Every pair k1, k2∈S with k1≠k2 and h(k1)=h(k2) is called a collision
– h is perfect iff it never produces collisions
– h is uniform, iff ∀i∈A: p(h(k)=i) = 1/a
– h is order-preserving, iff: k1<k2 => h(k1)<h(k2)

• Inserting: s∈S is hashed into A by setting A[h(s)]=s
• Searching q: If A[h(q)]=q then q∈A; otherwise not
• If we use an array A in this way, we call A a hash table
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Illustration

U: All possible 
values of a 

key k from S

A: All possible 
indexes of a k 
in hash table
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Illustration

Actual values 
of k in S

Hash table A
with collisions
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Topics

• We want hash functions with as few collisions as possible 
– Knowing U and making assumptions about S
– Example: We build a hash table for person names (U), we don’t 

know which ones (S), but have an idea of how many (|S|)
• Hash functions should be computed quickly 

– Bad idea: Sort S and then use rank as address
• Collisions must be handled

– Even if a collision occurs, we still need to give correct answers
• Don’t waste space: |A| should be as small as possible

– Clearly, it must hold that a≥n if collisions should be avoided
• Note: Order-preserving hash functions are rare

– Hashing is bad for range queries
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Example

• We usually have a>>|S| yet a<<|U|
– But many different scenarios! 
– Sometimes a<|S| makes perfectly sense, especially when data sets 

get very large (see bloom filter)
– If S may grow and shrink a lot: Dynamic hashing

• If k is an integer (or can be turned into an integer): A 
simple and surprisingly good hash function: 
h(k) := k mod a with a=|A| being a prime number
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Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter
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Are Collisions a Problem?

• Assume we have a uniform hash function that maps an 
arbitrarily chosen key k to all positions in A with equal 
probability

• Given |S|=n and |A|=a – how big are the chances to 
produce collisions?
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Two Cakes a Day?

• Assume an Übungsgruppe has 32 students
• Every time one has birthday, he/she brings a cake
• The Übungsgruppe meets every day over an entire year –

even weekends!
• What is the chance of having to eat two pieces of cake on 

at least one day in the year?
• Birthday paradox

– Each day has the same chance to be a birthday for every person
• We ignore seasonal bias, twins, etc.

– Guess – 5% 20% 30% 50% ?
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Analysis

• Abstract formulation: Urn with 365 balls 
– We draw 32 times and place the ball back after every drawing 
– What is the probability p(32, 365) to draw any ball at least twice?

• Complement of the chance to draw no ball more than once
– p(32, 365) = 1 – q(32,365)
– q(n,a): We draw n times one of the a balls and they are all different

• We draw a first ball. Then
– Chances that the second is different from all previous balls: 364/365
– Chances that the 3rd ball is different from 1st and 2nd (which must be 

different from the 1st) is 363/365
– …
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Results

5 2,71
10 11,69
15 25,29
20 41,14
25 56,87
30 70,63
32 75,33
40 89,12
50 97,04

Source: Wikipedia

• p(n) here means p(n,365)
• f(n): Chance that someone has 

birthday on the same day as you

f(n)
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Take-home Messages

• Just by chance, there are many more collisions than one 
intuitively expects

• Collision handling is a real issue
• Additional time/space it takes to manages collisions must 

be taken into account
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Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter
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Hashing: Three Fundamental Methods

• Overflow hashing: Collisions are stored outside A
– We need additional storage 
– Solves the problem of A having a fixed size despite that S might be 

growing (without changing A)
• Open hashing: Collisions are managed inside A

– No additional storage
– |A| is upper bound to the amount of data that can be stored
– Next lecture

• Dynamic hashing: A may grow/shrink
– Not covered here – see Databases II
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Overflow Hashing

• Two possibilities (assuming a linked list)
• Separate chaining: A[i] stores tuple (k0, p), where p is a 

pointer to a list storing all keys k with h(k)=A[i] except the 
first one k0
– For 1 key we need space |k|+|prt|; for 2: 2*(|k|+|prt|); for 3 …
– Separate treatment of 1st key in all operations
– Good if collisions are rare (zero pointer chasing)

• Direct chaining: A[i] is a pointer to list storing all keys 
mapped to i
– For 1 key we need |prt|+|k|+|prt|; for 2: |prt|+2*(|k|+|prt|); …
– Uniform treatment
– More efficient if collisions are frequent (less “if … then … else”)
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Example, Direct Chaining (h(k)= k mod 7)

5
15
3
7
8

515 37

• Assume a linked list, insertions at list head
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Example (h(k)= k mod 7)

5
15
3
7
8
4
12

58 37

15

4

• Assume a linked list, insertions at list head
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Example (h(k)= k mod 7)

5
15
3
7
8
4
12
19
10

198 107

15

4

12

5

3

• Assume a linked list, insertions at list head
• Space complexity: O(a+n)
• Time complexity (worst-case)

• Insert: O(1)
• Search: O(n) – if all keys map to the same bucket
• Delete: O(n) – we first need to search



Ulf Leser: Algorithms and Data Structures 27

Average Case Complexities

• Assume h uniform and elements are inserted in 
randomized order

• After having inserted n values, every overflow list has 
α~n/a elements
– α is called the fill degree of the hash table

• How long does the n+1st operation take on average?
– Insert: O(1)
– Search: If k∈L: α/2 comparisons; else α comparisons

• This is in O(n/a)
– Delete: Same as search
– OK’ish, if α is small and hashing is uniform, i.e., if |A|~O(|S|)
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Improvement

• We may keep every overflow list sorted
– If stored in a (dynamic) array, binsearch requires log(α) 

• Disadvantage: Insert requires α/2 to keep list sorted (AC)
– If stored in a linked list, searching k (k∈L or k∉L) requires α/2

• Disadvantage: Insert requires α/2 to keep list sorted (AC)
– If we first have many inserts (build-phase of a dictionary), then 

mostly searches, it is better to first build unsorted overflow lists 
and sort only once the phase changes

• We may also use a second (smaller) hash table with a 
different hash function
– Especially if some overflow lists grow very large (skew)
– See Double Hashing (next lecture)
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But …

• Searching with ~α/2 comparisons on average doesn’t 
seem too attractive

• But: One typically uses hashing in cases where α is small 
– Often, α<1 – search on average takes only constant time
– 1≤α≤10 – search takes only ~5 comparisons

• For instance, let |S|=n=10.000.000 and a=1.000.000
– Hash table (uniform, average): ~5 comparisons
– Binsearch: (log(1E7), average)~23 comparisons

• But: In many situations values in S are skewed
– Uniformity assumption wrong, if hash function cannot handle skew
– Average case estimation may go grossly wrong
– Experiments help
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Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter
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Hash Functions 

• Requirements
– Should be computed quickly 
– Should spread keys equally over A –

for any S
– Should use all positions in A with equal 

probability
• Simple and often good: h(k) := k 

mod a
– “Division-rest method”
– If a is prime: Few collisions for many 

real world data (empirical observation)
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Other Hash Functions

• “Multiplikative Methode”: h(k) = floor(a*(k*x–floor(k*x)))
– Multiply k with some x, remove the integer part, 

multiply with a and cut to the next smaller 
integer value

– x: any real number; best distribution on 
average for x=(1+√5)/2 - Goldener Schnitt

• “Quersumme”: h(k) = (k mod 10) + …
• For strings: h(k) = (f(k) mod a) with f(k)= “add byte 

values of all characters in k”
• No limits to fantasy

– Look at your data and its distribution of values
– Make sure local clusters are resolved

𝑎𝑎 + 𝑏𝑏
𝑎𝑎

=
𝑎𝑎
𝑏𝑏
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Java hashCode()

• Object.hashCode()
The default hashCode() method uses the 32-bit internal JVM address of the Object as its 
hashCode. However, if the Object is moved in memory during garbage collection, the 
hashCode stays constant. This default hashCode is not very useful, since to look up an 
Object in a HashMap, you need the exact same key Object by which the key/value pair 
was originally filed. Normally, when you go to look up, you don’t have the original key 
Object itself, just some data for a key. So, unless your key is a String, nearly always you 
will need to implement a hashCode and equals() method on your key class.

1. /** * Returns a hash code for this string. The hash code for a 
2. * <code>String</code> object is computed as 
3. * <blockquote><pre> 
4. * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1] 
5. * </pre></blockquote> 
6. * using <code>int</code> arithmetic, where <code>s[i]</code> is the 
7. * <i>i</i>th character of the string, <code>n</code> is the length of 
8. * the string, and <code>^</code> indicates exponentiation. 
9. * (The hash value of the empty string is zero.) *
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Hashing

• Two key ideas to achieve scalability for relatively simple 
problems on very large datasets: Sorting / Hashing

Foodnetwork.com
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Pros / Cons

Sorting

• Search: O(log(n)) in WC/AC
• Preprocessing: O(n*log(n))
• Insert: O(n) (wait for AVL)
• Robust against skew
• App/domain independent 

method
• No additional space
• Sometimes preferable

Hashing

• Search: AC O(1), WC O(n)
• Preprocessing: Linear
• Insert: AC O(1), WC O(n)
• Sensible to skew
• App/domain specific hash 

functions and strategies 
• Usually add. space required
• Sometimes preferable
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Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter
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Searching an Element

• Assume we want to know if k is an element of a list S of 
32bit integers – and S is very large

• S must be stored on disk
– Assume testing k in memory costs very little, but loading a block 

(size b=1000 keys) from disk costs enormously more
– Thus, we only count IO – how many blocks do we need to load?

• Everything in main memory is assumed free – negligible cost

• Assume |S|=1E7 (1E4 blocks), but we have enough 
memory for only 1000 blocks (=1E6 keys) 
– Thus, enough for only 10% of the data

• How can we test efficiently if a given query k is in S?
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Options

• If S is not sorted
– If k∈S, we need to load 50% of S on average: ~ 0.5E4 IO
– If k∉S, we need to load S entirely: ~ 1E4 IO

• If S is sorted
– It doesn’t matter whether k∈S or not
– We need to load log(|S|/b)=log(1E4)~14 blocks 

• If we can address blocks by their position within the list in O(1)

• Notice that we are not using our memory …
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Idea of a Bloom Filter

• Build a hash map A as big as the memory
• Use A to indicate whether a key is in S or not
• The test may go wrong, but only in one direction

– If k∈A, we don’t know if k∈S
– If k∉A, we know for sure that k∉S

• A acts as a filter: A Bloom filter
– Bloom, B. H. (1970). "Space/Time Trade-offs in Hash Coding with 

Allowable Errors." Communications of the ACM 13(7): 422-426.



Ulf Leser: Algorithms and Data Structures 40

Bloom Filter: Simple

• Create a bitarray A with |A|=a=1E6*32 bits
– We fully exploit our memory
– A is always kept in memory

• Choose a (uniform) hash function h into A
• Initialize A (offline) and keep in memory: ∀k∈S: A[h(k)]=1

– Preprocessing
• Searching k given A (in memory)

– If A[h(k)]=0, we know that k∉S (with 0 IO)
– If A[h(k)]=1, we need to search k in S 

• Because we didn’t handle collisions
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Bloom Filter: Advanced

• Choose j independent (uniform) hash functions hj
– Independent: The values of one hash function are statistically 

independent of the values of all other hash functions
• Initialize A (offline): ∀k∈S, ∀j: A[hj(k)]=1
• Searching k given A (in memory)

– If any of the A[hj(k)]=0, we know that k∉S
– If all A[hj(k)]=1, we need to search k in S
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Analysis

• Assume k∉S
– Let Cn be the cost of such a (negative) search
– We only access disk if all A[hj(k)]=1 – how often?
– In all other cases, we perform no IO and have 0 cost

• Assume k∈S
– We will certainly access disk, as all A[hj(k)]=1 but we don’t know if 

this is by chance of not (collisions)
– Thus, Cp = 14 

• Using binsearch, assuming S is kept sorted on disk

• Average cost of u searches then is:
cavg := (w1*Cn + w2*Cp) / u
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Chances for a False Positive

• For one k∈S and one (uniform) hash function, the chance 
for a given position in A to be 0 is 1-1/a

• For j hash functions, chances that all remain 0 is (1-1/a)j

– Assuming all hash functions are statistically independent
• For j hash functions and n values, chances to remain 0 is 

q=(1-1/a)j*n

• Prob. of a given bit being 1 after inserting n values is 1-q
• Now let’s look at a search for key k, which tests j bits
• Chances that all of these are 1 by chance is (1-q)j

• Thus, Cn=(1-q)j*Cp + (1-(1-q)j)*0
– We have n=|S|=1E7, a=|A|=32E6
– This gives: j=2: 13,94; j=5: 4,31; j=10: 8,93
– Trade-off: Small j -> little filtering; large j -> cluttered hash table
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Average Case

• Assume we look for all possible values (|U|=u=232) with 
the same probability

• (u-|S|)/u of the searches are negative, |S|/u are positive
• Average cost per search is

cavg := ((u-|S|)*Cn + |S|*Cp) / u
• For j=5: 5,49
• For j=10: 0,64

– Larger j decreases average cost, but increase effort for each single 
test, which is not part of our cost model

– What is the optimal value for j?
• Much better than sorted lists
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Exemplary questions

• Assume |A|=a and |S|=n and a uniform hash function. 
What is the fill degree of A? What is the AC search 
complexity if collisions are handled by direct chaining? 
What if collisions are handled by separate chaining?

• Assume the following hash functions h=… and S being 
integers. Show A after inserting each element from 
S={17,256,13,44,1,2,55,…}

• Describe the standard JAVA hash function. When is it 
useful to provide your own hash functions for your own 
classes?
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