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Abstract

In large integration projects one is often confronted with poorly documented databases.
One possibility to gather information on database schemas is to search for inclusion depen-
dencies (IND). These provide a solid basis for deducing foreign key constraints—as they are
pre-condition for potential (semantically valid but missing) foreign key constraints.

In this paper we present and compare several algorithms to identify unary INDs. The
obvious way is to utilize an appropriate SQL statement on each potential IND to test its sat-
isfiedness. We show that this approach is not efficient enough for large databases. Therefore,
we developed database-external approaches that are up to several magnitudes faster than
a SQL based approach. We tested our algorithms on databases of up to 3 GB with about
1200 attributes, which can be analyzed by our software in approximately 25 minutes.

1 Motivation

In large integration projects one often copes with undocumented databases. One important in-
formation about their semantic structure can be provided by foreign keys. Often these definitions
are incomplete, or simply not existing.

Especially in life science databases this is a huge problem. One example is the Protein Data
Bank1 (PDB), which can be imported into a relational database system using the OpenMMS
schema2: This schema defines 175 tables over 2705 attributes. It has primary key constraints—
but not a single foreign key constraint.

We want to identify inclusion dependencies (IND) as a pre-condition for foreign keys. In this
paper we describe algorithms for identifying unary INDs A ⊆ B, meaning all values of attribute
A are included in the bag of values of attribute B.

We use the term IND candidate for pairs of attributes previous to any tests. If an IND
candidate fulfills the IND definition we call it a satisfied IND, otherwise an unsatisfied IND. The
left hand side of an IND A ⊆ B is called dependent attribute, the right hand side referenced
attribute.

Another property of life science databases is that one cannot trust the defined data types. For
that reason we have to test all pairs of attributes as IND candidates, i. e., O(n2) tests if n is the
number of attributes. The number of IND candidates can be reduced by two simple restrictions:
The referenced attribute must be unique and the number of distinct dependent values must
be smaller or equal to the number of distinct referenced values. But both restrictions do not
decrease the problem complexity.

In our project Aladin we aim at Almost hands-off data integration of life science databases [3].
In a first step, data sources are imported into a relational database system. This step requires
manual support to transfer the data from whatever format into a relational schema. In a sec-
ond and third step we want to identify intra-schema relationships, such as primary and foreign

1http://www.rcsb.org
2http://openmms.sdsc.edu



keys. Furthermore we want to apply domain specific knowledge: Life science databases provide
usually information on one concept, e. g., proteines or genes. That is why the general structure
is based on one “primary relation” representing the objects generally and several “secondary
relations” providing additional information on these objects. The fourth step intends to identify
intra-source relationships between attributes or even objects of different databases. The fifth
step will be to find duplicate objects. Identified INDs help us in the third step to derive foreign
keys, which help to identify the primary relation, and to derive intra-source relationships in the
fourth step.

The efficiency of identifying INDs is crucial especially in the development phase of Aladin,
where several heuristics have to be applied and tested for their usefulness in the given context.
We tested a simple approach utilizing a join statement for each IND candidate on a 2.7 GB
fraction of the PDB consisting of 109 tables with 1576 attributes. This test did not finish within
seven days—which considerably impeded further development.

In this paper we present new approaches for testing IND candidates together with experimen-
tal results. In Section 2 we describe sql solutions, and in Section 3 two high-level algorithms.
Section 4 concludes and gives an outlook on future work. This paper is a summary of our
previous work [1] extended by an improved high-level algorithm.

2 Approaches using SQL

The most obvious way to identify INDs in a RDBMS is to utilize an appropriate sql statement
leveraging all optimizations implemented in the database system. In the following we provide
three sql statements—all computing the correct results—together with their experimental re-
sults.

2.1 Utilizing SQL Statements

The first statement utilizes a join statement (see Fig. 1). The idea is to join the attributes
and compare the number of joined tuples with the number of non-null tuples in the dependent
attribute. The IND candidate is satisfied iff both numbers are equal.

When looking closer at this statement one realizes that the statement actually computes too
much. The only necessary information is, is there one dependent value that is not included in
the referenced attribute’s values. Therefore, we formulated two further statements: The result
of the statement should only return tuples iff the IND candidate is not satisfied. Thus, we may
stop the computation after the first tuple in the result set using a TOP K sql construct.

select count(∗) as matchedDeps
from (depTable JOIN refTable
on depTable.depColumn = refTable.refColumn)

IND candidate is satisfied ⇔ |matchedDeps| = |non−null dependent values|

Figure 1: Statement utilizing join.

The minus statement given in Fig. 2 (a) substracts all referenced values from all dependent
values. Note that we had to use vendor specific constructs to stop the execution after the first
tuple in the result set. The idea of the not in statement in Fig. 2 (b) is to ask for all dependent
values that are not contained in the referenced attributes values.



select count(∗) as unmatchedDeps
from

(select /∗+ first rows (1) ∗/ ∗
from

(select to char(depColumn)
from depTable
where depColumn is not null

MINUS
select to char(refColumn)
from refTable)

where rownum < 2)

(a) Utilizing minus.

select count(∗) as unmatchedDeps
from

(select /∗+ first rows (1) ∗/ depColumn
from depTable
where depColumn NOT IN

(select refColumn
from refTable)

and rownum < 2 )

(b) Utilizing not in.

Figure 2: Statements intended to stop after first unmatched dependent item. Therefore, for
both statements holds: IND candidate is satisfied ⇔ |unmatchedDeps| = 0

2.2 Experiments

We tested all three statements on three life science databases: SCOP3 provides classified proteins.
It is available in four files containing table structured data, which we imported into relations.
UniProt4 is a database of annotated protein sequences. We used the BioSQL5 schema and parser
to import the data. The PDB is a large database of protein structures, which we imported using
the OpenMMS schema and parser (see Sec. 1 Motivation).

We run all tests on a Linux machine with 2 processors and 12 GB RAM. The results are
given in Table 1. The join statement is the fastest alternative, which is surprising because it
does not perform the early stop of computation. We believe the reason lies in the extensive
optimization of join operations in RDBMS. Furthermore, the implementation of the TOP K
constructs seems not to be merged with the inner query during query rewriting.

Despite this, all three statements where not applicable to test all IND candidates on a
database of the size of PDB: The join approach did not finish within seven days. The reason
for this runtime performance is twofold. First, all IND candidates are tested sequentially and
independently, such that necessary sort operations have to be computed several times. Second,
we cannot describe our problem exactly—all statements present just workarounds that cause
the database to compute too much.

SCOP UniProt fraction of PDB

# tables 4 16 109
# attributes 22 85 1576
DB size 17 MB 667 MB 2.7 GB

join 7.3 s 15 min 03 s > 7 days
minus 14.3 s 29 min 16 s -
not in 46 min 1 h 53 min -

Table 1: Experimental results utilizing SQL.

3http://scop.mrc-lmb.cam.ac.uk/scop
4http://www.pir.uniprot.org
5http://obda.open-bio.org



3 Approaches Using Order On Data

When looking at the problem at a higher level one realizes a rather simple approach: First, sort
all distinct values of each attribute using an arbitrary but fixed order. Second, scan linearly
through the ordered value sets of an IND candidate starting from smallest one while comparing
the values. Let dep be the current dependent value and ref be the current referenced value. We
have to distinguish three cases. (i) If dep = ref then move the scan pointer in both sets one
position further, because we found the current dependent value in the set of referenced values.
(ii) Otherwise, if dep > ref we can move the referenced pointer one position further—that way,
we look for the current dependent value in the following referenced values. (iii) In the third
case, dep < ref we can stop the computation, because the current dependent value is surely not
included in the set of referenced values. The IND is unsatisfied. To identify a satisfied IND we
have to scan all dependent values and find an equal referenced value.

To implement this approach we use the database to sort the data. Afterwards we ship the
data out of the database and write it to disk. The second step utilizes a database external
java program. It is not obvious if this approach outperforms the sql approaches, because of the
trade-off between the early stop of computation and shipping the data out of the database.

3.1 Brute Force Approach

A Brute Force Approach following the above algorithm tests all IND candidates sequentially. The
advantage over the sql approaches is first the early stop of computation if the IND candidate
is unsatisfied. This is a severe argument, because most IND candidates are unsatisfied and
therefore their tests stop after few comparisons. The second advantage is that the values of each
attribute are sorted only once.

A major disadvantage is the need to read several times over each attributes sorted values—
once for each occurence in an IND candidate.

3.2 Single Pass++

The Single Pass++ approach uses the advantages of the Brute Force Approach and eliminates
disadvantage of reading values multiple times. Therefore, all IND candidates are tested in
parallel. The challenge is to decide when the pointer for each attribute can be moved: A set of
current dependent values influences when a current referenced pointer is moved on. Vice versa,
a set of current referenced values influences when a current dependent pointer can be moved.
Despite this mutual dependency, it is possible to synchronize the pointer movements without
running into deadlocks or missing some IND candidate tests. This is founded on the fact that
we use sorted data sets.

We represent each attribute’s sorted values as an attribute object providing the values and
a pointer at the current value. Furthermore, it provides two roles—as dependent attribute
and as referenced attribute. The IND candidates are represented and handled by the role as
dependent attribute. Therefore, each attribute object stores, which referenced attributes form
IND candidates with this attribute object as dependent attribute. They are devided into two
lists depending on the fact if this current dependent value was already found in the referenced
attribute’s values (satisfiedRefs) or not (unsatisfiedRefs).

Given these attribute objects we can apply the following algorithm. Hold all attribute
objects in a sorted min-heap depending on their current value. The following procedure has to
be repeated until the heap is empty: Remove all attribute objects with minimal but equal values
from the heap and store them in a set Min. Then inform each dependent attribute object in Min
of each referenced attribute object in Min. This way, the dependent attribute objects can track,
which referenced attribute includes its current value and which not.



After this, test for all attribute objects in Min if there is a next value. If there is no next
value, output all INDs build of the attribute object as dependent attribute and all referenced
attribute objects in satisfiedRefs as referenced object. Otherwise, if there is such a next value,
then read it and update the lists satisfiedRefs and unsatisfiedRefs: Discard all attribute ob-
jects in unsatisfiedRefs, because they did not contain the previous dependent value; and move
all attribute objects from satisfiedRefs to unsatisfiedRefs as we have not yet seen the current
dependent value in them.

3.3 Experiments

We tested both approaches with the same test sets as the sql approaches on the same machine.
The results are given in Table 2 in comparison to the join approach results as it is the fastest
sql approach.

SCOP UniProt fraction of PDB

# tables 4 16 109
# attributes 22 85 1576
DB size 17 MB 667 MB 2.7 GB

join 7.3 s 15 m 03 s > 7 days
Brute Force 10.7 s 2 m 38 s 3 h 13 m
Single Pass++ 10.2 s 2 m 14 s 22 m 30 s

Table 2: Experimental results of approaches using order on data compared to the fastest SQL
approach (utilizing join).

We are able to test all IND candidates on the used fraction of the PDB with both approaches.
Thus, we achived a performance improvement of several magnitudes. In fact, the 22 minutes for
testing all IND candidates on the PDB fraction contain 18 minutes to sort the data, ship them
out of the database and store them to disk.

4 Conclusion and Outlook

We showed two general approaches for testing IND candidates. The database external ap-
proaches based on the order of data outperform the presented sql approaches. This is caused
by the fact that the problem of identifying INDs cannot be expressed exactly and therefore not
efficiently using sql. We implemented the approaches given by Bell and Brockhausen [2] and
De Marchi et al. [4] as both identify unary INDs exactly. Our high-level approaches outperform
both.

In future work we want to look at partial INDs for use on dirty data, multi-valued INDs and
complex INDs with concatenated attributes or value substrings.
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