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Abstract. Business rules are often implemented as stored procedures
in a database server. These procedures are triggered by various clients,
but the execution load is fully centralized on the server. We improve the
overall response time and increase server throughput by balancing this
load between the server and the clients. In our novel scheme, parts of
the stored procedures are executed on cached data at the client. The
critical issue in such a system is the trade-off between synchronization
effort among clients and the server and the increase in systems perfor-
mance gained by load balancing. We present an architecture using an
optimistic synchronization protocol together with an algorithm for data
verification at the server. The experience we gained through a detailed
case study, based on a real-life eCommerce application, shows that in
many situations a considerable speed-up is possible.

1 Introduction

In a typical client-server relational database environment, clients trigger pro-
cesses at the central server. The server executes them on shared data and passes
the result back to clients. Moving a portion of the servers execution tasks to
clients can enhance the overall performance of such systems. This has become
a feasible approach within the last years ([18, 16,6, 11]), since, due to the rapid
development and decreasing costs in computer hardware, low-end clients are re-
placed by more and more powerful ones. Such fat clients are fully able to perform
some database operations on their own.

The situation is similar for multi-tier architectures, such as the one used by
SAP R/3. Here, clients are considered to be very thin and to only function for
information display and user-interaction. In the middle tier, application servers
perform tasks such as session handling, rendering of forms and HTML pages, and
minor data modifications. However, data-centric tasks are performed exclusively
inside a central database. The sharing of load between the middle tier and the
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database server is hard programmed, often leaving the (powerful) application
server hardware in an idle state.

In both cases, the central server clearly is a central bottleneck of the system,
while at the same time valuable resources at the client (middle tier application
server or user PC) are wasted. In this paper, we investigate the possibility to
improve response time and system throughput by balancing load between the
clients and the server. We assume that processes executed at the server are
implemented as stored procedures, i.e., as pieces of database code executed under
transactional semantics. Normally, the client invokes a procedure at the server
and awaits the result before continuing. We suggest that clients, instead of being
idle, themselves perform parts of the procedures on local replicas of the data.

Essentially, our method works as follows. We automatically translate the code
of a procedure into two versions, one installed at the server and one installed at
the clients. These two version differ in that the code is logically split into two
parts, say A and B. When the procedure is triggered in a client, both versions
start running in parallel. The client actually performs the commands in part A
and informs the server about doing so, while the server performs part B, and
only verifies the client computations of part A. Only if this verification fails due
to stale data, the server also executes erroneous computations.

Before we give an example, we want to discuss the difficulties and premises of
this scheme. The success of our method depends on a number of characteristics
of the data distribution and the procedures. First, it will only pay off, if proce-
dures can be logically split such that load is taken from the server, i.e., when
server verification of results computed by the client is cheaper than executing
the commands at the server. This will not be the case if only very simple oper-
ations are involved. Second, the effort for data synchronization between client
and server must be taken into account. Our scheme is only advantageous, if the
verification in most cases succeeds, i.e., if the client mostly works on up-to-date
data; otherwise, server load would be increased rather than decreased. Therefore,
our method will not work well in cases, where many clients constantly change
some portion of data, or if the procedures require large amounts of data from
the central database.

However, in many cases the situation is not as such, as illustrated by the
following example of our real-world case study (Section 4). Its 3-tier architecture
(web client, web server, database server) is depicted in Figure 1. Note that in this
case the web server and not the web client acts as database client. Our scenario
consists of a classical web shop with product groups, products, a shopping cart,
paying, etc. and business processes, such as login, register, add-to-cart, buy,
clear-shopping-cart, browse catalog, etc. The procedure code (in pseudo code
notation) for adding products to the shopping cart is as follows.

PROCEDURE AddCart (@sessionID,@productID,@amount)

1 @session := (SELECT * FROM Session WHERE id=@sessionID);
2 IF @session is not valid THEN

3 DELETE FROM Session WHERE id=Q@sessionID;

4 RETURN ErrorNoSuchSession END IF;



5 amount := (SELECT amount FROM Stock WHERE pid=@productID);
6 IF amount<@amount THEN

7 RETURN ErrorQOut0OfStock END IF

8 INSERT INTO Cart VALUES (@sessionID,@productID,@amount) ;
9 RETURN SuccessCode

One possibility is to split the code by the lines of code. Consider a split A=5
and B=1-4,6-9. Then client and server are executing A and B in parallel. For
this, a client hosts the table Stock that in our case at most is updated once a
minute by purchased products. By propagating only updates on server data to
clients (c.f. Section 2), the amount of client data and synchronization is low.

Once the client has finished step 5, it passes the result amount to the server.
After the server has finished steps 1-4, it tries to use the clients result (if avail-
able) and validates it, before it proceeds with steps 6-9. The validation is nec-
essary, since our optimistic synchronization scheme allows clients to operate on
stale data. The validation can be achieved by a simple versioning scheme on
tables. Versions are consistently maintained by the server and propagated to
clients by the synchronization scheme. Thus, the result amount is correct, if the
client and server version of Stock equals. Hence, comparing versions is much
cheaper than computing step 5 at the server.

Without client computations we observed the following average execution
time for AddCart: 22ms for step 1-4, 13ms for step 5, 2ms for step 6-9 — in total
37ms. Hence, the total execution time improves for all situations where the client
computation (step 5), the delivery of amount to the server and the validation
take less than 224-13ms (time to complete steps 1-5 at the server). In our case
study we achieved an execution time of 25ms.

Consistency is fully preserved; if other clients concurrently change table
Stock at the server and the result amount was computed on a previous ver-
sion, the server will notice a conflict due to different versions and, instead of
using the client result, will start executing step 5 by himself. In this case, our
scheme puts some overhead on the server, but if conflicts are rare, considerable
load is taken from the server. To avoid huge amount of data at clients, we use
table fragments within our execution scheme.

The remainder of this article is organized as follows. We explain the architec-
ture of our system, procedures and data distribution in Section 2. Code splitting,
partial execution at the client and validation are described in Section 3. Within
a case study (Section 4) we show how our approach has been applied successfully
to an Internet shopping application. Section 5 gives an overview of related work.
Finally, we provide an outlook in Section 6.

In [11], we only considered the sequencial execution of stored procedures and
concentrated on breakpoints within the procedure code. Now we extend this
solution by parallelism. Further, we have shown the feasibility on a real-world
Internet shopping application.



2 Architecture

We describe the minimal infrastructure that is required to exemplify our ap-
proach. A discussion of further database concepts, such as triggers, sequences,
or cursors, is beyond the scope of this paper. Furthermore, many of those con-
cepts are fully compatible to our methods. Concepts posing conceptual problems
shall be highlighted in the text.

This section covers all issues that are not directly involved in the cooperative
execution of procedures. Those, especially code splitting, partial execution and
validation, are discussed in Sections 3.

We consider a scenario where a central database (server) serves a number
of distributed clients. The server provides its functionality only by means of a
set of procedures. We do not consider client-side ad-hoc queries to the server as
these can always be encapsulated in a parameterized procedure. Each client C;
is running a simple database system that is used for caching data and executing
procedures locally. These database systems do not require advanced features,
such as multi-processor capabilities, recovery, or multi-user support. Figure 1
depicts the main components of our architecture. An execution engine (c.f. Sec-
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Fig. 1. (Left) General architecture of the Client-Server System. (Right) Architecture
as used by the case study in Section 4.

tion 2.2) at the client and the server is responsible for performing procedures.
Both engines work on the local database using local versions of the same set of
procedures (see Section 2.1). At the server, a cache (c.f. Section 3) is used to
store intermediate results computed by clients during parallel procedure execu-
tion. A synchronization component (c.f. Section 3.3) is responsible for updating
those parts of the database that are replicated at the clients.



2.1 Data and Update Language

The database schema consists of flat tables, denoted R, where all attributes
are atomic (1. NF). For simplicity of explanation, we do not consider con-
straints and advanced concepts, such as triggers, sequences, etc. Also they do
not pose any conceptual problem. For keeping surrogate keys, each table con-
tains a readonly ID column. We assume a procedure language in the flavor of
pgplsql as used in PostgreSQL or PL/SQL as used in Oracle. A procedure has
a name and may have input parameters and local variables, denoted as <var>.
In this article we deal with the following commands <stmts>: INSERT, DELETE,
UPDATE, SELECT INTO <var> <sql-query> and <var>:=<expr> as assignments
of variables, IF <cond> THEN <stmts> ELSE <stmts> END IF, FOR <var> IN
<sql-query> LOOP <stmts> END FOR, RAISE EXCEPTION, RETURN. The expres-
sions <cond> and <expr> are restricted to contain only local variables variables,
constant values, build-in functions and operators according to the used types.
Note also that there are no subroutines.

The parallel cooperative execution (c.f. Section 3) uses updates of single
tuples for synchronizing data and to validate client results. Since INSERT, DELETE,
UPDATE statements usually include a query, e.g. UPDATE R SET X=X+1 WHERE
Y>X AND Z<>’’, we apply a pre-compilation step that translates them into low-
level updates.

Low-level updates directly access single tuples of tables. For a table R, a
tuple t = (ay,...,a;) and a tuple identifier tid, low-level database updates are:
insert(R,t), delete(R, tid) and replace(R, tid, t). We assume that a unique tuple
identifier is maintained by insert(R,t) which generates a tid.

The idea is to replace each INSERT, DELETE, UPDATE statement by: (1) A query
that computes which tuples (including their ¢id, for delete and update) should
be inserted, deleted or updated. (2) A loop that for each query result performs
a low-level update. The DELETE FROM R WHERE .. statement, for example, is
translated into:

FOR row IN SELECT ID FROM R WHERE .. LOOP
delete(R,row.ID);
END LOOP;

Hence a pre-complied procedure interacts with data only in terms of low-level
updates and queries, in the following denoted as 10 statements. Since we later in
Section 3 execute such procedures in parallel at client and server, we require that
both behave equal, once executed on equal data. To achieve this, we pose one
restriction on the types of queries, i.e., we only allow the use of build-in functions
f(z) = y that are time-invariant and do not access data in the database. This
disallows functions such as those accessing the systems date (because they are
time-dependent), functions maintaining sequences (these access and manipulate
data), etc. This property is required by our validation algorithm for client results
(c.f. Section 3.3).



2.2 Executing Procedures

The execution engine is responsible for processing pre-complied procedures. In-
tuitively, it is executing the code by performing IO statements (low-level updates
and queries) on data. We briefly define the minimal requirements of the engine.

We uniquely identify IO statements within the code of a procedure S. Let
E(S) be the set of identifiers for S and let sid(s) be a function which for
each 10 statement s returns its ID. In the following, letters s denote such
IDs. Then, each execution of a procedure S is characterized as a sequence
Seq = (S1,#51),-- -, (Sn,#sn) of executed IO statements s; € E(S), where
#s; denotes number of already performed executions of statement s; Hence, it
represents a counter for each s; that is maintained by the engine and used to
distinguish between different executions of an s; during a loop.

Given an IO statement s;, first, the engine is instantiating s; (resolve local
variables, if any) and, second, is executing the instantiated IO statement e by
a function val = eval(s, #s, €) that returns the result value val (empty for low-
level updates, a table for queries) to the engine. By using wval, the engine is
further processing S until the next IO statement.

In Section 3 we logically split a procedure S as follows. Part A (executed at
the client): Ec C E(S) and part B (executed at the server): E(S) except query
statements in F¢. Client and server execute the sane version of S in parallel.
The client is only allowed to execute 10 statements in F¢ and the server tries to
use the results of these computations. For this, we will extend the clients engine
to cope with this partial execution (c.f. Section 3.2) and will model our execution
scheme by providing only different eval(.) functions for client and server. Hence,
parameters Ec determine the amount of client computations.

2.3 Data Distribution and Version Management

As stated above, each client has a local database that contains the data that
is used during the execution of statements E¢. Since clients usually do not
access all data of a table, data is replicated at the level of table fragments and
only necessary fragments are placed at clients. Each table R at the server is
partitioned into a set of fragments F}?, short Fj, that can be assigned to various
clients. In Section 3.2 we show that only fragments are placed at clients that are
required for executing statements F¢.

However, strategies for optimal fragment design are beyond the scope of
this paper (see for instance [7]). Clearly, other fragmentation schemes could be
used instead of our method (e.g. semantic or predicate based methods [10, 6, 9]).
However, a detailed analysis of the impact of different fragmentation schemes is
beyond the scope of this paper and subject of future work

Consider the example from Section 1. There, the table Stock could be parti-
tioned by product groups, such that each fragment contains tuples of the same
product group. Fragments, i.e. product groups, are then assigned to those clients
that are mostly interested in these groups.



Additionally, the server maintains for each Fj a version number vy. Version
numbers are only updated by procedures S at the server (and not by the client).
That is, once the execution of S completes, the version number is increased for
all fragments F) that have been modified by S. Each procedure runs as a sin-
gle transaction. After the versions have been updated the transaction commits.
Hence, versions are consistently updated under concurrent access at the server.
Note that a procedure might perform multiple updates during its execution.

In Section 3.3 we use version numbers to verify client computations. For this,
we require that client and server fragments Fj, with equal versions imply equal
fragment data. By the restriction on build-in function to prevent side-effects (c.f.
Section 2.1) we conclude that a procedure call, executed at client and server on
equal data, must produce the same low-level updates and query results. Hence,
equal versions indicate that client and server executions are equal.

Since procedures might apply multiple updates before a version is updated,
we must pay special attention on fragment placements at clients. For this, the
content of client fragments Fj of version v, must equal to the content of Fj at
committing time of the procedure that updated the version to vg. Thus, clients
operate only on data (snapshots) that correspond to data at the completion time
of procedures. In the following we call such fragments initial, since they reflect
the initial state of a fragment version, where no other updates have been applied
yet. Note that also procedures at the server operate on initial versions, since the
transactional execution requires that other transactions do not see data that has
not been committed yet.

Hence, a procedure at client and server is always executed on initial versions.
An appropriate synchronization scheme achieving this property is explained in
Section 3.4 after the client and server behavior have been defined.

3 Parallel Transaction Processing

This Section explains all issues that belong to the parallel cooperative execution
of procedures. We address the splitting, the servers result cache, the execution
at client and server, and the validation technique for checking client results.

Recall the enumeration E(S) and the eval(.) function as defined in Section
2.2. The code of a procedure is logically split into two parts (A) Ec C E(S5)
and (B) E(S) except query statements in E¢. In the following we assume that
for each client-procedure pair (Cj, S;) there exits a split E¢(C;, S;), short Eg,
within the code base of client and server. The finding of appropriate splits is
discussed in Section 4. We shortly summarize the execution scheme and provide
details in subsequent sections.

Once a procedure S has been initiated, the client computes a unique execu-
tion identifier eid (e.g. a number increased by one for each procedure call), sends
it to the server and S is executed at client and server in parallel. Thereby the
evalc(s, #s, e) function of the clients execution engine handles only statements
s € Ec and puts the result of each executed query statement into the servers
cache and performs low-level updates on local data. This updates are necessary,



since they might affect the evaluation of queries at the client within the same
procedure. Cached query results are later on re-used by the server.
The servers cache consists of tuples

(eid, s, #s, e, val, ver)

with val = eval(s,#s,e) and ver as the set of all fragments versions accessed
by the execution of e.

The evals(s, #s, ) function of the servers engine considers all s € E(S), but
uses cached query results (if valid) for s € E¢ instead of executing them. Thus
the execution of queries in E¢ has been outsourced to clients. To log updates on
primary data, the server puts executed low-level updates into the cache (val =
for low-level updates). This updates are used by the synchronization scheme to
update client data. Based on versions, the server validates client computations
and re-executes a query on local data in case it is not valid.

3.1 The Partial Execution Model

Executing 1O statements E¢ at the client, requires the clients execution engine
to cope with a partial execution of a procedure. The idea is that the clients
evalc () function returns an undef value for each 10 statement s ¢ FE¢. Hence,
the clients engine must cope with undef values. For this, we also use an addi-
tional ABORT operation that stops the current execution and (different to RAISE
EXCEPTION) does not undo updates. Arising data inconsistencies at the client are
handled by the synchronization (c.f. Section 3.4). For our procedure language
the engine behavior is sufficiently described by the following rules: (1) Since the
evalc(.) function might return undef values, an assigned variable is of value
undef, if the assigned expression contains an undef value. Hence, an undef
value can be further used within the execution of a procedure and might appear
in instantiated IO statements, once it uses an variable of value undef. (2) An
undef value within a condition of a IF statement causes ABORT UNDEF, since
the condition can not be evaluated and the program path could not be deter-
mined. (3) statements RETURN, RAISE EXCEPTION within the procedure code are
ignored, since computations on stale data might result into wrong rejections or
wrong returns. However, client results are always verified by the server, such
that erroneous or useless client computations do not lead to inconsistencies at
the server.

Accordingly, we require from the function evalc(s,#s,e) to: (1) Return
undef for all s ¢ Ec. (2) Return undef for all e that contain undef value,
e.g. insert(R,undef) or SELECT * FROM R WHERE X=undef are not defined.

3.2 The Clients eval() Function

The clients evalc (s, #s, e) function dynamically handles the placement of frag-
ments. That is, once a fragment is not available, but required for an execu-
tion, it is requested from the server. For this, we assume a function frag(e) =



{Fi,..., Fy} that for an instantiated IO statement e returns all fragments that
are required to execute e. Note that the function depends on the fragmentation
scheme, the query and update language.

Each execution of a procedure at the client starts on an initial versions vy
of fragments that corresponds to the data at completion time of the procedure
that increased the version to vg. The clients evalc (s, #s,e) function is defined
as follows:

1. if s € E¢ return undef

2. if a fragment Fj € frag(e) is not hosted at the client perform ABORT DATA
and request Fj from the server

3. if e contains undef, perform ABORT UNDEF, since IO statements on undef
values are not defined

4. verc := all tuples (Fy,v) with fragments Fy, € frag(e) of version vy, (note
that version(F) does not change during the execution of S and that frag-
ment data correspond to initial versions)

5. compute val := eval(s, #s, €)

6. if e is a query, put (eid, s, #s, e, val, verc) into the servers cache

7. return val

An ABORT stops the execution at the client, since necessary fragments are not
available yet or the execution is not defined due to unde f values. No more results
are put into the cache. Note that a client at run time does not necessarily execute
all s € F¢, e.g. IF <cond> THEN s; ELSE sy END IF executes either s; or ss.
Further, clients might perform erroneous updates on local data that are not
consistent with the data on the server. Such inconsistencies are removed during
the next data synchronization by the server (c.f. Section 3.4).

Clearly, choosing E¢ has a direct impact on the occurrences of undef values

and therefore on aborted client executions. Choosing E¢ is discussed in Section
4.

3.3 The Servers eval() Function

From a client C; the server receives the original request S and the execution ID
eid. In parallel to the client, the server executes S within a single transaction and
maintains fragment versions. Whenever possible, the server tries to re-use query
results that have been put into the cache by the client. The servers evals(s, #s, €)
function is defined as follows.

1. verg := all tuples (Fj,vy) with fragment Fj, € frag(e) of version vy (note
that, due to the transactional execution at the server, procedures always
start on initial versions)

2. if e is low-level update, put (eid, s, #s,¢€’,(),verg) into the cache (maintain
servers update log)

3. if s € E¢ and e is query
(a) retrieve tuple (eid, s, #s, €', val, ver¢) from result cache for the given eid,

s and #s,



(b) if none exists, jump to 4

(c) if e # €’ jump to 4 (syntactic different queries)

(d) if verc = verg jump to 5 (client and server operated on equal data)
4. val := eval(s, #s,¢€)
5. return val

If a cache result is not available yet (3b) and therefore not executed by the
client, the server executes the statement by himself. Note again, that clients do
not necessarily execute all statements in F¢, e.g. IF <cond> THEN s; ELSE so
END IF executes either s; or so. Hence, query results not not necessarily appear
in the cache.

Once the queries e and e’ executed by client and server differ syntactically
(3c), we assume that they yield a different result. Note that SELECT * FROM R
WHERE X>5 and SELECT * FROM R WHERE X>6 yield the same result, if there is
no tuple with X=6. We do not consider such cases here. Due to the restriction
on queries and updates (c.f. Section 2.3) that prevents side-effects and the use
of initial versions, the client result val can be validated on a version basis (3d).
Hence, val equals to the result of executing eval(s, #s, €) at validation time and
therefore is valid on the server, if client and server have started the execution of
S on equal data (initial fragment versions).

Only in case a client result is invalid, the server has to re-execute the query.
The amount of re-execution is further discussed in Section 4.

After the execution of S completes at the server, version numbers are in-
creased of those fragments that have been modified. Finally, the result of S is
passed to the client and the transaction (started for S) commits.

3.4 Synchronization

After a transaction of a procedure S has committed, the server synchronizes
client data. The basic idea is to set client data to initial versions of fragments
which is required by the result verification.

Whenever a client fragment Fj, is updated to a newer version, current running
procedures at the client are not affected and keep operating on the same data.
Hence, new versions of F}, are only visible to client executions, once the update
of Fy has been completed. While working on previous versions of data, clients
might compute erroneous results which are detected by the servers verification.

We use an optimistic log-transfer technique [4,12], where changes (low-level
updates) on server data are transferred to clients. For this, we use the updates
that are logged in the servers cache. It is optimistic, since clients might operate
on stale data, and since clients do not enforce consistency of their local data,
e.g. by locking server-side tables. The synchronization is done in 3 phases:

1. Let F}, be all fragments that have been changed by S and C; all clients that
host fragments Fj. Let v, be the clients version number of Fj and v}c the
new version caused by the server. First, the server undoes all local updates
on Fj on clients C; that have been applied after the last synchronization for
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version vg. Then, it retrieves all updates of the execution ID eid (updates
applied during executing S) from the servers cache and applies them on
client fragments FJ. Since these are all updates that are executed up to the
completion of a procedure, clients C; host initial fragment versions vj,.

2. Let C; be the client that delivered results to the execution of S and Fj be
all client fragments of version v that have been modified by C;. If a Fj has
not be modified by the execution of S at the server, all client updates on
Fy are undone, thus achieving the original initial version v, at C;. Client
fragments F); that have been modified by the server are handled by (1).

3. Once all client fragments are updated, those updates and query results with
etd are removed from the cache.

Clearly, the synchronization overhead is determined by the applications behavior
and the selection of parameters E¢, since they are used for fragment placement
(c.f. Section 4).

4 Case Study

The aim of this case study is to discuss parameters that influence the execution
time of procedures and to show that the execution time improves, once the
parameters Ec(C;,.S;) have been chosen appropriately.

4.1 Parameters Influencing the Execution Time

In general the execution time of procedures of a database application is de-
termined by server hardware, structure and amount of data, complexity of the
procedures, use behavior, etc. Beside these, our execution scheme depends on
hardware and parameters F¢ as follows:

1. The tight coupling of client and server requires fast networks. Hence, our
approach applies not to Internet clients, but to in-house office and company
networks.

2. Client fragments that are frequently updated, cause more synchronization
overhead, more inconsistencies (due to optimistic synchronization) and more
re-executions at the server. Note, that parameters E- determine which frag-
ments are placed at clients (c.f. Section 3.2). Hence, the synchronization
effort also depends on the parameters F¢.

3. Fast client computations (hardware) and an efficient validation technique (as
proposed in Section 3.3) reduce the execution time.

To improve the execution time, parameters Fc must be chosen properly. This is
a complex task that we can not discuss sufficiently here. Instead, we introduce
the two main problems and evaluate the feasibility of our approach for a real
world application (next Section).

The first problem is to find those Ec C E(S) that do not cause ABORT UNDEF
operations (c.f. Section 3.2), since then IO statements are not executed at the
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client. Hence, such E¢ depend on the possibility to parallelize the code and to find
IO statements that can be executed independently at client and server (e.g. [17,
1]). Recall example in Section 1, where the identifiers for IO statements (E(S))
might be enumerated by the line of code they appear. Then, {5}, {1, 3}, {1, 3,5},
{1,3,5,8}, etc. are possible values for E¢ that do not cause ABORT UNDEF. But
{3} does, since the execution of 1 ¢ E¢ at the client (SELECT * FROM Session
WHERE id=sessionID ) would assign undef to the variable @session. Then the
execution of IF undef is not valid THEN .. is not defined and causes ABORT
UNDEF. We compute such E¢ by analyzing the procedure code at compile time.
Our method takes the program path, local variables and data access within the
code into account.

Once, such E¢ have been identified, the second problem is their appropriate
selection at run time. For different applications, hardware and load conditions,
each of them might lead to a different execution time and we are interested in
those E¢ that lead to a minimal execution time. In the following section we
show how different F- parameters affect the execution time.

4.2 Experimental Results

The application is a real world Internet shop with product groups (#814), prod-
ucts (#7386), a shopping cart, paying, etc. and business processes, such as login,
register, add-to-cart, buy, clear-shopping-cart, browse catalog, etc.

As typical for many medium-sized web applications it is running under
MySQL and PHP. Its architecture is depict at Figure 1. The database con-
sists of 26 tables and about 64MB table data (including media files). A library
LIB of business processes provides 195 PHP procedures for interacting with the
database, each having between 4 and 140 lines of code.

A user request of a HTML page is computed as follows: (1) a HTTP request
is send to the web server (2.0GHz CPU/1024MB RAM/Linux) which executes
appropriate PHP scripts that produce HTML and might call several procedures
S at the database server for handling the content of pages and updates on data,
(2) each S is executed at the database server (dual 1.4GHz CPU, 512MB RAM,
Linux) and passes results to the web server. Both machines are connected by a
100MBit network.

The web server is a client to the database server and is used for the parallel
cooperative execution of procedures. Thus, running a MySQL database for lo-
cally executing procedures. Since tables did not exceed 10.000 tuples and a size
of 20MB, we did not applied table fragmentation and placed full tables at the
web server, if required by the local execution.

‘We have chosen a subset of the procedures in LI B for testing our cooperative
parallel execution scheme. Some of the procedures could not be tested, since
they did not match to the restrictions of our update language (c.f. Section 2.1).
We manually derived its pre-compiled version and implemented the clients and
servers execution engine with PHP. Note that each PHP procedure is performing
SQL statements s by using an function mysql_exec(s). This function equals to
the concept of our eval(.) function. Hence, by replacing this function, we had
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only a little effort to integrate the clients and servers eval(.) functions. For each
pre-compiled procedure we considered all possible splits Ec C E(S).

For applying our execution scheme, step (2) is modified as follows: (2a) Once
the web server calls a procedure S, it is partially executed according to some
E¢ on the local database (c.f. Section 3.1) and query results are put into the
database servers cache. (2b) The database server in parallel executes S and
retrieves cached results (c.f. Section 3.2). The cache has been implemented as
a separate process at the database server that accepts results from clients and
retrieves the result whenever they are requested from executions at the server.

Within various experiments we measured the execution time of pre-compiled
procedures for different Fo under different load conditions. One of the pro-
cedures (AddCart) and its behavior has been introduced in Section 1. As the
experiments show, different load causes different E parameters to be the most
efficient. As a tendency we observed for the given application that the highest
improvement of the execution time results from splits F¢ that perform most of
the queries at the web server and therefore also put most of the tables at the
web server. One reason is that the web server could compute most of the queries
faster than the database server. The other reason is that queries could often be
executed in parallel to updates executed at the server (see example in Section
1).

Due to the fast computer and network hardware, the synchronization effort
for all tested E¢ was relatively low and did not meaningful influence the execu-
tion time. Similar behavior has been observed for 2 and 3 web servers.

Summarizing the experimental results we present in Figure 2 the improve-
ment of the execution time that has been achieved for pre-complied procedures.
It shows the total average over the execution time of all pre-complied procedures
before and after our execution scheme has been applied. The figure represents the

8
g

Server Load in
Procedure Calls
per Minute

Average Execution
Time over al
Proceduresin ms

3 8 13 18 28 4 9 14 19
Hour of the Day

Fig. 2. System Performance before and after applying our execution scheme.

systems changing load of a 48h cycle according to the user behavior (maximum
10 procedure calls per second). The peak at night results from computing daily
statistics. The curve after shows the execution time of those F¢x that perform
best for the given load. For all of those F¢ the amount of re-execution (in case
of erroneous client computations) was below 1%.

As a result we could show that a considerable speed-up is possible for the
given application, once the parameters E- have been set up properly.
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5 Related Work

In the area of relational databases, several techniques for client-side caching and
concurrency control has been proposed ([18,16,6]). The idea is that frequently
used data constitutes a form of dynamic data replication that adapts to the
clients interests. Those approaches are able to reuse locally cached data for
associate query execution. Allowing clients to perform local updates or even
the execution of full transactions imposes problems of client-side concurrency
control. Then appropriate techniques (e.g. two-phase locking) have to be applied.
In [6] a caching scheme has been combined with concurrency control techniques
(e.g. locks), such that a client is able to execute a full transaction. The drawback
of such a technique is that it requires a rather sophisticated concurrency control
that has to scale well even for a high number of clients and that takes into account
the unreliable nature of clients (e.g. disconnect from network, shutdown, etc.).

To avoid such problems we have proposed an optimistic approach where
clients are mot involved in concurrency control and where the server alone is
responsible for handling transactions. Further, clients are able to perform only
a part of a transaction locally. Hence, certain data (e.g. frequently updated
tables) need not be handled by clients and therefore safe communication and
synchronization effort. Optimistic approaches are also used for data intensive
mobile applications, e.g. [15,8,4].

6 Outlook and Future Work

We presented a framework that is able to balance the execution of procedures
between clients and a central server. Within a case study we demonstrated its
feasibility and showed that for a real-world application the parameters could be
set up accordingly, such that the execution time of procedures improves.

The main contributions of the paper are (a) a parallel cooperative execute
scheme for stored procedures that (b) provides split parameters E¢ for its con-
figuration to specific applications and load conditions.

However, there are some interesting and challenging tasks in order to fill the
remaining gaps. We outline them briefly. (1) In order to improve our data distri-
bution scheme, we should consider to integrate existing fragmentation (e.g. [13])
or client-side caching (e.g. [6]) techniques. (2) To cope with standard DBMS, the
proposed language for procedures must be extended by concepts, such as cursors,
sequences, triggers, etc. Also we plan to remove low-level updates, such that SQL
statements must not be replaced by a loop. (3) The most challenging problem
is to propose an run time optimization technique that automatically determines
the split parameters, hence, is able to adapt to changing load conditions. For
this we envisage genetic algorithms for non-stationary optimization problems
(e.g. [14,3,5]). (4) Continue the experiments in a multi-client environment.
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