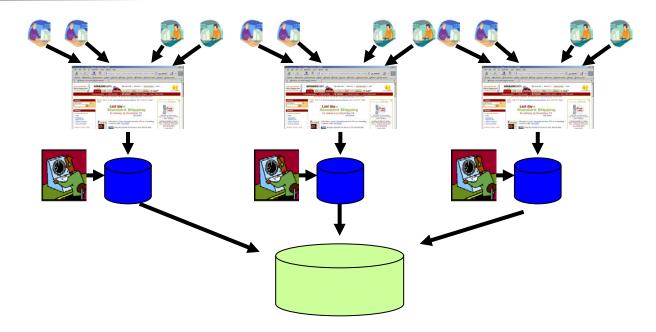

Data Warehousing und Data Mining

Architektur und Komponenten von Data Warehouses



Ulf Leser

Wissensmanagement in der Bioinformatik

Data Warehouse

- Redundante Datenhaltung
- DWH kann unabhängig von Quellen entworfen werden
 - Optimiert f
 ür andere Arten von Anfragen
- Quellen werden nur bei periodischen Uploads belastet
- Heterogenität muss beim Upload abgefangen werden

Inhalt dieser Vorlesung

- Definition & Einbettung
- Architektur & Komponenten
- ETL: Extraction, Transformation, Load

Definition DWH

 "A DWH is a subject-oriented, integrated, non-volatile, and time-variant collection of data in support of management's decisions" [Inm96]

Subj-oriented: Verkäufe, Personen, Produkte, etc.

– Integrated: Erstellt aus vielen Quellen

– Non-Volatile: Hält Daten unverändert über die Zeit

– Time-Variant: Vergleich von Daten über die Zeit

Decisions: Wichtige Daten rein, unwichtige raus

Geschichte von DWH

- Managementinformationssysteme (MIS),
 Decision Support Systeme (DSS),
 Executive Information Systeme (EIS)
 - Seit den 60er Jahren
 - Feste, programmierte Reports
 - Doppelte Datenhaltung teuer Downtimes für operative Sys.
 - Nur einfachste Analysemethoden (kein Data Mining ö.ä.)
 - Keine User-Interaktion, keine Ad-Hoc Queries
- Schattendasein

Erfolg von DWH

- Top-Thema seit Mitte der 90er Jahre
- Voraussetzungen
 - Extreme Verbilligung von Plattenspeicherplatz
 - Relationale Modellierung: Anwendungsneutral
 - IT in allen Unternehmensbereichen (z.B. SAP R/3)
 - Vernetzung und Standardisierung (SQL)
 - Trend zur rationalen Entscheidungsfindung im Unternehmen auf Basis aller verfügbaren Daten
 - Schnellere Rechner ermöglichen interaktive Anwendungen
- Aber
 - Vision der vollständigen Integration scheitert bisher (immer wieder aufs neue)
 - Soziale versus technische Aspekte

Betriebswirtschaftliche Sicht

Ein DWH

- Ermöglicht viele neue Fragen
- Verbessert viele Antworten erheblich
- ... durch ...
 - Direkter Zugriff auf integrierte Daten
 - Übergreifende, vergleichende, historische Analysen
 - Produkte, Niederlassungen, Kunden, ...
 - Bessere Datenqualität
 - Fehlerminimierung, Ergänzung, Plausibilitätschecks
 - Anreicherung mit externen Daten
 - Externe Kundenprofile, geographische Daten, ...

Informatische Sicht

Operative Systeme

- Kassensysteme, Bestellabwicklung, Lagerverwaltung
- Viele Benutzer, kurze Transaktionen, einfache Queries
- "Echtzeit"-Anforderungen
- Kurzes Gedächtnis
- OLTP (Online Transaction Processing)

DWH

- Sortimentplanung, Kapazitätsplanung, Marketing
- Wenige(r) Benutzer, komplexe Queries, nur lesend
- Zeitlich weniger kritisch
- Historische Daten
- OLAP (Online Analytical Processing)

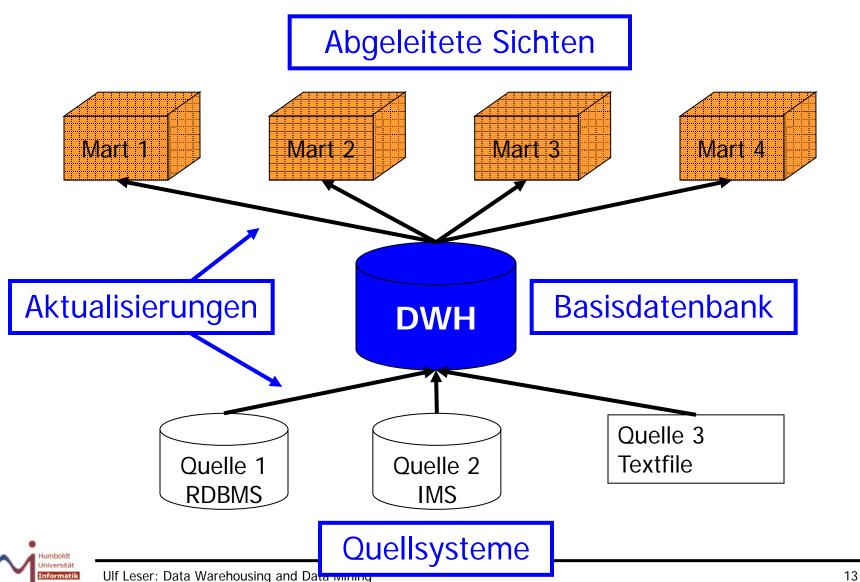
OLTP Beispiel

```
SELECT pw FROM kunde WHERE login="..."
    Login
              UPDATE kunde SET last acc=date, tries=0 WHERE
               COMMIT
              SELECT k id, name FROM kunde WHERE login="..."
Willkommen
              SELECT last_pur FROM purchase WHERE k_id=...
               COMMIT
              SELECT av_qty FROM stock WHERE p_id=...
Bestellung
              UPDATE stock SET av gty=av gty-1 where ...
              INSERT INTO shop cart VALUES( o id, k id, ...
               COMMIT
              DELETE FROM shop_cart WHERE o_id=...
              UPDATE stock SET av qty=av qty+1 where ...
Best. löschen
               COMMIT
```

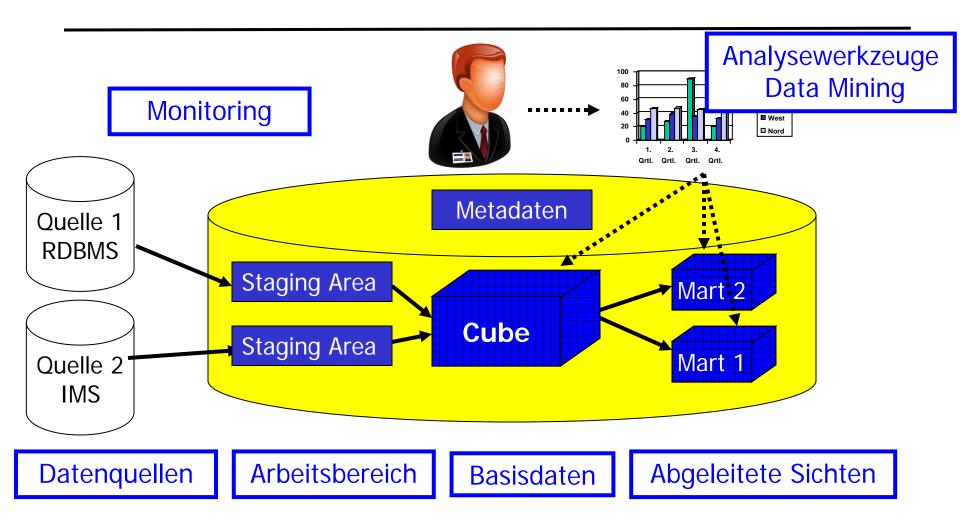

OLAP Beispiel

- Welche Produkte hatten im letzten Jahr im Bereich Bamberg einen Umsatzrückgang um mehr als 10%?
 - Welche Produktgruppen sind davon betroffen?
 - Welche Lieferanten haben diese Produkte?
- Welche Kunden haben über die letzten 5 Jahre eine Bestellung über 50 Euro innerhalb von 4 Wochen nach einem persönlichen Anschreiben aufgegeben?
 - Wie hoch waren die Bestellungen im Schnitt?
 - Wie hoch waren die Bestellungen im Vergleich zu den durchschnittlich. Bestellungen des selben Kunden in einem vergleichbaren Zeitraum?
 - Lohnen sich Mailing-Aktionen?
- Haben Zweigstellen einen höheren Umsatz, die gemeinsam gekaufte Produkte zusammen stellen?
 - Welche Produkte werden überhaupt zusammen gekauft und wo?

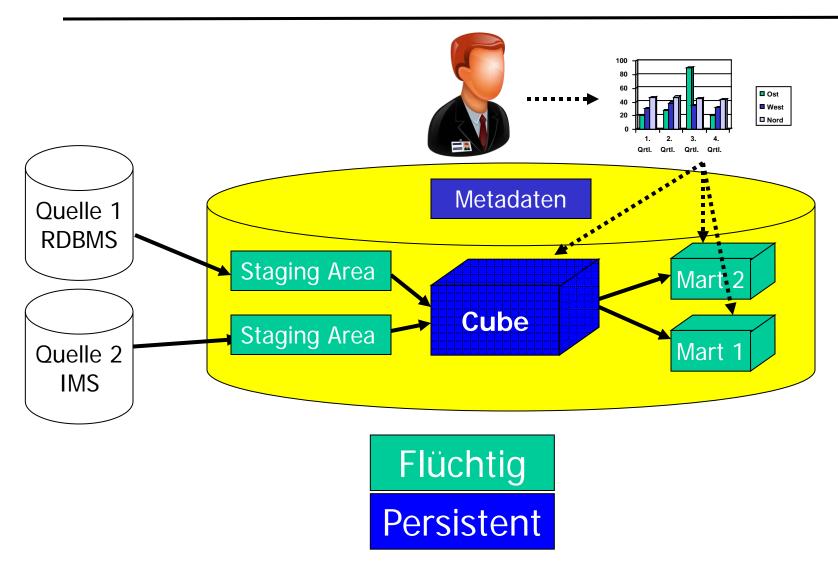
OLAP versus **OLTP**


	OLTP	OLAP
Typische Operationen	Insert, Update, Delete, Select	Select (Bulk-Inserts)
Transaktionen	Viele und kurz	Nur lesend
Typische Anfragen	Einfache Queries, Primärschlüsselzugriff, Schnelle Abfolgen von Selects/inserts/updates/ deletes	Komplexe Queries: Aggregate, Gruppierung, Subselects, etc. Bereichsanfragen über mehrere Attribute Aggregate mit komp. Rechnungen
Daten pro Operation	Wenige Tupel	Mega-/ Gigabyte
Datenmenge in DB	Gigabyte	Terabyte
Datenart	Rohdaten, häufige Änderungen, nur intern	Abgeleitete Daten, historisch & stabil, externe Daten
Erwartete Antwortzeiten	Echtzeit bis wenige Sekunden	I.A. nicht zeitkritisch (aber UI-Erlebnis)
Modellierung	Anwendungsorientiert	Themenorientiert
Typische Benutzer	Elektronische Systeme (Sachbearbeiter)	Management

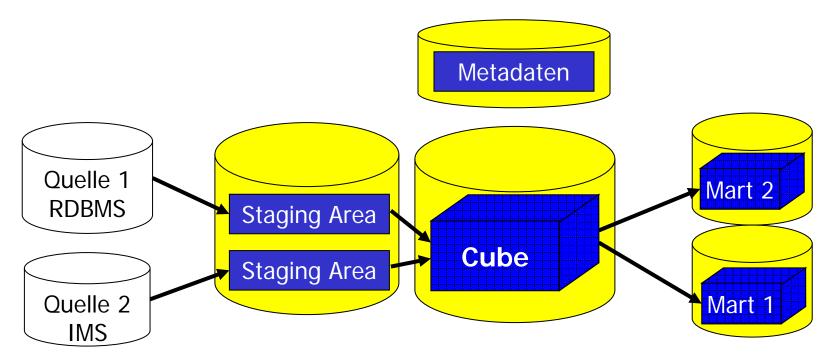
Inhalt dieser Vorlesung


- Definition & Einbettung
- Architektur & Komponenten
- ETL: Extraction, Transformation, Load

Grobarchitektur: "Hubs and Spokes"

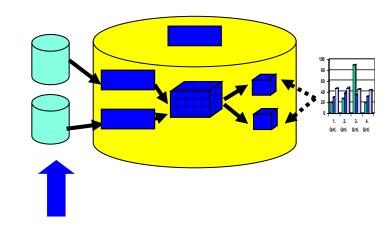


Verfeinerung: DWH Architektur

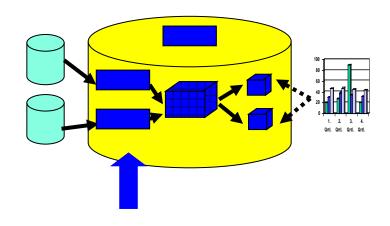

Langlebigkeit

Alternativen

- Physikalische Aufteilung variabel
 - Data Marts auf eigenen Rechnern (Laptop)
 - Staging Area auf eigenen Servern
 - Metadaten auf eigenem Server (Repository)

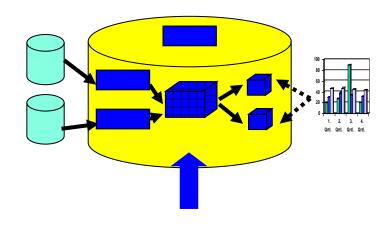


Datenquellen


Meist heterogen

- Technisch: RDBMS, IMS, Access Mainframe, COBOL, Textfiles, ...
- Logisch: Schema, Format, Repräsentation,...
- Syntaktisch: Datum, Währung, ...
- Rechtlich: Datenschutz (Kunden & Mitarbeiter)
- Zugriff
 - Push: Quelle erzeugt (regelmäßig) Extrakte
 - Pull: DWH fragt Änderungen ab
- Individuelle Behandlung notwendig

Arbeitsbereich

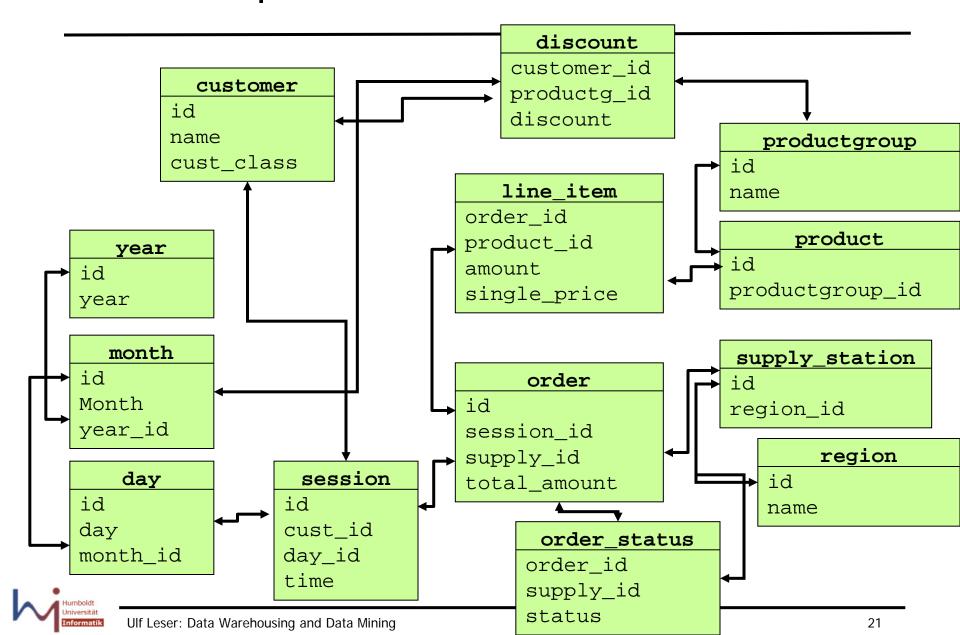


Temporärer Speicher

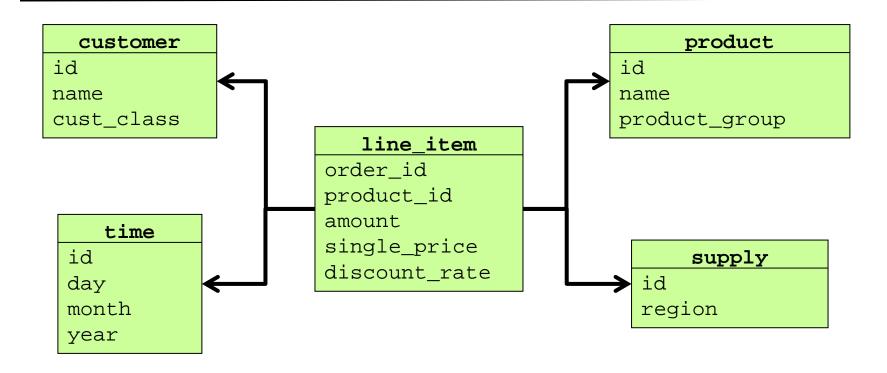
- ETL Arbeitsschritte effizienter implementierbar
 - Mengenoperationen, SQL
- Zugriff auf Basisdatenbank möglich
- Vergleich zwischen Datenquellen möglich
- Filtern: Nur einwandfreie Daten in Basisdatenbank übernehmen

Basisdatenbank (Cube)

- Zentrale Komponente des DWH
- Speichert Daten in feinster Auflösung
 - Einzelne Verkäufe, einzelne Bons, ...
- Historische Daten
- Große Datenmengen
 - Spezielle Modellierung
 - Spezielle Optimierungsstrategien

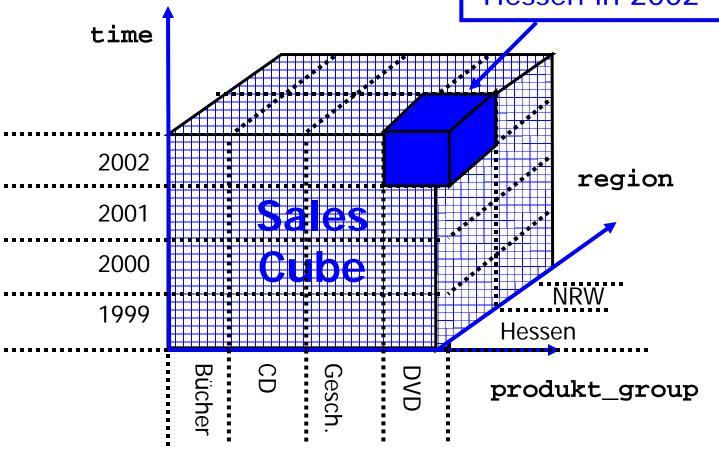


Analyseorientiertes DWH


- Klassische Datenmodellierung
 - Orientiert sich an technischen Anforderungen
 - Ziele: Redundanzvermeidung / Integritätswahrung / hoher Durchsatz bei nebenläufigem Zugriff
 - Normalformen, Fremdschlüssel, Satzsperren
 - Für Lesen und Schreiben geeignet
 - Viele Relationen, unübersichtliches Schema
 - Für Informatiker
- Im DWH: Multidimensionale Modellierung
 - Orientiert sich am Unternehmensziel
 - Ziel: Verbesserung des Geschäfts (Umsatz, Gewinn, ...)
 - Modellierung von "Business Entities" (Produkte, Kunde, …)
 - Read-only
 - Übersichtliches, leicht verständliches Modell
 - Für Nicht-Informatiker

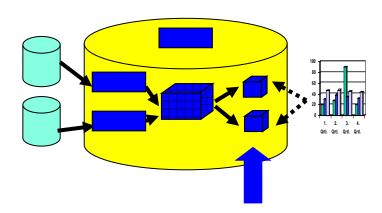
Beispiel: Normalisiertes Schema

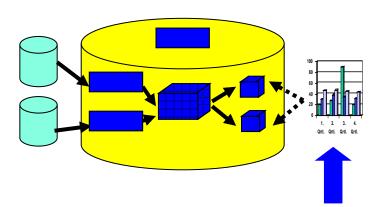
Multidimensionales Schema



- Technische Informationen raus (Session)
- Vereinfachung / Denormalierung (discount_rate)
- Fokus auf Verkäufe (line_item)

DVD Verkäufe in Hessen in 2002

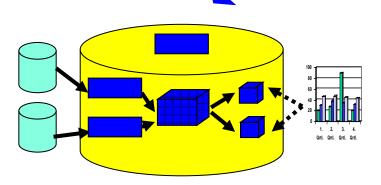



Abgeleitete Sichten

- Typische Anfragen auf Cube
 - Aggregiert und gruppiert
 - Verkäufe nach Monat und Lieferant
 - ... nach Niederlassung und Produkt
- Probleme bei Auswertung
 - Queries scannen sehr große Datenbestände
 - Hohe Detailstufe des Cubes für viele Anfragen nicht notwendig
- Vorhalten abgeleiteter Daten
 - Technisch: Materialisierte Sichten
 - · Prä-aggregiert, angereichert, gefiltert, automatisch aktualisiert
 - "Data Marts"

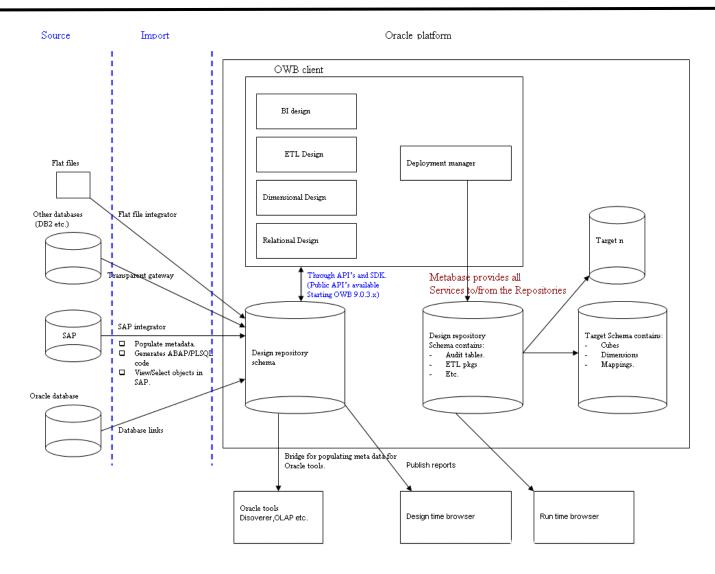
Datenanalyse

- Funktionalität
 - Grafische Oberflächen zur Navigation (Cube)
 - Interaktive Datenauswahl, Filtering, Chaining, ...
 - Präsentation: Grafiken, Tabellen, Reports, ...
 - Management: Zugriffsrechte, Scheduling, ...
- Standardreports versus Ad-hoc Anfragen
- Gutes UI verlangt sehr schnelle Antwortzeiten
- Viele kommerzielle Systeme
 - SAS, SPSS, BusinessObjects, Cognos, Excel, ...

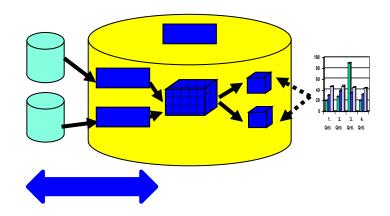


Data Mining

- "Finden verborgender, nicht-trivialer Informationen"
- Bereiche
 - Statistische Analyse
 - Maschinelle Lernverfahren
 - Knowledge Discovery in Databases (KDD)
- Suche nach Auffälligkeiten, Mustern, Regeln
 - Viele Kunden, die Windeln kaufen, kaufen auch Bier
- Suche nach Erklärungsmodellen
 - Modell: Abstraktion der Wirklichkeit
 - Korrelation versus Kausalität


Metadaten-Repository

- "... key success factor in DWH ..."
 - Quellbeschreibungen, Datentypen, Skripte, Prozessbeschreibungen, Schema, Zugriffsgruppen, Sichtdefinitionen, Versionskontrolle, Konfigurationsmanagement, ...
 - Erweiterung des klassischen DB-Systemkatalogs
- Ziele
 - Nachvollziehbarkeit der Prozesse
 - Zentrale Steuerung der Prozesse
- Standards: IRDS, OIM, CWM, ...



Oracle Warehouse Builder

Inhalt dieser Vorlesung

- Definition & Einbettung
- Architektur & Komponenten
- ETL: Extraction, Transformation, Load

ETL - Extraktion

- Filtern der "richtigen" Daten aus den Quellen
 - Korrekt und relevant (für das Ziel des DWH)
- Bereitstellung der Datenfiles im gewünschten Format zum gewünschten Zeitpunkt am gewünschten Ort
- Kontinuierliche Datenversorgung des DWH
- Producer Consumer
 - Quelle informiert über Änderungen
 - DWH konsumiert Änderungen

ETL - Transformation

- Transformation der Daten in eine "DWH-gerechte" Form
 - Schema, Format, Semantik
 - Laden soll so schnell wie möglich gehen
 - Erledigung vieler Teilschritte außerhalb des DWH
- Arten von Transformationen
 - Schema-/ Formattransformationen
 - Datentransformationen
- Transformationen möglich an zwei Stellen
 - Transformation der Quell-Extrakte in Load-Files
 - Transformation von Staging-Area nach Basis-DB

ETL - Laden

- Effizientes Einbringen der neuen Daten in das DWH
- Techniken
 - SQL Satzbasiert
 - Standardschnittstellen: Embedded SQL, JDBC, ...
 - Einzelne Operationen oder proprietäre Erweiterungen
 - Array Insert
 - Beachtung und Aktivierung aller Datenbankverfahren
 - Trigger, Indexaktualisierung, Transaktionen, ...
 - BULK Loader Funktionen
 - DB-spezifische Erweiterungen zum Laden großer Datenmengen
 - Benutzung von Anwendungsschnittstellen
 - Bei manchen Produkten notwendig (SAP)

Beispiel

Handelshaus, Daten	einer Woche,	1 Filiale
--------------------	--------------	-----------

Laden mit voller Qualitätskontrolle	10 min
Laden mit partieller Datenverbesserung	2 min
Nur Laden	45 sec

Handelshaus, Daten einer Woche, 2000 Filialen

Laden mit voller Qualitätskontrolle	330h = 14d
Laden mit partieller Datenverbesserung	67 h = 2.8d
Nur Laden	25h = 1d

