RDFMatView: Indexing RDF Data for SPARQL
Queries

Roger Castillo, Christian Rothe, and Ulf Leser

Humboldt Universtiy of Berlin
{castillo, rothe, leser}@informatik.hu-berlin.de
http://www.hu-berlin.de/

Abstract. The Semantic Web as an evolution of the World Wide Web aims to
create a universal medium for the exchange of semantically described data. The
idea of representing this information by means of directed labelled graphs, RDF,
has been widely accepted by the scientific community. However querying RDF
data sets to find the desired information often is highly time consuming due to
the number of comparisons that are needed. In this article we propose indexes
on RDF to reduce the search space and the SPARQL query processing time. Our
approach is based on materialized queries, i.e., precomputed query patterns and
their occurrences in the data sets. We provide a formal definition of RDFMatView
indexes for SPARQL queries, a cost model to evaluate their potential impact on
query performance, and a rewriting algorithm to use indexes in SPARQL queries.
We also develop and compare different approaches to integrate such indexes into
an existing SPARQL query engine. Our preliminary results show that our ap-
proach can drastically decrease the query processing time in comparison to con-
ventional query processing.

Key words: SPARQL, Indexing, RDF, Materialized views

2 Roger Castillo, Christian Rothe, and UIf Leser

1 Introduction

The Semantic Web as an evolution of the World Wide Web is an important initiative
which has recently gained momentum. It aims to create a universal medium for the ex-
change of data where data can be shared and processed by automated tools as well as by
people. The basis for this proposal is a logical data model called Resource Description
Framework (RDF) [1]. An RDF data set is a collection of statements called triples, of
the form (s,p,0) where s is a subject, p is a predicate and o is an object. Each triple
states the relation between subject and object. A set of triples can be represented as
a directed graph where subjects and objects represent nodes and predicates represent
edges connecting these nodes. The SPARQL query language is the official standard for
searching over RDF repositories [2]. It supports operations of triple patterns, similar
to select-project-join queries in relational databases. For instance, using the SPARQL
query in Listing 1 we can retrieve articles written by Albert Einstein from a local RDF
data store.

SELECT ?title WHERE {

?article <hasTitle> ?title .

?article <hasAuthor> ?author.
7author <hasName> ” Albert Einstein”.

}
Listing 1. SPARQL query to retrieve all articles written by Albert Einstein

Listing 1 illustrates a simple SPARQL query where each join is denoted by a dot. The
whole query pattern can be seen as a graph pattern that needs to be matched in the RDF
data set. Predicates may also contain, which increases the complexity of query evalua-
tion.

The increasing amount of RDF data on the Web requires the development of ap-
proaches for efficient RDF data management. Almost all recent implementations of
SPARQL are build upon relational databases (e.g. Jena [3], 3Store [4,5], or Sesame
[6]). In these systems, a SPARQL query is translated into one or more SQL queries
over a relational representation of the underlying RDF data set. This relational repre-
sentation usually stores RDF triples in one or a few tables. Consequently, answering a
SPARQL query consisting of more than one pattern requires the computation of roughly
as many joins as the query has patterns. Optimizing these joins is one of the critical is-
sues to obtain scalable SPARQL systems.

The typical architecture used by these approaches is shown in Figure 1. This architec-
ture is based on a 3-Layer schema which consists of the SPARQL query interface, the
RDF data representation and the underlying database.

In this work, we propose the use of materialized SPARQL queries to speed-up
queries. We target large data sets and SPARQL queries consisting of many basic graph
patterns. Examples of huge data sets are, for instance, the UniProt database containing
more than 600 million triples [7] or the W3C SWEO Linking Open Data Community
with more than 4 billion triples [8]. With such datasets, executing a query with many
graph patterns becomes a problem.

RDFMatView: Indexing RDF Data for SPARQL Queries 3

Execution Plan

Y

Execution of QEP

Interface

Query
Results

[]
Generation of :
ARQ Query Model .
]
]
1 _
.]
T Generation of Query 1
[]
[]
[]
[]
]

1
1
1
1
1
1
1
1
SPARGL '
1
1
1
1
1
1
1
1

1 SPARQL Query
1 Engine

Fig. 1. SPARQL Query Processing using a typical RDBMS - Backend Architecture.

SELECT * WHERE ({

?7s1 ?pl 70l

701 bif:contains “hexokinase”
7s1 <type> ?typel

?7sl <comment> ?commentl

?7s1 <label> ?labell

?7s1 <isA> ?s2

?7s2 <comment> ?comment2

?7s2 <label> ?label2 .}

Listing 2. Example SPARQL query. Information about Hexokinase enzyme [9]

Consider the query given in Listing 2, which a real-life query taken from [9] gath-
ering information about a certain enzyme from a database. Executing this query on a
conventional SPARQL processor will result in the computation of seven-way self-join
of the triple table. However, one can safely assume that the types, labels, and comments
of an object are used together very often. Therefore, we suggest to materialize this in-
formation by executing a query off-line and storing the results inside the system. Given
this materialized query, the query could be computed with only four joins.

In contrary to previous approaches which focus on indexing the relational represen-
tation of an RDF storage scheme, we fully exploit the RDF graph-structure for indexing.
We are not indexing single attributes or triples, but fractions of queries that occur fre-
quently in an expected workload. Therefore, our approach is a native RDF/SPARQL
indexing method whose concepts are viable for all possible implementations of RDF
stores. Such an approach requires solutions to a whole series of problems. First, queries
have to be materialized. Second, the query must be analyzed to identify all material-
ized queries that could be used, and especially to identify the best such query or best
combination of such queries that should be used. This requires complex query planning
algorithms and a cost model. Third, the query processing itself must be modified to be

4 Roger Castillo, Christian Rothe, and Ulf Leser

able to retrieve materialized results and to combine them with those parts of the original
query that are not covered by the indexes.
More formally, this paper presents solutions to the following problems.

— Generation of execution plans to cover a query. Given a query Q for a data graph G
and the set / of all indexes on G, the first step is to define which indexes are usable
for speeding up Q. To this end, we need to generate all possible mappings between
the index pattern and the query.

— Definition of a cost model to assess different query execution plans. Each plan dif-
fers from the others according to the parts of the query that are covered by indexes,
which in turn leads to different sizes of intermediate results and different parts of
the query that need to be executed and combined with the materialized parts. The
objective of the cost model is to assess all possible plans and to find those with
minimal estimated cost.

— Rewriting of a SPARQL query to substitute covered query patterns by RDFMatView
indexes. When a combination of RDFMatView indexes is selected, its materialized
results must combined to occurrences of the covered query pattern. There are two
different cases how this may happen:

1. The combination of indexes completely cover the query pattern. Thus, the so-
lution to the query can be generated completely by joining the indexes.

2. The combination of indexes only partially cover the query pattern. Then, the
query solution needs to be generated by joining the results of the chosen in-
dexes with the residual parts of the query pattern.

In this report, we present solutions to all of these problems. We first discuss related
work in Section 2. Section 3 introduces basic concepts of RDF and SPARQL. Section
4 presents the fundamental principles of RDFMatViews and a strategy to use them for
SPARQL query processing. Section 5 introduces the cost model used to evaluate dif-
ferent query plans. We describe different ways to introduce materialized queries into
an existing SPARQL processor in 6. Finally, we give an evaluation of our method in
Section 7 and conclude in Section 8.

We presented a theoretical framework for using materialized SPARQL queries as
indexes in [10]. In the present work, we show the practical applicability of this frame-
work by describing and comparing several ways to integrate materialized views into an
existing SPARQL query processor and by providing an evaluation on the speed-ups that
can be achieved using our methods.

Clearly, in a setting such as ours it is also important to provide algorithms to keep
materialized queries up-to-date, and to give a user hints on which queries should be
materialized to best (best in terms of space/cost-efficiency) support a given workload.
However, these questions are out-of-scope of our current research.

RDFMatView: Indexing RDF Data for SPARQL Queries 5

2 Related work

In this section, we discuss published techniques for indexing SPARQL queries and
contrast them to our work.

Most works focus on optimizing a single join. In [11] Abadi et al. propose a vertical
partition approach for Semantic Web data management. An enhancement of this ap-
proach is proposed by Weiss et al. in [12]. Therein, RDF data is indexed in six possible
ways, i.e., an index for each possible ordering of the three RDF elements. Each instance
of an RDF element is associated with two vectors; each such vector gathers elements of
one of the other types, along with lists of the third-type resources attached to each vector
element. This scheme is capable of speeding up single joins tremendously, but storage
requirements are very high, which becomes a serious issue when using huge data sets.
Neumann and Weikum developed RDF-3X, a SPARQL engine implementation pursu-
ing a RISC-style architecture — a streamlined architecture — with specific-designed data
structures and operations [13]. The authors overcome the “giant-triples-table” [11] bot-
tleneck by creating a set of indexes and a fast way pf processing merge joins. Similar to
[12], RDF-3X maintains all six possible permutations of subject, predicate and object
in six separate indexes. The authors also present a compression algorithm to alleviate
the problem of space consumption.

All these approaches have in common that they focus on single joins. When faced
with queries consisting of multiple basic graph patterns, they still have to compute
multiple joins (although every single join is faster). In contrast, our work specifically
targets the speed-up of complex queries consisting of many basic graph patterns.

There is also some other work that considers groups of patterns. In [14] the authors
present GRIN, a lightweight indexing mechanism for RDF data. The main idea is to
draw circles around selected center vertices in the graph where the circle would com-
prise those vertices in the graph that are within a given distance of the “center” vertex.
Basically, GRIN is a binary tree where the set of leaf nodes form a partition of the set
of triples in the RDF graph. An interior node implicitly represents the set of all vertices
in the RDF graph that are within a specific unit of distance. To evaluate a query, GRIN
derives a set of inequality constraints from the query. These constraints are evaluated
against the nodes of the GRIN index. A similar indexing approach is presented in [15].
This work proposes to create a set of indexes of precomputed joins using all possible
join combinations between triple patterns. As [14], this approach aims to create a gen-
eral purpose set of indexes based on joined triple patterns, but the number of indexes to
manage is not practical when the number of joined triples is >= 3.

The two systems just described index groups of and not just single triples. How-
ever, they propose to apply their techniques to all RDF triples, while we only build
user-chosen indexes. Our work fundamentally is based on the assumption that some
patterns are used together in queries more frequently than others, and that indexing
those combinations suffices to gain large speed-ups at manageable space and mainte-
nance cost.

One can best describe the differences between our ideas and that of other RDF
indexing schemes by drawing a parallel to B*-indexes in relational databases [16]. No-
body would sensibly suggest to speed up queries by indexing every attribute; instead,
systems assume that developers have a rough idea about the types of queries that need

6 Roger Castillo, Christian Rothe, and Ulf Leser

to be answered and therefore index only the relevant attributes. Furthermore, optimal
speed-up can only be achieved when also combinations of attributes can be indexed,
and not only single attributes. In this sense, the former approaches index every single
attribute, the latter indexes every possible combination of attributes, and we suggest to
index only selected combinations of attributes.

RDFMatView: Indexing RDF Data for SPARQL Queries 7

3 Preliminaries: RDF and SparQL

The SparQL query language has increased its popularity since it recently reached a
candidate recommendation of the W3C [2] for retrieving information from RDF [1]
graphs stored in semantic storage systems. We make the assumption that our audience
is familiar with RDF and SparQL. Thus, we only describe the most important terms
from this specification which are required for our project. For formal definition of these
concepts we refer the reader to the RDF specification [1].

An RDF graph is a set of RDF Triples, which in turn consist of RDF Terms. An RDF
Term consists of an IRL,' blank node or an RDF Literal. The set of all RDF terms is
denoted in this article as RDF-T. The building blocks of a SparQL query are triple
patterns. Triple patterns are basically RDF triples that can contain variables. A basic
graph pattern is made of a set of triple patterns. In the rest of this paper we will refer to

basic graph pattern as pattern.
JAlbert
Einstein®
ss“‘ame
hasAuthor
Nlels Bohr*

3,
% f _Robert
{g? Hooke“
<

S
%
4
@ hasAuthor

SN
\574,

6\?) fb@

%

Fig. 2. RDF data graph to process the SparQL query provided in Listing 1.

A
aslvaihe
hasAuthor
3

Listing 1 and Figure 2 give examples. Matching the query from Listing 3 against
the RDF dataset in Figure 2 returns the subgraphs shown in Figure 3. The final result
set, is a projection of the variable ?title of these subgraphs, i.e., “Article 17, “Article 2
“and “Article 4”.

?article <hasTitle> ?title .
7article <hasAuthor> ?author.
?7author <hasName> ” Albert Einstein”

Listing 3. SparQL query patterns of query in Listing 1

! Internationalized Resource Identifier

Roger Castillo, Christian Rothe, and Ulf Leser

s ~
Albert ™~ - ~
5 N
€y .
Wa 98 '

Fig. 3. Matching subgraphs of query patterns in Listing 3 over data graph in Figure 2.

RDFMatView: Indexing RDF Data for SPARQL Queries 9

4 The RDFMatView Approach

We propose the evaluation of SPARQL queries using other queries that were materi-
alized offline. We call those queries materialized queries. In this chapter, we formally
introduce all necessary concepts for this idea. Section 4.1 defines materialized queries
as indexes and shows how one can decide which of the existing indexes is suitable for a
given query. Those indexes are called eligible, and a set of eligible indexes can be com-
bined to cover a query completely or partly. Section 4.2 describes the algorithm which
produces all possible covers for a query given a set of indexes. An extensive example
to better explain our ideas is presented in Section 4.3.

4.1 Patterns, Mappings, Occurrences, Indices and Covers

Before we can define an index over RDF graphs we need to explain the concepts of
query pattern, mapping and occurrence of a pattern. Definitions 1, 2 and 3 introduce
these concepts respectively.

Definition 1 (Query Pattern). Let Q be a simple SPARQL query. Then, P(Q) denotes
its query pattern, which is the set of triple patterns in the body of Q.

Definition 2 (Mapping, total Mapping). Let P be a query pattern and Vp the set of
variables in P. A mapping is a function defined as follows:

S :Vp—>RDF-TUV
IfS(v) ¢ V forallv € Vp, then S is a total mapping.

Our notions of mappings and total mappings is based on the SPARQL-Standard [2]
and its definition of pattern solutions. However, while in the SPARQL standard such
solutions are only searched in the data graph, we also need to permit that variables
are mapped to other variables. This generalization allows us to search occurrences of
patterns in other patterns, in particular, occurrences of indexes in a query.

Definition 3 (Occurrences of a pattern). Let P, and P, be two query patterns. P oc-
curs in Py, denoted by P € P,, iff there is a mapping S such that S (P1) C P,. Such S
are called embeddings of Py in P».

When we speak about a concrete occurrence of an index pattern in a query pattern,
we will refer it to as an embedding (to contrast from the term occurrences, which we
from now on only use for matches of a pattern in the data graph). Figure 4 illustrates an
embedding of a pattern P in a pattern P;.

Using the previously introduced concepts, we can now define an index over an RDF
data graph.

Definition 4 (Indexes). An index I over a RDF data graph G is a pair I = (P,0),
where P represents a query pattern and O represents the set of all occurrences of P in
G. P is called the index pattern of 1. For an index I = (P, O), the size of I, written as
|P|, is the number of triple patterns in P. The frequency of I in G, written as #5(P), is
the number of occurrences of P in G.

10 Roger Castillo, Christian Rothe, and UIf Leser

Fig. 4. Pattern P, occurs in P, using mappings from ?name = ?uni_name and ?university = ub :
University

These notations are used for both indexes and queries, i.e., |Q| := |P(Q)| is the size
of a query Q and #5(P(Q)) is its frequency. From here on, the frequency will be denoted
as #(P), if the query and the data graph are clear from the context.

In our approach, indexes are defined offline, i.e., created by an administrator before
queries are executed. At query time, the system needs to determine which of the existing
indexes are useful for the given query Q. Clearly, only those indexes are candidates for
speeding up Q whose patterns are contained in P(Q), i.e., indexes which have an em-
bedding in Q. We call all such indexes eligible for Q. The following definition formally
captures this idea.

Definition 5 (Eligible Index). Let G be a data graph, J the set of indexes on G, and Q
a query against G. We call an index I € J eligible for Q iff P(I) & P(Q). The set of all
eligible indexes for query Q is denoted by J.

Definition 5 describes which indexes can be used to help processing a given query.
Note that an eligible index can be used in different ways to process a query if it has dif-
ferent embeddings. However, it would be even more advantageous if query processing
could use more than one index. The best situation occurs if the patterns of the different
indexes overlap (in a sense which will be clear in the following). Overlapping indexes
are good candidates for reducing query processing time because the query engine can
combine occurrences of these indexes and thus quickly generate solutions for larger
fractions of the query pattern.

We define two ways in which indexes can overlap. Two indexes overlap intension-
ally iff there could exist a triple pattern in which their materialization would overlap. In
contrast, two indexes overlap extensionally if their materializations overlap on a con-
crete data graph. Thus, intensional overlap relies only on the pattern of indexes and is
independent of a concrete data graph, while extensional overlap needs to consider the
actual data graph.

Definition 6 (Overlapping Indexes). Let I} = (P, 0;) and I, = (P, 05) be two in-
dexes over a data graph G.

— 1) and I, intensionally overlap iff there exists mapping functions S 1, S, such that

S1(P)NS(P) 0

RDFMatView: Indexing RDF Data for SPARQL Queries 11

— Iy and I, extensionally overlap in G iff
do; € 01,0, € Oy : 01 =02

However, when we want to use overlapping indexes for processing of a query Q,
we need to refine our definitions as the query strongly restricts the mappings we need
to consider.

Definition 7 (Overlapping Embeddings). Let I} = (P, Oy) and I, = (P,, 0;) be two
indexes over a data graph G. Let Q be a query over G with Py € Q and P, C Q, and
let my be an embedding of Py in Q and m; an embedding of P, in Q.

— my and my intentionally overlap in Q iff
mi(Pr) N my(P2) # 0
— my and my extensionally overlap in Q and G iff

m1(01) Nmy(0y) # 0

Computing intensional overlaps can be implemented efficiently as this property is
independent from the actual data graph (and updates to it). In contrast, computing ex-
tensional overlaps is costly as it requires execution of index queries and comparison of
their results on a given data graph. On the other hand, at query execution time informa-
tion about extensional overlaps would be more important than those about intensional
overlaps, as the latter is only a necessary yet not sufficient condition for the existence of
a concrete overlap given the query. Actually, if two embeddings intensionally overlap
in the query but do not extensionally overlap in the data graph, one can immediately
conclude that the query has no answer. However, for the rest of this work we only
consider intensional overlaps to avoid the costly pre-computation and maintenance of
extensional overlaps.

Using the notion of overlaps, we can finally define the cover of a query.

Definition 8 (Cover). Let Q be a query and E the set of all embeddings of eligible
indexes for Q in Q. Let C C Ey. Build a graph G¢ for C as follows: Each embedding
in C is represented as a node. Whenever two embeddings from C intensionally overlap
in Q, we add an edge to G¢ between the nodes representing the embeddings. Any C for
which G¢ has only one connected component is called a cover for Q.

We focus on covers with overlapping embeddings since they allow better estima-
tions of the cost savings that can be achieved with them (see next Section). Furthermore,
we are only interested in maximal covers, i.e., those covers which cannot be extended
further by adding new embeddings.

2 With slight abuse of notation. By m;(O;) we mean the projection of all occurrences in O, using
mi.

12 Roger Castillo, Christian Rothe, and UIf Leser

Definition 9 (Maximal Covers). Let Q be a query and C, , C, be two covers for Q.
C is subsumed by C, if C1 C C,. Any cover which is not subsumed by another cover is
called maximal.

In the following, we only consider maximal covers. We classify those into two dif-
ferent groups:

— A cover is complete if it covers all patterns of a query.
— A cover is partial if it is not complete.

Usually it is not possible to find a complete cover of a query. According to this, we
refer in the rest of this article to a partial cover as a cover.

4.2 Finding covers

Definition 8 is purely conceptual. We now show how we actually compute the set of
indexes and how we combine their embeddings to find all covers.

The first task is performed by a adaption of the classical algorithms for query con-
tainment of relational queries [17]. Essentially, we find all mappings between any index
pattern and the query pattern by enumerating all possible cases. If an mapping exists
then we can conclude that an index is eligible for that query and we store mapping as
an embedding. Note that, for a given index, there are potentially many different ways
to be eligible, i.e., different mappings between index and query patterns and therefore,
multiple embeddings. Algorithm 1 illustrates this process.

Algorithm 1 Pseudo code for SPARQL query containment. The algorithm computes
all embeddings of indexes in a given query.

Given: Query Q, set of indexes J
Returns: Set E of all embeddings
1: P(I), P(Q) {index and query patterns}
2: O = {Set of embeddings of P(I) in P(Q)}
3: Eg := 0 {Set of all embeddings}
4: for all Index / in J do
50 9 :=SIS(PU) = P(Q)
6 if O <> 0 then
7. EQ = EQ U D
8
9

end if
: end for

The core of algorithm 1 is line 5 which computes all embeddings of an index in
the query pattern. The implementation of this step is shown in in Algorithm 2 which
traverses a tree representing the search space of all possible mappings from the index
into the query. Each level in the tree contains all mappings for a specific triple pattern.
All mappings of a level in the tree are children of each mapping of the previous level.
In Line 12 we generate this tree and traverse it using backtracking in Line 13. During
the traversal, the mappings for the different triples are combined (if compatible) to

RDFMatView: Indexing RDF Data for SPARQL Queries 13

increasingly larger mappings. Whenever all triples of the index have been mapped to
the query pattern by one mapping, this mapping is added to the set of embeddings.

Algorithm 2 Pseudo code for searching all embeddings of an index in a query patterns.
It maps variables from the index to the query

Given: Query pattern P(Q), index pattern P(/)
Returns: 9, set of embeddings of P(I) in P(Q)

1: L, := 0 {Temporal list of occurrences of each index triple pattern in P(Q)}
2: L := ({Total list of ¢; occurrences in P(Q)}
3: for all Triple Pattern #; in P(I) do

4: for all Triple Pattern ¢, in P(Q) do

S: if f; occurs in 7, with mapping S then
6: L =L US

7 end if

8: end for

9: L:=LUL,
10: L =0
11: end for

12: occTree := createTree(L)
13: return O := traverseT ree(occTree)

Once we have all embeddings, we proceed to generate covers. To this end, we first
compute all mutual intensional overlaps between indexes and store them in a matrix. We
then incrementally build maximal covers by finding all maximal connected components
in this matrix.

4.3 Example

We illustrate all previously introduced concepts using a comprehensive example. Con-
sider the RDF data listed in Figure 5, the SPARQL query Q; shown in Listing 4, and
the two RDFMatView indexes I, I, from Listing 5 and 6, respectively.

SELECT * WHERE {
?university rdf:type ub:University;
ub:name ?university_name.
7ub_department rdf:type ub:Department;
ub:name ?ub_name_department;
ub:subOrganizationOf ?university

Listing 4. SPARQL query Q; computing universities and their departments
SELECT * WHERE ({

?place rdf:type ?place_type;
ub:name ?place_name.

Listing 5. RDFMatview /; computing places and their names

14 Roger Castillo, Christian Rothe, and UIf Leser

Fig. 5. RDF data set

SELECT * WHERE {

7ub_department rdf:type ub:Department;
ub:name ?ub_name_department;
ub:subOrganizationOf ?university;

7university rdf:type ub:University.

}

Listing 6. RDFMatview I, computing universities with their departments

Executing Q; on the data set in Figure 5 produces the result shown in Table 1.

Table 1. Result of Q.

Query Result Set

university university_name ub_department ub_name_department
Uni-1 HU dep-1 CS
Uni-1 HU dep-2 Math
Uni 2 TU dep-1 CS

Materializing /; and I, produces results as given in Table 2 and Table 3, respectively.
Both I, and I, are eligible for the query. Actually, /; is eligible in two different
ways, as it may either substitute the link between a university and its name or the link
between a department and its name. The three resulting embeddings are shown in Table

RDFMatView: Indexing RDF Data for SPARQL Queries 15

Table 2. Result of 7.

Index1
place place_type place_name

Uni-1 University HU
Uni_2 University TU

dep_-1 Dept CS
dep-2 Dept Math
dep_1 Dept CS

Table 3. Result of 1.

Index2

ub_department university ub_name_department
dep-1 Uni-1 CS
dep2 Uni_1 Math
dep_1 Uni_2 CS

4 and Table 5.

Table 4. Embeddings of I in Q.

Index Query
Embedding 1

Iplace = Tuniversity

type = ub:University
Iplace_name = Zuniversity_name
Embedding 2

Iplace = lub_department

Nype = ub:Department

Iplace_name = ?ub_name_department

The first embedding of index I; intensionally overlap with the embedding of index
12 in the triple pattern ?university rdf:type ub:University. Thus, these two embeddings
form a cover (in this case the only cover with more than one embedding).

Assume for now the RDF data would be stored in a RDBMS within a single triple
table, for instance, Triple(subj, prop, obj). Hence, the query in Listing 4 could be an-
swered by the SQL query described in Listing 7.

SELECT t1.subj AS a0, t2.obj AS al, t3.subj AS a2, t4.o0bj AS a3

16 Roger Castillo, Christian Rothe, and UIf Leser

Table 5. Embeddings of 1, in Q;.

Index Query

7ub_department = ?7ub_department
?ub_name_department = ?ub_name_department
Tuniversity = Tuniversity

FROM Triple AS t1, Triple AS t2, Triple AS t3,
Triple AS t4, Triple AS t5

WHERE t1.prop= ’type’ AND tl.obj= ’University ° AND
t2 .prop= ’'name’ AND t3.prop= ’type’ AND
t3.0bj= ’Department’ AND t4.prop= ’name’ AND
t5.prop= ’subOrganizationOf’ AND
tl.subj = t2.subj AND t3.subj = t4.subj AND
t3.subj = t5.subj AND tl.subj = t5.0bj;

Listing 7. SQL to answer the query from Listing 4

Listing 7 shows that four self joins are required. However, using the pre-computed
data for Index1 and Index2, one can answer the query with only one join, as shown in
Listing 8.

SELECT index2.university ,
index1.place_name AS university_name ,
index2 .ub_department,
index2.ub_name_department
FROM index1, index2 WHERE
index1.place = index2.university;

Listing 8. SQL representation of SPARQL query in Listing 4 using RDFMatView in-
dexes

This example illustrates that it may make sense to use materialized queries as in-
dexes to process SPARQL queries. Note that in this special example we can actually
answer the query only from the materialized query and thus do not need to access the
RDF database at all, because we query pattern can be completely covered. However, in
of complete cover exists, the results of a cover must be combined appropriately with
queries against the RDF database that compute results of those parts of the query that
are left uncovered. Section 6 will describe this process in detail.

RDFMatView: Indexing RDF Data for SPARQL Queries 17

5 Cost Model

In the previous sections we defined which indexes and which sets of indexes, i.e., cov-
ers, are eligible for a given query. At run time, the optimizer must choose between these
different options, or decide to execute the query without using indexes. This decision
should be taken based on the expected savings in time that the usage of one or more
indexes brings to query execution. In the following, we define a simple model for es-
timating these savings. This model implicitly makes a number of assumptions on the
data graph. For instance, we treat all triples of a pattern equally with respect to their ex-
pected numbers of matches, independent of whether or not the triple contains variables,
and independent of the real frequency of constants. These assumptions make the model
very simple and also allow us to estimate query costs without any detailed knowledge
of the underlying database. Clearly, finding more detailed cost models is an important
future work.

Our model estimates the cost of executing a query with zero, one, or more indexes.
Note that it is not the purpose of the model to directly estimate the necessary execution
time, as it depends on a multitude of factors which are extremely difficult to model (such
as processing strategy, size of data sets, hardware etc.). In contrast, our model only
aims at discerning good plans from bad plans; to this end, the estimated cost only must
correlate with the real time. We shall evaluate the quality of our cost model empirically
in Section 7.

Our model is based on the following fundamental observations. For each index [
that occurs in the query pattern, each occurrence of the query pattern in the data graph
must contain an occurrence of /. This leads to following facts:

1. It makes sense to prefer those indexes which have few occurrences because every
occurrence of an index must be validated to verify the possibility to extend it to an
occurrence of the query.

2. Itis reasonable to cover as much as possible from the query patterns. This process
reduces the number of query patterns that need to be evaluated against the data
graph. According to this, large index patterns are specially interesting.

We formally capture these observations in the definition of the selectivity of an
index. It defines the relation of the number of occurrences of an index in a given graph
to the possible total number of index occurrences in the graph. To calculate selectivity,
we need the size and the frequency of the index pattern as well as the size of the data
graph.

Definition 10 (Selectivity of an index). Let I be an index over a data graph G. The
selectivity s(I) of I is defined as:

_#D

S(I) = W

We derive our formula for estimating the selectivity of a set / of indexes from the
previous definition. To this end, we view [as the union of the patterns of the indexes
in [(similar to the union of RDF graphs, see [18]). Without further knowledge, the

18 Roger Castillo, Christian Rothe, and UIf Leser

selectivity of I is worse than the selectivity of all its indexes, because any occurrence
of one index potentially can be combined with any occurrence of all other indexes. The
leads to the following worst-case estimation for the selectivity of a set of indexes.

Lemma 1 (Selectivity of a set of indexes). Let G be an RDF data graph and 1 =
{h,....L,} with I; = (P;,0;),i = 1,...,n be a set of indexes over G. We define the selec-
tivity of I as:

"0
sel(l) = sel(l, N L,N...N1,) = _ 10

Proof. As any occurrence of one index in the worst case is combined with any occur-
rence of any other index, it follows that sel(]) < sel(l}) - - - sel(l,). Further, the size of
the index pattern of [is at least |P; LI ... U P,| > max {|Py], ..., |P,|}. Together, we have:

[Ti-, 10il [T, 104l
selli UL U---Ul)< —2"" < =17

O

Lemma 1 assumes that we do not have any information about relationships between
indexes of this set. However, we already defined ways in which indexes may overlap
(see Definition 6); furthermore, for query processing we restricted ourselves to cov-
ers, i.e., sets of overlapping embeddings (see Definition 7). Knowledge about overlaps
between embeddings allows for a more accurate estimation of the selectivity of a cover.

As explained in Section 4 intensional overlapping is only a necessary yet not suffi-
cient condition for the existence of a concrete overlap on the underlying query. Actually,
if two embeddings intensionally overlap in the query but do not extensionally overlap in
the data graph, one can immediately conclude that the query has no answer. Therefore,
there are two different cases which should be considered for the selectivity of a cover:
i) The embeddings overlap intensionally but not necessarily extensionally and ii) the
embeddings overlap intensionally and extensionally.

If embeddings overlap intensionally but not necessarily extensionally, selectivity
can be estimated similarly to selectivity of a set of indexes (see Lemma 1), since an
embedding can be seen as an instance of its underlying index. Thus, any occurrence of
one embedding in the worst case can be potentially combined with any occurrence of
any other embedding.

Lemma 2 (Selectivity of intensionally overlapping embeddings). Let G be an RDF
data graph, Q a query over G and m = {my, ..., my,} a cover of Q. Then, we can estimate
the selectivity of m as follows:

" 0,
sel(m) = sel(m; Nmy N ...Nmy,) = iz, m(O

For the second case, when the cover consists of intensionally overlapping embed-
dings that also overlap extensionally, we can sometimes use a stronger estimation:

RDFMatView: Indexing RDF Data for SPARQL Queries 19

Lemma 3 (Selectivity of extensionally overlapping embeddings). Let G be a data
graph , Q a query over G and m = {my,...,m,} a cover of Q. Assume that all pairs of
embeddings also mutually overlap extensionally. Then, we can estimate the selectivity

of m as follows:
min(jm(O0y)|, ..., Im(O,)])

sel(my, ...,m,) <

Proof. Because all pairs of embeddings overlap extensionally (see Definition 7), at most
min(lm(O)|, ..., Im(Oy)])
occurrences are selected.

However, as state previously, for this paper we only consider intensionally overlap-
ping embeddings. Thus, in the following we estimate the selectivity of a cover using
Lemma 2.

Having computed the selectivity of all maximal covers, the query optimizer must
determine which cover is the best for query processing. Assessing the cost of a cover is
not enough for this purpose, as we need to estimate the cost of a query given a cover.
We distinguish two cases: i) The cover completely covers the query, or ii) the cover only
partially covers the query. The first case is clear. The cost of a query given a complete
cover is the same as the estimated cost of the cover. The second case is more interesting
since the residual part of the query muss be taken into account. Note that this part
depends on the query, and therefore no offline estimations are possible.

We propose a cost model for this case which treats the residual part of the query as
an index. However, since we do not have any information about this part, we propose
to estimate the frequency of the pattern using the size of the pattern and the dataset.
The idea is to estimate the frequency of a pattern dividing the total number of triples
contained in the dataset between the number of triple patterns contained in the residual
part of the query. Assume an RDF dataset containing 150K triples and two patterns P;
and P, containing two and three triples respectively. The estimated frequencies for P
and P, are 75,000 and 50,000 respectively, which captures our expectation that a pattern
with more triples will have less matches. According to this we define the frequency of
a residual part of a query as follows:

Definition 11 (Frequency of the residual part of a query). Let G be an RDF dataset
and R a query pattern. The frequency #5(R) is defined as the ratio of the size of G and

the size of R.

_ 16l
#5(R) = R

According to Definition 10, the selectivity of an index is given by

Applying our definition of frequency of the residual part of the query into the above
model we obtain:

20 Roger Castillo, Christian Rothe, and UIf Leser

simplifying the equation, results in the following model:

Definition 12 (Selectivity of the residual part of a query). Let G be an RDF dataset
and R a query pattern. The selectivity of R is defined as:
1

S(R) = —————.
= kG

Finally, based on Lemma 2 and Definition 12 we define the estimated cost for a

SPARQL query given a cover as follows.

Definition 13 (Estimated cost for a query given a cover). Let Q be a SPARQL query,
C a cover of Q and R the residual patterns of Q, i.e., the triples from P(Q) not covered
by C. Then, we estimate the cost of execution Q using C as

c(Q,C) = sel(C) - sel(R)

RDFMatView: Indexing RDF Data for SPARQL Queries 21

6 Implementation

In this section, we describe how our approach can be integrated into an existing SPARQL
query processor. Such an integration touches upon several components of a system:
First, we need to be able to execute index queries and to store their results (plus some
metadata) persistently. To use indexes in query processing, we need to intercept the
query processor to, at the right point in time, search for an optimal cover. Finally, we
must change the way how queries are executed, as we need to divide the query pattern
into that part that is covered by the chosen cover - which is answered by retrieval of the
materialized information - and the rest of the query pattern. We present solutions to all
these steps for the ARQ system [19]. However, we want to stress that general process
would be the same for any other SPARQL query processors.

In this chapter, we first give some details on ARQ and Jena, its storage model. We
then provide a high level description of our approach. Next, we show how an index
is made persistent using a data dictionary for saving space. Finally, we describe three
ways in which query processing in ARQ can integrate materialized queries as indexes.
Those will be evaluated separately in the next chapter.

6.1 ARQ and the Jena Persistent Storage Schema

For our integration with ARQ we use the Jena persistence subsystem. This subsystem
implements the Jena Model interface using a back-end relational database engine. The
default Jena database layout uses a denormalized schema centered around a statement
table which essentially stores every RDF tripel as tuple. However, the values in the triple
can either be included as value, or they are stored in other tables. Specifically, short
literals are stored directly in the statement table, while long literals are stored in a literal
table. Similarly, short URIs are stored in the statement table and long URIs are stored
in a resources table. Table 6 and Table 7 describe the layout for those tables. Though
this scheme helps to reduce space requirements especially in the presence of long and
frequently used URIs or labels, it makes query processing more complicated as, for each
row in the statement table, one must decide at runtime whether the respective value can
be obtained directly or if a a join to another table is necessary. that it stores reified
statements in an optimized form. Recall that a reified statement is expressed in RDF as
four individual RDF statements. Storing this would require four rows in the standard
representation, while the reified statement table stores each statement in a single row.
For applications that use a large number of reified statements, the space savings can
be substantial. Additionally, Jena defines system tables to store meta data. For further
information we refer the reader to [3].

6.2 Implementation overview

We differentiate two phases. At offline-time, indexes are created, analyzed, and their
results are materialized. At query-time, queries are answered with the help of indexes.
We divide our description of our implementation according to these phases.

Index creation. Indexes are created offline. Upon creation of an index, the following
things happen. First, a new table is created which will store the materialized query. The

22 Roger Castillo, Christian Rothe, and UIf Leser

Table 6. Jena statement table for asserted (non-reified) statements.

Column Type Description

Subj Varchar not null Subject of asserted statement (ID or value)
Prop Varchar not null Predicate of asserted statement (ID or value)
Obj Varchar not null Object of asserted statement (ID or value)
Graphld Integer Identifier of graph (model) that contains

the asserted statement

Table 7. Jena long literals table storing literals that are considered as too long to directly be stored
in the statement table.

Column Type Description

Id Integer not null Identifier of long literal, referenced from the
statement tables
Head Varchar not null First n characters of long literal (encoded)

ChkSum Integer Checksum of tail of long literal
Tail Blob Remainder of long literal (long literal without
the head)

schema of this table is specific to the index query: Each different variable contained in
the index is represented as a field. Next, the query is executed, which leads to bindings
for those variables. These are stored in the respective fields (see Section 6.4). At the
end, every tuple in that table represents one result to the materialized query. During this
process, we also create a data dictionary which relates resource to unique identifiers
(see Section 6.3). We only store those IDs in the index tables; this scheme is similar to
the one used in Jena (see above), but we omit the costly choice between included and
external values. These steps are executed only once per index (recall that index updates
are beyond the scope of this work).

Index usage. At query-time, queries are analyzed and answered, possibly by using
one or more of the materialized indexes. This breaks down into the following steps:

1. Analysis of the query to find all maximal covers

2. Selection of the most suitable cover to answer the query given our cost model
3. Rewriting of the query using the chosen cover

4. Extension of the results of the cover to results of the query

Steps one and two were already discussed in Section 4. Here, we concentrate on
the third step, the query rewriting. Query rewriting can be performed in three different
ways: i) using only ARQ, ii) by translation into SQL and access to the Jena native
storage tables, and iii) by using a combination of ARQ and SQL. These different options
will be discussed in Section 6.5.

RDFMatView: Indexing RDF Data for SPARQL Queries 23

6.3 RDF Data Dictionary

As triples may contain long string literals, we generate a data dictionary that maps all
different RDF terms to a unique ID. This has two main benefits: 1) It decreases the
space requirements of indexes, and 2) it is a simplification for the query processor since
it will have to deal only with numerical values instead of string values. This makes a
difference as, depending upon the specific strategy for query processing chosen, values
might have to go back-and-forth between the database and the query processor. The
cost for this gains is that at the end of query evaluation, all IDs need to be translated
into the original values.
Listing 8 illustrates the schema of our RDF data dictionary.

Table 8. RDF Data Dictionary

Column Type Description

IDResource bigint not null Resource identifier (encoded)
Resource Varchar not null Original resource value

6.4 RDFMatView Index processing

Each index is materialized as a proper table in the underlying relational database. Its
schema is formed by the set of different variables contained in the index, regardless of
whether the variables are contained in the SELECT clause of the query or not. Occur-
rences of the index in the data set are stored as values for these fields. Each attribute of
one tuple represents a binding for the respective variable, which is represented as an ID
from the RDF data dictionary. An example is shown in Listing 9.

CREATE TABLE Index1 (
place bigint REFERENCES Dictionary_RDF (IDResource),
place_type bigint REFERENCES Dictionary_RDF (IDResource),
place_name bigint REFERENCES Dictionary_RDF (IDResource)
);
Listing 9. Materialization of the index from Listing 5 as RDFMatView index

During the processing of a SPARQL index we also calculate and store index prop-
erties, for instance size and frequency, which are used later to assess query execution
plans. This information is stored in a single metadata table.

6.5 Executing a query using RDFMatView indexes

Query processing using RDFMatViews indexes usually combines results of multiple
indexes. However, it is not always possible to cover all patterns of the query. The set
of uncovered patterns is referred to as residual part of a query. To completely answer
a query, it is necessary to extend the results of the selected indexes with the results for
the residual part of the query. We developed three different strategies to fulfill this task:

24 Roger Castillo, Christian Rothe, and UIf Leser

— Our first strategy uses ARQ to process the residual part of the query. RDFMatView
extends the results of the chosen cover by joining the partial solutions with the
solutions of the residual patterns.

— The second strategy is based on a SPARQL-to-SQL algorithm. The idea is to di-
rectly access the native Jena storage tables and to combine those results with the
index tables to generate the final result set.

— The last strategy is a combination of the previous two strategies, i.e. ARQ query
engine and database execution engine.

These strategies are explained in detail in the next sections.

Method 1: MatView-and-ARQ Engine

MatView-and-ARQ is a rewriting engine built on top of the Jena Framework. Given a
query and a cover, it computes the set of residual patterns of the query and uses ARQ to
execute this (sub-)query. Furthermore, it computes the result of the cover by joining the
respective index tables according to the variable mappings of the embeddings forming
the cover. Results are also joined with the data dictionary to obtain RDF values, and
finally joined to the result of the ARQ query to produce the complete answer to the
original query. This engine encapsulates the logic for the execution of the cover and
provides total independence from the underlying relational database system. Figure 6
illustrates the workflow of this engine.

Generation of
ARQ Query Model

.y RDFMatView Plan
w Generator

RDFMatView
Plan
h J
Residual RDFMatView Query
query pattern Rewriter Results
]
' ARQ Execution RDFMatView
] Engine Que
' yev
') RDF MatView
1 Residual Execution
1 query pattern
1 result set
1
' | ARC Query ARQMatView
' Engine Planning
[]
L L L e L L L
[

[
®
1
o
J
o
3
o
=
g
B3
o
-
o
M
o
a
o
@
I
o
§
%]
o
-
o
M
a
a
©
@
I

Fig. 6. Workflow of the query processing using Matview-and-ARQ.

RDFMatView: Indexing RDF Data for SPARQL Queries 25

Method 2: MatView-to-SQL Engine

MatView-to-SQL is a rewriting engine which, unlike our first method, translates the
residual part of the query into a SQL query on the Jena tables using an algorithm pro-
posed by Chebotko in [20]. The SQL query is executed by the RDBMS. The result set is
processed using our RDF Dictionary and finally combined with the results of the cover.
The complete query processing is performed inside the database execution engine using
a stored procedure. Figure 7 illustrates the workflow of this engine.

Jena Framework

L |
]
1]
Generation of P | RDF MatView Plan ' :
ARQ Query Model L Generator 1
]
:] RDFMatView : '
Plan '
1 ! N
1 ! (]
' : SPARQLS Mt " Query
1 oL | HatViEW e
' ! Translator AT a e
' 1 ! 1 @
- 1 : RDFMatView Rewriter (I |
1 (I |
: 1 ! N
' 1 : 1
' : 1 RDFMatView : '
Q L]
: (L] e [|
' ! [N
1 :ARO Query] : '
1 g Engine "1, SQLMatView Planning : :
']
]
n
]
]
1

Fig. 7. Workflow of the query processing using MatView-to-SQL

Method 3: Hybrid Engine

The third method is a mixture of MatView-and-ARQ and MatView-to-SQL. As in
Method 1, after rewriting the query, this engine transfers the residual patterns to the
query execution engine of ARQ. The second part of the process combines the results
of the residual patterns with the resulting set of the covered part of the query patterns.
However, contrary to Method 1, this engine is database-dependent since this task is per-
formed inside the database execution engine, as in Method 2. Figure 8 illustrates the
workflow of this engine.

26 Roger Castillo, Christian Rothe, and Ulf Leser

.]
- meEE e EEEEEEE- ---— e E E EEEEEEm-. 1
: ' 1 : [}
1 Generation of : 1 RDFMatView Plan : :
1 ARQ Query Model ! Generator '
] 1
1 [}
' ! RDFMatView 1
1 ! Plan "
: 1 ! Y L]
1
1 Residual ! 1 RODFMatView ' Query
query PE‘TEW: 1 Rewriter : : | Rosults
1 1
' ARQ Execution Ml 1@
: Engine 'L "
' 1 ! 1
' 1 : 1
[Residual : 5 : :
1 query pattern RDFMatView
1 result set : Query : :
, } ARQ Query 1 '
1 Engine 1 na
e S
.]
]
' RDBMS N
: Query '
y Jena Framework s '
1
L R e L L L L R I

Fig. 8. Workflow of the query processing using our hybrid engine.

RDFMatView: Indexing RDF Data for SPARQL Queries 27
7 Evaluation

In this section, we describe a preliminary evaluation of our approach using the Berlin
SPARQL Benchmark. This benchmark allows the creation of data sets with config-
urable sizes [21]. We generated five RDF datasets with sizes ranging from 250K to
25M triples and tested the respective impact of indexes using three queries from the
benchmark set. For each of these queries, we created a range of different indexes, lead-
ing to covers composed of one to three embeddings. Note that it is not our intention to
find the best set of indexes given a workload (which is generally called index selection,
see, e.g., [22-24]); instead, we want to study to which degree different indexes using
different processing schemes speed up the execution of queries. As SPARQL processor,
we use the ARQ/Jena RDF Storage System (version 2.5.7) on Postgres 8.2.

In the following, we first briefly introduce the Berlin SPARQL Benchmark. We then
describe the datasets and test queries as well as the indexes we used. Finally, we present
and discuss the results of our evaluation.

7.1 Berlin SPARQL Benchmark

The Berlin SPARQL benchmark is built on an e-commerce use case in which a set
of products is offered by different vendors and where consumers have posted reviews
about products [21]. The main classes of its schema are:

— Product Captures products with different sets of properties and features.

— ProductType Classifies products into a hierarchy.

— ProductFeature Represents product features for a specific product depending on
the product type. Each product type in the hierarchy has a set of associated product
features, which leads to some features being very generic and others being more
specific.

— Producer Represents the producer of products.

— Vendor Represents the supplier of products.

— Offer Describes an offer to a product.

— Person Captures all person-related information.

Review Provides ratings of a product.

The benchmark provides a data generator which supports the creation of arbitrarily
large datasets using the number of products as scale factor. Table 9 provides a detailed
description of the datasets using three different scale factors, and Figure 9 illustrates a
triple representation of the generated data.

The benchmark also defines a set of SPARQL queries to simulate a use-case driven
workload. This set emulates the search and navigation pattern of a consumer looking
for a product. Basically, the sequence of queries performs the following operations:

1. A consumer searches for products that have a set of general features.

2. From the returning set of products, the consumer has a better idea of what he wants
and restricts his search with more specific features.

3. The consumer starts to look at specific products and recent reviews for these.

28 Roger Castillo, Christian Rothe, and UIf Leser

4. To check the trustworthiness of the reviews, the consumer retrieves background

information about the reviewers.

5. The consumer decides which product to buy and starts to search for the best price
for this product offered by a vendor that is located in his country and is able to

deliver within three days.

6. After choosing a specific offer, the consumer retrieves all information about the
offer and then transforms the information into another schema in order to save it

locally for future reference.

These use cases are reflected by a total of 12 different queries.

Table 9. Berlin SPARQL benchmark. Scaling and dataset population. The number of products is

used as scale factor.

Number of Products 666 2,785 70,812
Number of RDF Triples 250,000 1,000,000 25,000,000
Number of Producers 14 60 1,422
Number of Product Features 2,860 4,745 23,833
Number of Product Types 55 151 731
Number of Vendors 8 34 722
Number of Offers 13,320 55,700 1,416,240
Number of Reviewers 339 1,432 36,249
Number of Reviews 6,660 27,850 708,120
Number of Instances 23,922 92,757 2,258,129
File size Turtle (unzipped) 22 Mb 86 Mb 2.1Gb

7.2 Dataset and queries

The performance of our solution is evaluated over five data sets containing 250K, 500K,
IM, 10M and 25M triples. As these data sets have identical value distributions but
different sizes, evaluation can fully concentrate on the scalability of our methods. Based
on their number of triple patterns, we chose three of the queries from the benchmarks set
for experimentation. We transformed the query patterns into simple graph patterns (the
only form of patterns our current implementation can cope with) and removed bindings
to variables. Bounded variables incur extremely high selectivity resulting in the retrieval
of only a handful of triples. Such queries are well supported by existing index structures
in RDBMS and do not require the type of join-optimization that is achieved with our
optimization technique; therefore, performance gains would be only marginal.
Our test queries are the following (see Appendix A.1 for full details):

— Query!: Finds a complete list of products with a set of generic features.
— Query?2: Retrieve all basic information related to the list of products.
— Query3: Retrieve in-depth information about products including offers and reviews.

RDFMatView: Indexing RDF Data for SPARQL Queries 29

O
"2008-02-20"

Fig. 9. Triple representation of the data set. Publisher and publication data are captured for each
instance by a publisher and a date triple.

The query patterns contain 5, 12 and 13 triple patterns and 6, 12 and 12 different
variables, respectively. Afterwards, based on the patterns of these queries, we generate
a set of 10 indexes. Indexes are constructed such that they often lead to covers contain-
ing a combination of indexes that do not cover the query entirely, since most real-life
SPARQL queries fit this case. Indexes were derived using the following rules:

1. Indexes must be completely subsumed by at least one test queries.

2. None of the indexes should completely cover any of the test queries (this case would
be trivial).

3. Indexes should have different embeddings that should be intensionally overlapping.

The size of the index patterns varies from 2 to 9 triples. As an example, indexes in
Table 10 were derived from Queryl. Appendix A.2 gives a complete description of all
indexes.

These indexes are designed not only to cover a part of the query, but also to generate
multiple embeddings in the query pattern by means of different mappings. The genera-
tion of such embeddings allows us to measure the performance of the query processing
when using the same participating indexes multiple times covering different parts of the
query pattern.

7.3 Experiments

In this section, we report the results of our experimental study with the data sets, queries
and indexes described in Section 7.2. We evaluated three queries on five different data
sets using our three RDFMatView methods and plain ARQ (without indexes), which
amounts to 45 different configurations. In this section, we refer to the different ap-
proaches to query execution as M1 for MatView-and-ARQ, M2 for MatView-to-SQL,

30 Roger Castillo, Christian Rothe, and Ulf Leser

Table 10. RDFMatView indexes derived from Queryl.

Index1: SELECT * WHERE ({

?product rdfs:label ?label ;

rdf : type ?ProductType ;

bsbm: productFeature ?ProductFeaturel . }
Index2: SELECT = WHERE {

?product rdf:type ?ProductType;

bsbm: productPropertyNumericl ?valuel .}

M3 for the hybrid approach, and ARQ for plain ARQ. We performed experiments using
the optimal cover and also evaluated the real and estimated costs of different covers for
the same query. Optimal covers were selected according to Lemma 2 (see Section 5).
All queries were executed 5 times and average execution times are reported.

Figure 10 illustrates the average processing times for each of the 45 configurations.
Clearly, processing time significantly improves when using MatView-and-ARQ (M1)
and Hybrid (M3). The improvements are the higher, the larger the database. Processing
time does not improve significantly when using MatView-to-SQL (M2). The reason for
this is the Jena native storage schema (see Section 6.1). Since the values are encoded
following the Jena layout, our process needs to parse the stored values and extract the
required information. This process must be performed for each value associated to an
exported variable of the query.

A comparison of real and estimated costs for different covers for Query1 and Query2
are shown in Figure 11 and Figure 13, respectively. Additionally, we analyze in Figure
12 and Figure 14 the relation between the estimated costs of a cover, the number of em-
beddings it contains and the number of covered and uncovered query patterns. In these
figures, covers are sorted descending order first by number of covered patterns, second
by number of participating embeddings and third by number of residual patterns. This
ordering allow us to verify the correlation between the estimated costs and the number
of covered patterns. It also evidences the influence of the number of participating em-
beddings and residual patterns in the query processing time. Note that Cover 6 in Figure
11 (for Query1) and cover 3 in Figure 13 (for Query?2) are those that our system selects
as optimal.

Figure 11 and Figure 13 show that the costs estimated by our cost model roughly
correlate with the real processing time. However, they also show that there is ample
room for improvements. For instance, our model does not yet reflect that using less in-
dexes is advantageous as this requires less joins at runtime; this fact is captured only
indirectly by our model as we concentrate on the number of covered patterns. Neverthe-
less, the results give evidence that our model helps in avoiding the usage of bad plans.
Actually all plans improve the total execution times when compared to those without
using indexes.

RDFMatView: Indexing RDF Data for SPARQL Queries

4,000
— Fs
§ 3,500 4
= 2,000 4 Ve
— E 2,500 - -\
[l 2,000 4 -
3 C ——
Cw 1,500 A
el 1,000 - = —x—ARQ
= 500 - [/
0 b — ¥
250k 500k ™ 10M 25M
—— M 447 613 1027 | 26413 |1,053.11
—= M2 | 1533 | 2188 | 4524 | 68986 |1,815.61
—k— M3 555 8.74 1169 | 341.82 |1,046.03
—x—ARQ| 56.83 84.85 165.73 |1,039.03|3,775.83
Data set size
(a) Processing times for Query1
2,000
’G"‘ *
]
= 1,500 1 e
=
&= —a— M2
% g: 1,000 M3
i ¥ *
2 500 4 / —x—ARQ
2
o /—”__-‘-/‘——/f_—:
0
250k 500k ™ 10M 25M
—a— 1.88 6.95 15.84 | 186.19 | 46619
M2 1312 | 2302 | 4866 | 503.74 |125889
—a— M3 1.65 216 343 5008 | 15352
—x—ARQ| 1083 | 1872 | 60.42 | 704.84 |1,850.18
Data set size
(b) Processing times for Query2
6,000
o
& 5000 - y
o —a— M1
o £ 4,000
bl —a— M2
o 3,000
= % —— M3
0 2,000
Q —x—ARQ
8 1,000 -
o 0 /A_r‘,_.’sl
250k 500k M 10M 25M
—e— 350 6.25 1756 | 24229 | 65810
—m—M2 | 1489 | 2834 | 6114 | 61428 |1,569.72
—a— M3 324 6.89 1281 | 24334 | 60440
—x—ARQ| 1107 | 3781 | 7345 |2437.18|4,817.24
Data set size

(c) Processing times for Query3

31

Fig. 10. Processing time for Queryl, Query2 and Query3 on five data sets using three rewriting

methods. M1: MatView-and-ARQ; M2: MatView-to-SQL; M3: Hybrid; ARQ: plain ARQ.

32 Roger Castillo, Christian Rothe, and Ulf Leser

1.00E+00 12000
1.00E-01
1.00E-02 -+ 10000
1.00E-03
1.00E-04 -+ 8000
1.00E-05
1.00E-06 —+ 6000
1.00E-07
1.00E-08 —+ 4000
1.00E-09
1.00E-10 T 2000
1.00E-11
1.00E-12 0
1 2 3 4 5 6 7 8

Estimated cost (lag)
Pracessing time (ms)

ith cover
—+— EstimatedCost ~ —W—Residualproc time —&— Cover proctime —<— TotalTime

Fig. 11. For Query1: Estimated cost, total real processing time, real processing time for retrieving
the materialized results, and real procesing time for computing the residual of the query. Values
are plotted on log-scale. Note that total real processing time virtually equals real processing time
for the covers for larger covers.

A more detailed evaluation can be performed analyzing Figure 12 and Figure 14.
Figure 12 illustrates that plans with fewer embeddings covering larger number of pat-
terns have a superior performance. Evidently, having fewer embeddings leads to less
time required to join partial results. At the same time, covers with small numbers of oc-
currences require less time to extend the partial results to results of the complete given
query (not visible in the figures).

In Figure 12, covers using 1 or 2 embeddings cover 2, 3 or 4 triple patterns. Covers
5 and 6 have the best estimated costs according to our model. This is reasonable since
these covers contain only one embedding and cover 3 out of 5 query patterns. However,
the residual part of the query (2 triple patterns) incur an undesirable overhead, which
is not yet properly reflected in our model (compare the runtimes in Figure 11). An
interesting fact can be observed for those covers covering larger patterns using two
embeddings (see covers 1, 2 and 3). These cases show the reduction of processing time
when joining two embeddings. At the end, more patterns are covered and the number
of patterns to match against the data set decreases. Though their cost estimation is
not the best, their processing times are significantly better than those of covers with
an estimated better cost. We attribute this behavior to the join (between embeddings)
and the processing of the residual part of the query which decreases the fewer are the
patterns.

Similar conclusions can be drawn by analyzing the results shown in Figure 13 and
Figure 14 for Query2.

As for Queryl, the estimated costs and the real processing time approximately cor-
relate as seen in Figure 13. Additionally, the graphic shows that the residual part of the
query should be considered as a deciding factor when selecting an optimal cover, since
residual processing time nearly spans the complete total processing time (notable es-
pecially with larger number of residual patterns. In the graphic, residual patterns range
from 3 to 10 patterns.). Figure 14 supports this conclusion showing the details for the

RDFMatView: Indexing RDF Data for SPARQL Queries 33

100E:00 4
1.00E01 1.
1.00E02
1.00E:03 { T2
1.00E-04
1.00E-05
1.00E-06
1.00E-07
1.00E-08
1.00E09
1.00E-10
1.00E11
1.00E12 0

Estimated ¢ ost(log)
Mumber of elerme nts

h cover

—n— EstimatedCost —+—#of Indices —8— Covered Fatterns —&— Residual patterns

Fig. 12. Estimated costs for each generated cover based on intensional dependency relation be-
tween indexes for Queryl. Costs are based on the cost model introduced in Section 5 and are
presented in relation to the size for each cover, number of participating embeddings and the size
of the residual part of the query(number of uncovered query patterns). This analysis shows the
influence of these elements in the selection of an optimal cover.

generated covers. Such covers contain up to 3 embeddings covering from 2 to 9 triple
patterns. The residual part of the query ranges from 10 to 3 triple patterns respectively.
It is also possible to observe that covering a larger number of query patterns using as
few embeddings as possible (reducing in this way the residual part of the query) de-
creases the real processing time. This factor, in addition to the estimated cost, provides
valuable knowledge to choose an optimal cover for a given query.

1.00E+01 10000000

100E02

100805 1000000

100608 N
@ ipoooo B
2 100811 =
g 100814 1womo E
= 100817 o
1E‘n 100820 1000 8
E 100E23 100 8

100828 T

10022 10

100822

100E35 1

1 -] 3 4 5 =
th cover
—4— EtimatedCost —8— Residual proctime —&— Cover proctime —s— TotalTime

Fig. 13. Estimated versus real cost for Query2. Estimated costs correlate with cover real process-
ing time however, residual processing time consumes most of the real processing time.

34 Roger Castillo, Christian Rothe, and Ulf Leser

1.00E401 12

1.00E02

1.00E05 110
5 1.00E-08 a
2 1.00E11 18 &
B 100514 s
8
T LO0E1T 18 =
T 1.00E-20 q]
E - E
= 100522 14 5
il =

1.00E-28 -

1.00E-23 -]

1.00E-22

1.00E-25 0

f : s ‘ f f
ith cover
—— EstimeiedCost —#—#of Indices ~ —@— Covered Fatterns —— Residusl patiems

Fig. 14. For Query 2: Estimated cost versus number of covered patterns and number of embed-
dings; for explanation, see Figure 12.

7.4 Current Limitations

Our current approach using materialized views as indexes for SPARQL queries has a
number of limitations:

— The WHERE-CLAUSE of a SPARQL query consists of a Basic Graph Pattern.
— Filters and modifiers are not considered.
— Blank nodes are not allowed.

In future work, we plan to extend our implementation, especially to allow the use of
filters and modifiers. The use of multiple basic graph patterns would also provide more
flexibility to create indexes.

RDFMatView: Indexing RDF Data for SPARQL Queries 35

8 Conclusions and future work

In this article we have proposed a novel method to speed-up the execution of SPARQL
queries. We introduced a logical and physical framework to answer a SPARQL query
using materialized views as indexes. At runtime, queries are analyzed to see whether
they can be executed by using one or more of those precomputed views. Experiments
have shown that the achievable performance gains are considerable. However, a closer
look also revealed that our cost model still can be improved. This, and the removal of
several technical limitations of our approach which restrict the types of queries it can
handle, will be the focus of our future work.

First, we defined an RDF data dictionary to identify all different resources. Second,
we preprocessed SPARQL queries materializing the result sets. Our approach indexes
not only RDF data but proposes a native SPARQL index method. The use of RDF-
MatView indexes minimizes query pattern comparison against the RDF data set. We
analyze query and index patterns to generate all covers for a SPARQL query and also
the rewriting of the latter to use indexes and get the final query result set. Even when the
execution time of our approach is higher than the execution time in ARQ, the processing
time significantly decreases using some strategies of our approach. It is important to no-
tice that execution time of our approach remains constant and depends only on the size
of the query pattern. Additionally, we analyzed and compared all generated covers. Our
results show that besides the costs, the number of indexes and size of a cover, as well as
the residual query patterns are determining to select an optimal cover. We restrict our
approach to execute queries containing only a basic graph pattern. In the future we will
continue working on the optimization of the query processing analyzing other storage
schemas as well as on the improvement of our algorithms for an optimal generation of
execution plans using more complex queries. Another interesting and promising topic
to extend our approach is index selection for SPARQL queries, i.e., given a workload of
SPARQL queries, perform a suggestion of which indexes should be built to efficiently
answer these queries.

36

Roger Castillo, Christian Rothe, and Ulf Leser

References

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

. Manola, F,, Miller, E.: RDF Primer (February 2004) W3C Recommendation.
. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (April 2008) W3C

Recommendation.

. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF storage and retrieval in

Jena2. In: Proc. First International Workshop on Semantic Web and Databases. (2003)

. Stephen Harris, N.G.: 3store: Efficient bulk rdf storage. In: Ist International Workshop on

Practical and Scalable Semantic Systems (PSSS’03). (2003)

. Harris, S.: Sparql query processing with conventional relational database systems. In: Inter-

national Workshop on Scalable Semantic Web Knowledge Base System. (2005)

. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for storing

and querying rdf and rdf schema. In: International Semantic Web Conference. (2002) 54-68

. Dataset, U.R.: http://dev.isb-sib.ch/projects/uniprot-rdf/
. Project, W.S.C.: Linking open data on the semantic web.

http://esw.w3.org/topic/sweoig/taskforces/communityprojects/linkingopendata/

. Bio2RDF. http://bio2rdf.org/ (2009)
. Heese, R., Leser, U., Quilitz, B., Rothe, C.: Index support for sparql. European Semantic

Web Conference, Innsbruck, Austria (2007)

Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data man-
agement using vertical partitioning. In: VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, VLDB Endowment (2007) 411-422

Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data
management. Proc. VLDB Endow. 1(1) (2008) 1008-1019

Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf. Proc. VLDB Endow. 1(1)
(2008) 647-659

Udrea, O., Pugliese, A., Subrahmanian, V.S.: Grin: A graph based rdf index. In: AAAIL
(2007) 1465-1470

Groppe, S., Groppe, J., Linnemann, V.: Using an Index of Precomputed Joins in order to
speed up SPARQL Processing. In Cardoso, J., Cordeiro, J., Filipe, J., eds.: Proceedings
9th International Conference on Enterprise Information Systems (ICEIS 2007 (1), Volume
DISI), Funchal, Madeira, Portugal, INSTICC (June 12 - 16 2007) 13-20

Connolly, T.M., Begg, C.E., Strachan, A.D.: Database systems: a practical approach to de-
sign, implementation and management. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA (1996)

Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10(4) (2001)
270-294

Patrick Hayes, B.M.: Rdf semantics (February 2004) W3C Recommendation.

ARQJena: Arq - a sparql processor for jena. http://jena.sourceforge.net/ARQ/ (2010)
Chebotko, A., Lu, S., Jamil, H.M., Fotouhi, F.: Semantics preserving sparql-to-sql query
translation for optional graph patterns. Technical report, Department of Computer Science,
Wayne State University (2006)

Bizer, C., Schultz, A.: The berlin sparql benchmark. International Journal On Semantic Web
and Information Systems - Special Issue on Scalability and Performance of Semantic Web
Systems, 2009 (2009)

Comer, D.: The difficulty of optimum index selection. ACM Trans. Database Syst. 3(4)
(1978) 440445

Caprara, A., Fischetti, M., Maio, D.: Exact and approximate algorithms for the index se-
lection problem in physical database design. IEEE Transactions on Knowledge and Data
Engineering 7(6) (1995) 955-967

RDFMatView: Indexing RDF Data for SPARQL Queries 37

24. Chaudhuri, S., Narasayya, V.R.: An efficient cost-driven index selection tool for microsoft
sql server. In: VLDB *97: Proceedings of the 23rd International Conference on Very Large
Data Bases, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1997) 146-155

38 Roger Castillo, Christian Rothe, and Ulf Leser

A Appendix: Queries and indexes

A.1 Queries
All queries and indexes use the following namespaces:

PREFIX bsbm-inst:<http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>
PREFIX bsbm:<http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

Query 1

SELECT * WHERE {
?product rdfs:label ?label .
?product a ?ProductType .
?product bsbm:productFeature ?ProductFeaturel .
?product bsbm:productFeature ?ProductFeature2 .
?product bsbm:productPropertyNumericl ?valuel .

Query 2

SELECT * WHERE {
?product rdfs:label ?label .
?product rdfs:comment ?comment .
?product bsbm:producer ?p .
?p rdfs:label ?producer .
?product dc:publisher ?7p .
?product bsbm:productFeature ?f .
?f rdfs:label ?productFeature .
?product bsbm:productPropertyTextuall ?propertyTextuall .
?product bsbm:productPropertyTextual2 ?propertyTextual2 .
?product bsbm:productPropertyTextual3 ?propertyTextual3 .
?product bsbm:productPropertyNumericl ?propertyNumericl .
?product bsbm:productPropertyNumeric2 ?propertyNumeric2 .

Query 3

SELECT * WHERE {
?product rdfs:label ?productLabel .
?offer bsbm:product ?product .
?offer bsbm:price ?price .
?offer bsbm:vendor ?vendor .
?vendor rdfs:label ?vendorTitle .

RDFMatView: Indexing RDF Data for SPARQL Queries 39

?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#DE> .
?offer dc:publisher ?vendor .
?offer bsbm:validTo ?date .
?review bsbm:reviewFor ?product .
?review rev:reviewer ?reviewer .
?reviewer foaf:name ?revName .
?review dc:title ?revTitle .
?review bsbm:ratingl ?ratingl

}
A.2 Indexes
Index 1

SELECT * WHERE {

?product rdfs:label ?label ;
rdf:type ?ProductType ;
bsbm:productFeature ?ProductFeaturel .
}
Index 2

SELECT * WHERE {
?product a ?ProductType .
bsbm:productPropertyNumericl ?valuel .

Index 3

SELECT * WHERE {
?product bsbm:producer ?p .
?p rdfs:label ?producer .
?product dc:publisher ?p .
?product bsbm:productFeature ?f .

Index 4

SELECT * WHERE {
?product bsbm:productFeature ?f .
?f rdfs:label ?productFeature .

40 Roger Castillo, Christian Rothe, and Ulf Leser

Index 5

SELECT * WHERE {
?product rdfs:label ?label .
?product rdfs:comment ?comment .
?product bsbm:producer ?p .
?p rdfs:label ?producer .
?product dc:publisher 7p .
?product bsbm:productPropertyTextuall ?propertyTextuall .
?product bsbm:productPropertyNumericl ?propertyNumericl .

Index 6

SELECT * WHERE {
?product rdfs:label ?productLabel .
?offer bsbm:product ?product .
?offer bsbm:price ?price .
?7offer bsbm:vendor ?vendor .

Index 7

SELECT * WHERE {
?product rdfs:label ?productLabel .
?review bsbm:reviewFor ?product .
?review rev:reviewer ?reviewer .
?reviewer foaf:name ?revName .
?review dc:title ?revTitle .

Index 8

SELECT * WHERE {
?offer bsbm:product ?product .
?offer bsbm:price ?price .
?offer bsbm:vendor ?vendor .
?vendor rdfs:label ?vendorTitle .
?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#DE> .
?offer dc:publisher ?vendor .
?review bsbm:reviewFor ?product .
?review rev:reviewer ?reviewer .
?reviewer foaf:name ?revName .

RDFMatView: Indexing RDF Data for SPARQL Queries

Index 9

SELECT * WHERE {
?review bsbm:reviewFor ?product .
?review dc:title ?title .
?review rev:text 7text .

Index 10

SELECT * WHERE {
?review bsbm:reviewFor ?product .
?review bsbm:ratingl ?ratingl

41

