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Abstract. Similarity-based queries play an important role in many large
scale applications. In bioinformatics, DNA sequencing produces huge col-
lections of strings, that need to be compared and merged. One strategy
to speed up similarity-based queries is parallelization on clusters using
MapReduce. However, distributing data over a cluster also incurs high
cost. At the same time, modern hardware offers parallelization through
multi-cores and can be equipped with large main memories at low cost.
We present PeARL, a data structure and algorithms for similarity-based
queries on many-core servers. PeARL indexes large string collections in
compressed tries which are entirely held in main memory. Paralleliza-
tion of searches and joins is performed using MapReduce as the under-
lying execution paradigm. We show that our data structure is capable
of performing many real-world applications in sequence comparisons in
main memory. Our evaluation reveals that PeARL reaches a significant
performance gain compared to single-threaded solutions. However, the
evaluation also shows that scalability should be further improved, e.g.,
by reducing sequential parts of the algorithms.

1 Introduction

Similarity-based searches and joins are important for many applications such
as document clustering or near-duplicate and plagiarism detection [8,9,18]. In
bioinformatics, similarity-based queries are used for sequence read alignment or
for finding homologous sequences between different species. In recent years, much
effort has been spent on developing tools to speed up similarity-based queries on
sequences. Many prominent tools use sophisticated index structures and filter
techniques that enable significant runtime improvements [3, 10, 11].

A challenge arises from the immense growth of sequence databases in the
past few years. For example, the number of sequences stored in EMBL grows
exponentially every year and sums up to more than 300 billion nucleotides as of
May 2011. One strategy to deal with this huge amount of data is to divide it into
smaller parts and perform analyses partition-wise in parallel. For this scenario,
Google developed the programming paradigm MapReduce to enable a massively-
parallel processing of huge data sets in large distributed systems of commodity
hardware [5]. Recently, many open-source frameworks that build upon MapRe-
duce have been developed [2, 4]. A main advantage of these tools is that they take



many tasks off the user’s shoulders, such as the actual process management in
a distributed environment. At the downside, the main bottleneck of distributed
MapReduce is network bandwidth and disk I/O. Therefore, another option is to
design data structures and algorithms that adapt the MapReduce paradigm for
many-core servers [13]. We argue that modern many-core servers, combined with
the constantly falling prices for main memory, are perfectly suited to perform
many real-world applications in sequence analysis. Such settings are much easier
to maintain and do not suffer from bandwidth problems.

In this paper, we challenge the current opinion that problems in sequence
analysis already have grown so big that distributed systems are the only solution.
We present PEARL, a main-memory data structure and parallel algorithms for
similarity-based search and join operations on sequence data. In particular, our
data structure uses compressed tries. In tries, the complexity for exact searches
only depends on string lengths and not on the number of stored strings [16].
This allows an efficient execution of exact searches even in large tries. In order
to retain these advantages for similarity-based queries, we store additional infor-
mation at each node that enable early pruning of whole subtries. Previously, we
demonstrated that these strategies effectively speed up similarity-based queries
in PETER [14], a disk-based index structure and predecessor of PeARL.

A crucial aspect in designing data structures for similarity based queries that
interact with MapReduce is to support proper data partitioning. Specifically, we
show how tries on top of large string collections can be compressed and par-
titioned for enabling in-memory MapReduce based search and join operations.
To our knowledge, this is the first work that parallelizes similarity-based string
searches and joins in tries. Our evaluation reveals that PeARL’s similarity-based
algorithms scale well.

The rest of this paper is organized as follows: Section 2 introduces basic
concepts needed for the design of our data structure and algorithms. We describe
design principles of PeARL and algorithms for similarity search and join, as well
as our parallelization strategy in Sect. 3. We evaluate our tool in Sect. 4 and
discuss related work in Sect. 5. Finally, we conclude our paper with an outlook
to future work.

2 Preliminaries

Let X' be an alphabet and let X* be the set of all strings of any finite length over
X. The length of strings r,s € X* is denoted by |r| (|s|, respectively). A sub-
string s[i ... j] of s starts at position ¢ and ends at position j, (1 <i < j <|s|).
Any substring of length ¢ € N is called ¢-gram. Conceptually, we will ground
our algorithms on operators for similarity search and similarity join, which are
defined as follows:

Definition 1: (Similarity-based operators)
Let s be a string, R a bag of strings, d a distance function, and k a threshold. The
similarity-based search operator is defined as simsearen(s, R, K) = {r|d(r, s) <



k,r € R}. Similarly, for two bags of strings R, S, the similarity-based join oper-
ator is defined as simjoin (R, S, k) = {(r,s)|d(r,s) < k,r € R,s € S}. O

Similarity-based queries must be grounded on a concrete similarity measure. In
PeARL, we support Hamming and edit distance. We focus on edit distance based
operations in this paper, but see [14] for the key ideas on Hamming distance-
based queries. In general, the edit distance of r and s is computed in O(|r| * |s|)
using dynamic programming. As we are mostly interested in finding highly sim-
ilar strings within a previously defined distance threshold, we use the k-banded
alignment algorithm [6] with time complexity O(k * max|r|, |s|) instead.

Our parallelization strategy is inspired by the well-known programming model
MapReduce, a two-step approach that consists of a map and a reduce phase [5].
Essentially, data is stored in <key, value>-pairs and partitioned into several
subsets. In the map step, a user-defined function is applied to each item <k;,v;>
from the input and a list of <k;,v;> pairs is emitted. In an intermediate phase,
all items generated by map are grouped together on the basis of the keys ;.
Afterwards, the user-defined function in the reduce step is applied to each group
and generates a final result set for each k;.

3 Data Structure and Algorithms

In this section, we introduce our data structure PeARL together with algorithms
for executing similarity string searches and joins in parallel. Conceptually, a
PeARL index (see Fig. 1) is based on radix trees [12] and defined as follows:

Definition 2 (PeARL index):

Let R be a bag of strings. A PeARL index Pgr for R consists of a set of rooted,
compressed tries Tg , a sequence string seq, and a <key,value> data structure
Stringl DM ap and meets the following conditions:

1. (Identification of strings) The string seq is a concatenation of all » € R. We
assign a unique ID to each r, assembled from a serial number, the length of
r, and the start position of r in seq.

2. (Node types) We distinguish between infix nodes and string nodes. An infix
node is a node that represents some substring r; of r, |r;| > 1. Every r maps
to exactly one node x € Tx such that the concatenation of all labels from
TRr’s root to x exactly is 7. Such nodes x are called string node. We store a
pair that consists of the node ID of z and the UID of r in the StringIDMap.
If R contains multiple copies of r, all corresponding UIDs are assigned to x.

3. (Storing infizes) Each node u represents a sequence of characters of length
[ > 1. The labels of any two children v, w of u start with different characters.
Node labels are not stored directly in the node, but retrieved via lookups in
seq. Thus, u stores length and start position of the represented infix in seq .

4. (Additional information) Each node u stores additional attributes, namely
the minimum (min) and maximum (max) lengths of strings stored in the
subtrie starting at u, a character frequency vector fv and a bit-string ¢Gr.
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Fig. 1. PeARL index structure

The character frequency vector fv(u) consists of | X| components and counts
the number of occurrences of ¢; € X' in the prefix represented by u in com-
ponent 7. Similarly, a bit in gGr at position i represents the ith string of all
strings over X of length ¢ in lexicographical order. Bit i is set to 1, if the
prefix represented by node u contains the corresponding g-gram.

5. (Trie partitioning) For very large string collections, we expect the upper
levels of a trie to be completely filled. Therefore, we partition a single PeARL
trie into multiple tries on the basis of shared prefixes. Each partition is
identified by the prefix which was used for partitioning (see Fig. 1). The
prefix length used for partitioning is user-defined. |

Figure 1 displays a PeARL index for strings over X' = {4, C,G,T}. Grey nodes
are string nodes, white nodes are internal nodes. The substring represented at
some node can be retrieved in constant time via lookup in the sequence string.
Edge labels are not stored in the index itself, but are displayed for better com-
prehensibility only. Displayed g—gram sets indicate which bits in gGr are set.

3.1 Algorithms

Building the PeARL index for a set R of strings works as follows: In a first step,
R is sorted lexicographically, UIDs are assembled, and R is split into multiple
partitions based on shared prefixes. For each partition R; C R, we start with an
empty trie T, and iteratively insert each string contained in R; using preorder
DEFS traversal. After all strings from R; have been inserted, we iterate once over
the whole trie and update the information min/max, fv and ¢Gr.
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Fig. 2. MapReduce workflow of similarity joins in PeARL.

Similar to indexing, our algorithms for similarity-based searches and joins
are also grounded on preorder DFS traversal of all trie partitions. Each algo-
rithm is equipped with filtering strategies. These filters, namely prefix and edit
distance pruning [16], character frequency pruning [1], and g—gram filtering [7],
have been introduced in slightly different contexts before. Their concrete usage
and efficiency for trie-based search and join queries is shown in [14]. Therefore,
we only briefly summarize our search and join strategies in the following and
concentrate on our novel parallelization scheme later.

Similarity search starts with a given search string ¢ and traverses each
trie partition in a PeARL index starting at root. Whenever a new child of the
current node is reached, we first check whether we can prune this node (see [14]
for details on filtering). If all filters have been passed successfully, we compute the
edit distance between the query and the prefix of the node. If the distance exceeds
a threshold k, we start a backtracking routine and traverse the remaining, not
yet examined paths in the trie. Otherwise we descend forward to the leaves.
When a string node x is reached and d(gq, z) < k holds, we report a match.

Similarity join for two sets R, S takes two PeARL indices Pg, Pg as input.
Each trie partition Tg, is joined with each partition Ts;. Recall that both tries
are partitioned by prefixes. We first check the partition prefixes on edit distance
and it might happen that k is already exceeded. In this case, we skip the cor-
responding trie pair. Otherwise, we compute the similarity-based intersection of
both partitions. As for search, we start at the root nodes and traverse both tries
concurrently. When unseen nodes are reached, we check all filters and prune, if
possible. Whenever two string nodes x € Tg,,y € Ts, are reached, and given
that d(z,y) < k holds, we report a match.



3.2 Parallelization with In-Memory MapReduce

We use MapReduce to parallelize PeARL for an execution on multi-core servers.
However, a usage in distributed scenarios is conceptually also possible as PeARL
trie partitions could as well be spread over nodes in a distributed file system.

Recall that a user-defined function is applied to each input item <k;,v;>
in the map phase. Depending on the specific task, we use the map phase to
either execute the similarity join of any two PeARL partitions or, to search a
certain string in each partition of a PeARL index. Reduce phases are typically
used to compute aggregates of intermediate results. However, we use reduce to
sort the similarity-based search or join results, and to perform some nice to
have operations. Figure 2 shows the workflow for parallelizing similarity joins in
PeARL with MapReduce. A master routine takes two PeARL indices Pgr, Ps as
input, together with an error threshold k, and a number of available threads t. As
string collections stored with PeARL are already partitioned into multiple tries,
we get a natural data partitioning for the map phase. The master generates a
set of map tasks (stored in a FIFO data structure mapTaskList), such that each
trie partition Tr, € Pg is joined with each trie partition Ts; € Ps and starts
the map phase. To clearly identify each task, the master assembles a key from
the partition prefixes for each (T'r,, Ts;)-pair that is inserted into mapTaskList.

Each map thread has access to mapTaskList and extracts one task (Tr,,Ts,)
out of this list. After some initialization steps, map calls the join routine, that
executes the similarity join of Tk, < Ts, and returns the set of all similar
string pairs contained in (T'r,, T’s;) within the given distance k. These items are
inserted into an intermediate data structure, that will be processed further by
reduce. For each similar string pair (r, s), an intermediate key is set to the UID
of r. When one map iteration has finished and as long as mapTaskList is not
empty, the map thread extracts the next (T'r,,T’s;) pair out of this list and again
computes the similarity join.

When all map tasks have been processed, the master partitions all intermedi-
ate data on the basis of intermediate keys and passes each partition to a separate
reduce thread. This ensures that all similar string pairs which involve r are as-
signed to the same intermediate partition. Finally, reduce sorts all (r,s) pairs
based by edit distance. Optionally, reduce can also emit the number of similar
strings found in S for each r, or filter the results found for r on best score.

Parallelizing similarity searches is analog to the parallelization of similarity
joins. The main difference is that Ps is replaced with one or a list of search se-
quences. If not existent, each search pattern is assigned a unique ID. For searches,
the mapTaskList contains <k;,v;> pairs where k; is a partition prefix of and v;
consists of Tx, and the search sequence(s). A map step performs the similarity
search for each search pattern in Tg,. All resulting similar string pairs are stored
an intermediate <k;,v;> data structure, such that k; consists of the UID of the
pattern, and v; consists of the string pair together with its edit distance score.
When all map threads have finished, the intermediate result set is partitioned
on k; and finally, reduce sorts the strings found for one search pattern by score.



In our approach, we reduced the necessary disk I/O to a minimum. Before
initializing the MapReduce workflow, PeARL indices and search patterns are
read from disk into memory and finally, after all reduce steps are terminated,
the result set is either written to file or printed to stdout. In between these
steps, all necessary operations are performed in main memory.

4 Evaluation

We evaluated the perfor-

mance of PeARL on a

NUMA server with 24 cores  [Set[# strings[@ length (min / max)[# characters
and 256 GB main mem- [T ] 10,000 | 511.99 (49 / 1,190) | 5,120,495
ory available. All experi- | II| 240,000 | 455.94 (18 / 2,160) | 109,425,487
ments were executed with |ITT| 300,000 | 446.74 (18 / 2,160) | 134,023,819
numactl -localalloc to |TV|1,000,000| 512.12 (7 / 3,920) |512,123,043

control the memory acces-
sion strategy and thread Table 1. Data sets extracted from dbEST
placement. Test data sets

(see Table 1) are extracted

from dbEST! as of March 7th, 2011 for the organism mouse. Indexing is linear in
the number of indexed strings [14] and is not included in the reported measure-
ments. In terms of memory consumption, PeARL needs roughly 20 GB of main
memory to index all infixes of length 2,000 bp in the C. elegans genome (roughly
100M strings). For computing the similarity join IIIn;IV, PeARL needs approx.
8 GB of main memory.

4.1 Performance of Similarity-Based Operators

First, we compared the performance of all similarity-based operations in PeARL
with its predecessor PETER in single-threaded mode. The main difference of
both tools is that in PeARL, all parts of the index are kept in main memory
whereas in PETER, disk I/O was necessary during search and join. Another
difference is that g-gram sets in PeARL are stored persistently in the index
whereas previously, ¢g-grams were computed on the fly. Trie partitioning and
parallelization was also not present in the predecessor. Overall, we observed that
these improvements increased the efficiency of our filters. Whereas in PETER,
filtering lead to runtime improvements of up to 80% compared to the baseline
with no filters enabled, we now achieve runtime improvements of up to 99%
caused by filtering (data not shown).

We evaluated the runtime of similarity search and measured 10,000 individual
searches of non-indexed patterns from set I in the PeARL index for set IV, see
Fig. 3. In single-threaded mode, searches in PETER ran significantly faster than
in PeARL (up to factor 10 on k = 2). This is not surprising, as there is some

! www.ncbi.nlm.nih.gov/dbEST/
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Fig. 3. Performance of single-threaded similarity search of 10,000 patterns from set I
in set IV.

overhead introduced in PeARL by the added functionality for MapReduce based
parallelization, which is also present in single-threaded searches. However, we
will see in the following section that this overhead pays out for multi-threaded
similarity searches and joins. We also compared PeARL to Flamingo, a library
for string searching developed at UC Irvine?. As displayed in Fig. 3, PeARL
outperforms Flamingo for search in single threaded mode for small thresholds
(factor 20 for k = 1 and factor 3 for k = 2). For larger k, Flamingo begins to
outperform PeARL.

For evaluating the runtime of similarity joins in PETER and PeARL, we
computed the join between set IV and varying subsets taken from set II. As
shown in Fig. 4, similarity joins in PeARL are computed considerably faster than
in PETER. For example, we reached an improvement of factor 3 on k = 2 at a
join cardinality of 2e+11. Generally speaking, the implemented improvements in
PeARL are the more profitable when indexed string sets grow large. We could
not compare PeARL to Flamingo for joins, since no reference implementation
was available.

4.2 Scalability of PeARL

We compared the multi-threaded execution of 10,000 individual searches of pat-
terns from set I in set IV with PeARL (24 threads) to a single-threaded execution
with PeARL and Flamingo. As displayed in Fig. 5, the multi-threaded execution
in PeARL outperforms the single-threaded execution in Flamingo with factors

2 http://flamingo.ics.uci.edu/
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in the range of 6 (k = 3) to 57 (k = 1). We also observed that the 24-threaded
outperforms the single-threaded execution in PeARL with factors in the range
of 5.5(k =1) to 6.2 (k = 3).

For similarity joins, we could only compare the 24-threaded to the single-
threaded execution in PeARL since no external reference implementation was
available. Thus, we measured the execution times of ITIc(y 23,1V, As dis-
played in Fig. 6, we measured a runtime improvement of factors in the range of
42 (k=2)to49 (k=1).

When analyzing the parallelized search and join algorithms in terms of speed-
up, the first step is to estimate the fractions of parallelizable and non-parallelizable
parts in our algorithms. In general, the parallelizable fractions dominate, since
only reading the indices into main memory, extracting tasks from mapJoinList,
sorting intermediate partitions before executing reduce, and writing the final
output to file is performed in serial. We estimated the size of the parallelizable
fraction based on the measured speed-up using N = 24 CPU cores. According
to this, 10 % of our search and 20 % of our join algorithm remain serial.

Figure 7 displays the speed-up of searches of all ESTs from set I in the
indexed set IV with regard to the number of CPU cores. We observed that the
speed-up for measured runtimes almost perfectly fits the theoretical curve of
Amdahl’s law for P = 0.90. Similarly, we observed for joins that the measured
speed-up fits well to Amdahl’s law for P = 0.80 (data not shown). This indicates
that estimating the non-parallelizable fraction with 10 % for searches and 20 %
for joins is sound. Using 24 CPU cores with 24 map and reduce workers, we
achieve a speed-up of our join algorithm of 4.3. According to that, the maximal
speed-up for join is 4.9 using > 1,000 cores. This indicates that executing the
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current implementation of PeARL is limited by the serial parts contained in our
algorithms.

5 Related Work

Morrison [12] introduced prefix trees as an index structure for storing strings and
exact string matching. Shang et al. [16] extended prefix trees with dynamic pro-
gramming techniques to perform inexact matching. Prefix pruning was studied
in [16] and is based on the observation that edit distance can only grow with pre-
fix length. Aghili et al. [1] proposed character frequency distance based filtering
to reduce candidate sets for similarity-based string searches. Indexing methods
based on g-grams restrict search spaces efficiently for edit distance based opera-
tions. They take advantage of the observation that two strings are within a small
edit distance iff they share a large number of ¢-grams [17].

The MapReduce programming model for parallel data analysis was initially
proposed by Dean and Ghemawat [5]. Vernica et al. [19] present an algorithm
set-similarity string joins with distributed MapReduce. We could not compare
to their solution, since no in-memory version was available. Ranger et al. [13] de-
veloped a MapReduce based programming framework for shared-memory multi-
core servers with a scalability almost reaching hand-coded solutions.

A main application for similarity-based string searches and joins in bioinfor-
matics is read alignment. Almost all tools follow the seed-and-extend approach.
BLAST [3] seeds the alignment with hash-table indices and extend the initially
ungapped seeds with a banded local alignment algorithm. However, algorithms
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that use only ungapped seeds might miss some valuable alignments. Tools like
BWA-SW [10] and RazerS [20] provide two approaches that allow gap and mis-
matches in the seeds. We also applied PeARL for read alignment and compared
the execution times to BWA-SW and RazerS. Both tools significantly outper-
form PeARL (data not shown), but it must be noted that both are heuristics
that miss solutions, while PEARL solves the alignment problem exactly. Cloud-
Burst [15] is another another tool for read alignment using MapReduce on top
of Hadoop [4]. A comparison between PEARL and CloudBurst is pending.

6 Conclusions and future work

In this paper, we presented PeARL, a data structure and parallel algorithms
for similarity-based search and join operations in compressed tries. PeARL is
parallelized in main memory with MapReduce on a multi-core server. Our eval-
uation revealed that the speed-up of our search and join algorithms executed on
multi-core servers cannot grow infinitely large due to the serial parts contained
in our workflow. We are currently working on reducing these bottlenecks and on
performing a detailed comparison between PeARL and CloudBurst.
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