
Algorithms and Data Structures

Ulf Leser

(Overflow) Hashing

Ulf Leser: Algorithms and Data Structures 3

How Fast can we Search an Element in a List?

Searching by
Key Inserting Pre-processing

Unsorted array O(n) O(1) 0

Sorted array O(log(n)) O(n) O(n*log(n))

Sorted linked
list O(n) O(n) O(n*log(n))

Priority Queue O(1) for min O(log(n)) O(n)

Our dream O(1) O(1) 0

Ulf Leser: Algorithms and Data Structures 4

Beyond log(n) in Searching

• Assume you have a company and ~2000 employees
• You often search employees by name to get their ID
• No employee is more important than any other

– No differences in access frequencies, SOL or PQ don’t help
• Best we can do until now

– Sort list in array
– Binsearch will require log(n)~11 comparisons per search
– Interpolation search might be faster, but WC is the same

• Can we do better?

Ulf Leser: Algorithms and Data Structures 5

Recall Bucket Sort

• Bucket Sort
– Assume |S|=n, the length of the longest value in S is m, alphabet ∑

with |∑|=k
– We first sort S on first position into k buckets
– Then sort every bucket again for second position
– Etc.
– After at most m iterations, we are done
– Time complexity: O(m*(|S|+k))

• Fundamental idea: For finite alphabets, the characters give
us a sorted partitioning of all possible values

Ulf Leser: Algorithms and Data Structures 6

Bucket Sort Idea for Searching

• Fix an m (e.g. m=3)
• There are “only” 263~18.000 different prefixes of length 3

that a (German) name can start with
• Thus, we can sort any name s with prefix s[1..m] in

constant time into an array A with |A|=km

– Index in A: A[(s[0]-1)*k0 + (s[1]-1)*k1 + … +(s[m-1]-1)*km-1]
• We can use the same formula to look-up names
• Cool: Search and insert complexity is O(1) for a fixed m

– Actually rather in O(m) – we need to compute the index
– Pre-processing is O(m*|S|), inserting is O(m)

• But … what if two names start with the same m-prefix?

Ulf Leser: Algorithms and Data Structures 7

Collisions

• Assume we use the first m characters
• <Müller, Peter>, <Müller, Hans>, <Müllheim, Ursula>, …

– All start with the same 4-prefix
– All are mapped to the same position of A if m<5
– Such cases are called collisions

• To reduce collisions, we can increase m
– Requires exponentially more space (a=|Σ|m)
– But we have only 2000 employees – what a waste
– Can’t we find better ways to map a name into an array?

Ulf Leser: Algorithms and Data Structures 8

Abstraction: Dictionary Problem

• Dictionary problem: Manage a list S of |S| keys
– We use an array A with |A|=a (important: a~n? a>n? a>>n?)
– We want to support three operations

• Store a key k in A
• Look-up a key in A
• Delete a key from A

• Applications
– Compilers: Symbol tables over variables, function names, …
– Databases: Lists of attribute values, e.g. names, ages, incomes, …
– Search engines: Lists of words appearing in documents
– …

Ulf Leser: Algorithms and Data Structures 9

Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter

Ulf Leser: Algorithms and Data Structures 10

Hash Function

• Definition
Let S with |S|=n be a set of keys from a universe U and let
A be an array with a=|A|
– A hash function h is a total function h: U→[0…a-1]
– Every pair k1, k2∈S with k1≠k2 and h(k1)=h(k2) is called a collision
– h is perfect iff it never produces collisions
– h is uniform, iff ∀i∈A: p(h(k)=i) = 1/a
– h is order-preserving, iff: k1<k2 => h(k1)<h(k2)

• Inserting: s∈S is hashed into A by setting A[h(s)]=s
• Searching q: If A[h(q)]=q then q∈A; otherwise not
• If we use an array A in this way, we call A a hash table

Ulf Leser: Algorithms and Data Structures 11

Illustration

U: All possible
values of a

key k from S

A: All possible
indexes of a k
in hash table

Ulf Leser: Algorithms and Data Structures 12

Illustration

Actual values
of k in S

Hash table A
with collisions

Ulf Leser: Algorithms and Data Structures 13

Topics

• We want hash functions with as few collisions as possible
– Knowing U and making assumptions about S
– Example: We build a hash table for person names (U), we don’t

know which ones (S), but have an idea of how many (|S|)
• Hash functions should be computed quickly

– Bad idea: Sort S and then use rank as address
• Collisions must be handled

– Even if a collision occurs, we still need to give correct answers
• Don’t waste space: |A| should be as small as possible

– Clearly, it must hold that a≥n if collisions should be avoided
• Note: Order-preserving hash functions are rare

– Hashing is bad for range queries

Ulf Leser: Algorithms and Data Structures 14

Example

• We usually have a>>|S| yet a<<|U|
– But many different scenarios!
– Sometimes a<|S| makes perfectly sense, especially when data sets

get very large (see bloom filter)
– If S may grow and shrink a lot: Dynamic hashing

• If k is an integer (or can be turned into an integer): A
simple and surprisingly good hash function:
h(k) := k mod a with a=|A| being a prime number

Ulf Leser: Algorithms and Data Structures 15

Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter

Ulf Leser: Algorithms and Data Structures 16

Are Collisions a Problem?

• Assume we have a uniform hash function that maps an
arbitrarily chosen key k to all positions in A with equal
probability

• Given |S|=n and |A|=a – how big are the chances to
produce collisions?

Ulf Leser: Algorithms and Data Structures 17

Two Cakes a Day?

• Assume an Übungsgruppe has 32 students
• Every time one has birthday, he/she brings a cake
• The Übungsgruppe meets every day over an entire year –

even weekends!
• What is the chance of having to eat two pieces of cake on

at least one day in the year?
• Birthday paradox

– Each day has the same chance to be a birthday for every person
• We ignore seasonal bias, twins, etc.

– Guess – 5% 20% 30% 50% ?

Ulf Leser: Algorithms and Data Structures 18

Analysis

• Abstract formulation: Urn with 365 balls
– We draw 32 times and place the ball back after every drawing
– What is the probability p(32, 365) to draw any ball at least twice?

• Complement of the chance to draw no ball more than once
– p(32, 365) = 1 – q(32,365)
– q(n,a): We draw n times one of the a balls and they are all different

• We draw a first ball. Then
– Chances that the second is different from all previous balls: 364/365
– Chances that the 3rd ball is different from 1st and 2nd (which must be

different from the 1st) is 363/365
– …

n

n

i ana
a

a
iaanqanp

)!*(
!111),(1),(

1 −
−=







 +−
−=−= ∏

=

Ulf Leser: Algorithms and Data Structures 19

Results

5 2,71
10 11,69
15 25,29
20 41,14
25 56,87
30 70,63
32 75,33
40 89,12
50 97,04

Source: Wikipedia

• p(n) here means p(n,365)
• f(n): Chance that someone has

birthday on the same day as you

f(n)

Ulf Leser: Algorithms and Data Structures 20

Take-home Messages

• Just by chance, there are many more collisions than one
intuitively expects

• Collision handling is a real issue
• Additional time/space it takes to manages collisions must

be taken into account

Ulf Leser: Algorithms and Data Structures 21

Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter

Ulf Leser: Algorithms and Data Structures 22

Hashing: Three Fundamental Methods

• Overflow hashing: Collisions are stored outside A
– We need additional storage
– Solves the problem of A having a fixed size despite that S might be

growing (without changing A)
• Open hashing: Collisions are managed inside A

– No additional storage
– |A| is upper bound to the amount of data that can be stored
– Next lecture

• Dynamic hashing: A may grow/shrink
– Not covered here – see Databases II

Ulf Leser: Algorithms and Data Structures 23

Overflow Hashing

• Two possibilities (assuming a linked list)
• Separate chaining: A[i] stores tuple (k0, p), where p is a

pointer to a list storing all keys k with h(k)=A[i] except the
first one k0
– For 1 key we need space |k|+|prt|; for 2: 2*(|k|+|prt|); for 3 …
– Separate treatment of 1st key in all operations
– Good if collisions are rare (zero pointer chasing)

• Direct chaining: A[i] is a pointer to list storing all keys
mapped to i
– For 1 key we need |prt|+|k|+|prt|; for 2: |prt|+2*(|k|+|prt|); …
– Uniform treatment
– More efficient if collisions are frequent (less “if … then … else”)

Ulf Leser: Algorithms and Data Structures 24

Example, Direct Chaining (h(k)= k mod 7)

5
15
3
7
8

515 37

• Assume a linked list, insertions at list head

Ulf Leser: Algorithms and Data Structures 25

Example (h(k)= k mod 7)

5
15
3
7
8
4
12

58 37

15

4

• Assume a linked list, insertions at list head

Ulf Leser: Algorithms and Data Structures 26

Example (h(k)= k mod 7)

5
15
3
7
8
4
12
19
10

198 107

15

4

12

5

3

• Assume a linked list, insertions at list head
• Space complexity: O(a+n)
• Time complexity (worst-case)

• Insert: O(1)
• Search: O(n) – if all keys map to the same bucket
• Delete: O(n) – we first need to search

Ulf Leser: Algorithms and Data Structures 27

Average Case Complexities

• Assume h uniform and elements are inserted in
randomized order

• After having inserted n values, every overflow list has
α~n/a elements
– α is called the fill degree of the hash table

• How long does the n+1st operation take on average?
– Insert: O(1)
– Search: If k∈L: α/2 comparisons; else α comparisons

• This is in O(n/a)
– Delete: Same as search
– OK’ish, if α is small and hashing is uniform, i.e., if |A|~O(|S|)

Ulf Leser: Algorithms and Data Structures 28

Improvement

• We may keep every overflow list sorted
– If stored in a (dynamic) array, binsearch requires log(α)

• Disadvantage: Insert requires α/2 to keep list sorted (AC)
– If stored in a linked list, searching k (k∈L or k∉L) requires α/2

• Disadvantage: Insert requires α/2 to keep list sorted (AC)
– If we first have many inserts (build-phase of a dictionary), then

mostly searches, it is better to first build unsorted overflow lists
and sort only once the phase changes

• We may also use a second (smaller) hash table with a
different hash function
– Especially if some overflow lists grow very large (skew)
– See Double Hashing (next lecture)

Ulf Leser: Algorithms and Data Structures 29

But …

• Searching with ~α/2 comparisons on average doesn’t
seem too attractive

• But: One typically uses hashing in cases where α is small
– Often, α<1 – search on average takes only constant time
– 1≤α≤10 – search takes only ~5 comparisons

• For instance, let |S|=n=10.000.000 and a=1.000.000
– Hash table (uniform, average): ~5 comparisons
– Binsearch: (log(1E7), average)~23 comparisons

• But: In many situations values in S are skewed
– Uniformity assumption wrong, if hash function cannot handle skew
– Average case estimation may go grossly wrong
– Experiments help

Ulf Leser: Algorithms and Data Structures 30

Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter

Ulf Leser: Algorithms and Data Structures 31

Hash Functions

• Requirements
– Should be computed quickly
– Should spread keys equally over A –

for any S
– Should use all positions in A with equal

probability
• Simple and often good: h(k) := k

mod a
– “Division-rest method”
– If a is prime: Few collisions for many

real world data (empirical observation)

Ulf Leser: Algorithms and Data Structures 32

Other Hash Functions

• “Multiplikative Methode”: h(k) = floor(a*(k*x–floor(k*x)))
– Multiply k with some x, remove the integer part,

multiply with a and cut to the next smaller
integer value

– x: any real number; best distribution on
average for x=(1+√5)/2 - Goldener Schnitt

• “Quersumme”: h(k) = (k mod 10) + …
• For strings: h(k) = (f(k) mod a) with f(k)= “add byte

values of all characters in k”
• No limits to fantasy

– Look at your data and its distribution of values
– Make sure local clusters are resolved

𝑎𝑎 + 𝑏𝑏
𝑎𝑎

=
𝑎𝑎
𝑏𝑏

Ulf Leser: Algorithms and Data Structures 33

Java hashCode()

• Object.hashCode()
The default hashCode() method uses the 32-bit internal JVM address of the Object as its
hashCode. However, if the Object is moved in memory during garbage collection, the
hashCode stays constant. This default hashCode is not very useful, since to look up an
Object in a HashMap, you need the exact same key Object by which the key/value pair
was originally filed. Normally, when you go to look up, you don’t have the original key
Object itself, just some data for a key. So, unless your key is a String, nearly always you
will need to implement a hashCode and equals() method on your key class.

1. /** * Returns a hash code for this string. The hash code for a
2. * <code>String</code> object is computed as
3. * <blockquote><pre>
4. * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
5. * </pre></blockquote>
6. * using <code>int</code> arithmetic, where <code>s[i]</code> is the
7. * <i>i</i>th character of the string, <code>n</code> is the length of
8. * the string, and <code>^</code> indicates exponentiation.
9. * (The hash value of the empty string is zero.) *

Ulf Leser: Algorithms and Data Structures 34

Hashing

• Two key ideas to achieve scalability for relatively simple
problems on very large datasets: Sorting / Hashing

Foodnetwork.com

Ulf Leser: Algorithms and Data Structures 35

Pros / Cons

Sorting

• Search: O(log(n)) in WC/AC
• Preprocessing: O(n*log(n))
• Insert: O(n) (wait for AVL)
• Robust against skew
• App/domain independent

method
• No additional space
• Sometimes preferable

Hashing

• Search: AC O(1), WC O(n)
• Preprocessing: Linear
• Insert: AC O(1), WC O(n)
• Sensible to skew
• App/domain specific hash

functions and strategies
• Usually add. space required
• Sometimes preferable

Ulf Leser: Algorithms and Data Structures 36

Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter

Ulf Leser: Algorithms and Data Structures 37

Searching an Element

• Assume we want to know if k is an element of a list S of
32bit integers – and S is very large

• S must be stored on disk
– Assume testing k in memory costs very little, but loading a block

(size b=1000 keys) from disk costs enormously more
– Thus, we only count IO – how many blocks do we need to load?

• Everything in main memory is assumed free – negligible cost

• Assume |S|=1E7 (1E4 blocks), but we have enough
memory for only 1000 blocks (=1E6 keys)
– Thus, enough for only 10% of the data

• How can we test efficiently if a given query k is in S?

Ulf Leser: Algorithms and Data Structures 38

Options

• If S is not sorted
– If k∈S, we need to load 50% of S on average: ~ 0.5E4 IO
– If k∉S, we need to load S entirely: ~ 1E4 IO

• If S is sorted
– It doesn’t matter whether k∈S or not
– We need to load log(|S|/b)=log(1E4)~14 blocks

• If we can address blocks by their position within the list in O(1)

• Notice that we are not using our memory …

Ulf Leser: Algorithms and Data Structures 39

Idea of a Bloom Filter

• Build a hash map A as big as the memory
• Use A to indicate whether a key is in S or not
• The test may go wrong, but only in one direction

– If k∈A, we don’t know if k∈S
– If k∉A, we know for sure that k∉S

• A acts as a filter: A Bloom filter
– Bloom, B. H. (1970). "Space/Time Trade-offs in Hash Coding with

Allowable Errors." Communications of the ACM 13(7): 422-426.

Ulf Leser: Algorithms and Data Structures 40

Bloom Filter: Simple

• Create a bitarray A with |A|=a=1E6*32 bits
– We fully exploit our memory
– A is always kept in memory

• Choose a (uniform) hash function h into A
• Initialize A (offline) and keep in memory: ∀k∈S: A[h(k)]=1

– Preprocessing
• Searching k given A (in memory)

– If A[h(k)]=0, we know that k∉S (with 0 IO)
– If A[h(k)]=1, we need to search k in S

• Because we didn’t handle collisions

Ulf Leser: Algorithms and Data Structures 41

Bloom Filter: Advanced

• Choose j independent (uniform) hash functions hj
– Independent: The values of one hash function are statistically

independent of the values of all other hash functions
• Initialize A (offline): ∀k∈S, ∀j: A[hj(k)]=1
• Searching k given A (in memory)

– If any of the A[hj(k)]=0, we know that k∉S
– If all A[hj(k)]=1, we need to search k in S

Ulf Leser: Algorithms and Data Structures 42

Analysis

• Assume k∉S
– Let Cn be the cost of such a (negative) search
– We only access disk if all A[hj(k)]=1 – how often?
– In all other cases, we perform no IO and have 0 cost

• Assume k∈S
– We will certainly access disk, as all A[hj(k)]=1 but we don’t know if

this is by chance of not (collisions)
– Thus, Cp = 14

• Using binsearch, assuming S is kept sorted on disk

• Average cost of u searches then is:
cavg := (w1*Cn + w2*Cp) / u

Ulf Leser: Algorithms and Data Structures 43

Chances for a False Positive

• For one k∈S and one (uniform) hash function, the chance
for a given position in A to be 0 is 1-1/a

• For j hash functions, chances that all remain 0 is (1-1/a)j

– Assuming all hash functions are statistically independent
• For j hash functions and n values, chances to remain 0 is

q=(1-1/a)j*n

• Prob. of a given bit being 1 after inserting n values is 1-q
• Now let’s look at a search for key k, which tests j bits
• Chances that all of these are 1 by chance is (1-q)j

• Thus, Cn=(1-q)j*Cp + (1-(1-q)j)*0
– We have n=|S|=1E7, a=|A|=32E6
– This gives: j=2: 13,94; j=5: 4,31; j=10: 8,93
– Trade-off: Small j -> little filtering; large j -> cluttered hash table

Ulf Leser: Algorithms and Data Structures 44

Average Case

• Assume we look for all possible values (|U|=u=232) with
the same probability

• (u-|S|)/u of the searches are negative, |S|/u are positive
• Average cost per search is

cavg := ((u-|S|)*Cn + |S|*Cp) / u
• For j=5: 5,49
• For j=10: 0,64

– Larger j decreases average cost, but increase effort for each single
test, which is not part of our cost model

– What is the optimal value for j?
• Much better than sorted lists

Ulf Leser: Algorithms and Data Structures 45

Exemplary questions

• Assume |A|=a and |S|=n and a uniform hash function.
What is the fill degree of A? What is the AC search
complexity if collisions are handled by direct chaining?
What if collisions are handled by separate chaining?

• Assume the following hash functions h=… and S being
integers. Show A after inserting each element from
S={17,256,13,44,1,2,55,…}

• Describe the standard JAVA hash function. When is it
useful to provide your own hash functions for your own
classes?

	Foliennummer 1
	How Fast can we Search an Element in a List?
	Beyond log(n) in Searching
	Recall Bucket Sort
	Bucket Sort Idea for Searching
	Collisions
	Abstraction: Dictionary Problem
	Content of this Lecture
	Hash Function
	Illustration
	Illustration
	Topics
	Example
	Content of this Lecture
	Are Collisions a Problem?
	Two Cakes a Day?
	Analysis
	Results
	Take-home Messages
	Content of this Lecture
	Hashing: Three Fundamental Methods
	Overflow Hashing
	Example, Direct Chaining (h(k)= k mod 7)
	Example (h(k)= k mod 7)
	Example (h(k)= k mod 7)
	Average Case Complexities
	Improvement
	But …
	Content of this Lecture
	Hash Functions
	Other Hash Functions
	Java hashCode()
	Hashing
	Pros / Cons
	Content of this Lecture
	Searching an Element
	Options
	Idea of a Bloom Filter
	Bloom Filter: Simple
	Bloom Filter: Advanced
	Analysis
	Chances for a False Positive
	Average Case
	Exemplary questions

