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prolog
(1 VL)

Introduction: languages and their aspects, modeling vs. 
programming, meta-modeling and the 4 layer model

0.
(2 VL)

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description, 
features, p2-repositories, RCPs

1.
(2 VL)

Structure: Ecore, genmodel, working with generated code, 
constraints with Java and OCL, XML/XMI

2.
(3 VL)

Notation: Customizing the tree-editor, textural with XText, 
graphical with GEF and GMF

3.
(4 VL)

Semantics: interpreters with Java, code-generation with Java and 
XTend, model-transformations with Java and ATL

epilog
(2 VL)

Tools: persisting large models, model versioning and 
comparison, model evolution and co-adaption, modular 
languages with XBase, Meta Programming System (MPS)

Agenda
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Eclipse/Eclipse-Plug-ins – Agenda

▶ Eclipse

▶ OSGi and Equinox

▶ Plug-in Architecture

▶ Eclipse Platform (a.k.a Existing Plug-ins)

▶ Plug-in Development Environment (PDE)

▶ Plug-in Distribution Options
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Eclipse
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Eclipse – History

▶ Eclipse started as a proprietary IBM product (IBM Visual age for 
Smalltalk/Java).

▶ Eclipse is open source - it is a general purpose open platform that 
facilitates and encourages the development of third party plug-ins.

▶ Eclipse is best known as an Integrated Development Environment 
(IDE).

▶ Eclipse was originally designed for Java, now supports many other 
languages.

■ C, C++, Python, PHP, Ruby

■ XML, HTML, CSS

■ ant, maven, and many more
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Original Eclipse Project Aims

▶ Provide open platform for application development tools

■ Run on a wide range of operating systems

■ GUI and non-GUI

▶ Language-neutral

■ Permit unrestricted content types

■ HTML, Java, C, JSP, EJB, XML, GIF, …

▶ Facilitate seamless tool integration

■ At UI and deeper

■ Add new tools to existing installed products

▶ Attract community of tool developers

■ Including independent software vendors (ISVs)

■ Capitalize on popularity of Java for writing tools



What is Eclipse, what is an IDE

▶ In this lecture we manly see eclipse as an IDE.

▶ Programming requires the use of many tools:

■ editors (vim, emacs)

■ compilers (gcc, javac)

■ code analyzers (lyn)

■ debuggers (gdb, jdb)

■ build-tools (make, ant, maven)

■ version control (cvs, svn, git, ClearCase)

▶ IDEs integrate those tools into a single coherent environment. 

■ one rich graphical user interface

■ one configuration scheme

■ The different tools are integrated with each other.
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Eclipse Versions

▶ download: http://www.eclipse.org/downloads/

▶ Eclipse 3.x releases are: Callisto, Europa, Ganymede, 
Galileo, Helios, Indigo (3.7, latest)

▶ Eclipse 4.x releases are: Juno (4.2), Kepler (4.3), Luna (4.4, 
current) 

▶ There is a 32- and 64-bit version for Windows, MacOS, 
and Linux/Unix. 

▶ Eclipse is Java-based but uses SWT, a GUI-toolkit with platform 
specific versions. 

▶ There are different packages (different collections of plug-ins) for 
different use-case. For this lecture Eclipse Modeling Tools has most 
needed plug-ins pre-installed.
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Eclipse Vocabulary (I)

▶ Workbench, Perspective, Editor, View

▶ Project

■ organizational unit for your work

■ corresponds to a folder on your hard-drive, by default in the workspace 
directory

■ is a resource

▶ Project Properties

■ project specific configuration
allows to create project specific settings for large parts of the preferences

▶ Project Nature

■ e.g. Java Project, EMF-Projects, xText-Project

■ determines project properties, build-process, specific sub-folder types (e.g. 
source-folder)
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Eclipse Vocabulary (II)

▶ Resource

■ generic term for folders, files, and sometimes file-like (virtual 
resources) entities

▶ Preferences

■ eclipse wide configuration organized by plug-ins

▶ Launch-configuration

■ e.g. Java Application, RCP/Eclipse Application

■ used to Run, Debug, Profile
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Eclipse Books/Resources
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Lars Vogel: http://www.vogella.com/tutorials/eclipse.html
Eclipse: http://help.eclipse.org/ (PDE Dev. Guide)

http://www.vogella.com/tutorials/eclipse.html
http://www.vogella.com/tutorials/eclipse.html
http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/guide/int.htm?cp=2_0_0
http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/guide/int.htm?cp=2_0_0


Eclipse Plug-ins Vocabulary

▶ OSGi, Equinox

■ Open Service Gateway initiative (OSGi) specification

■ modular system and service platform

■ dynamic component model

■ Equinox is one implementation of OSGi

▶ Bundle, Plug-in, Feature, Application

▶ Dependency, Extension, Extension-point

▶ Plug-in Development Environment (PDE)

▶ PDE-project

■ special Java-project nature

■ contains manifest and plugin.xml
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Eclipse Architecture (I)

Java VM
Standard Java2
Virtual Machine 

PlatformEclipse Platform

Java development
tools (JDT)

JDT

PDEPlug-in development
environment (PDE)

▶ Eclipse is a universal platform
for integrating development tools

▶ Open, extensible architecture based on plug-ins
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Eclipse Architecture (II)
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Eclipse RCPs – Examples
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Eclipse RCPs – Examples
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Eclipse RCPs – Examples
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Summary

▶ Eclipse is an extendable IDE

▶ Eclipse is a collection of Eclipse Plug-Ins (and Features, and 
Applications, etc.)

▶ Eclipse is a Platform to build Rich Clients (RCP)
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OSGi / Equinox
▶ Thomas Watson, Peter Kriens: OSGi™ Component 

Programming (EclipseCon, 2006) 
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What is the OSGi service platform?

▶ A Java™ framework for developing remotely deployed 
service applications, that require:

■ Reliability

■ Large scale distribution

■ Wide range of devices

■ Collaborative

▶ Created through collaboration of industry leaders

▶ Specifications publicly available at www.osgi.org

http://www.osgi.org
http://www.osgi.org
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Evolution (up to 2006)
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Complexity of Software

▶ A DVD player can contain 1 Million lines of code

■ Comparison: Space Shuttle ~ 0.5 Million

▶ A BMW car can contain up to 50 networked computerized 
devices

▶ Eclipse contains 2.5 million lines of code

▶ An average programmer writes an average of 10 lines a day 
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What problems does the OSGi Service Platform address?

in general

▶ The limited (binary) software 
portability problem 
aaaaaaaaa

▶ The complexity of building 
heterogeneous software 
systems

■ Supporting the myriad of 
configuration, variations, and 
customizations required by 
today’s devices

▶ Managing the software life-
cycle on the device

for eclipse

▶ Eclipse runs on Windows, 
Linux, MacOS, Unix 
derivates, 32/64-bit, etc.

▶ Plug-ins, Plug-ins, Plug-ins

■ different package solutions

■ different plug-in versions in 
different features

■ 3rd-party plug-ins

■ backward compatibility

▶ Lazy loading: not all plug-ins 
need to be started
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Service Oriented Architectures

▶ Separate the contract from 
the implementation

▶ Allows alternate 
implementations

▶ Dynamically discover and 
bind available 
implementations 

▶ Based on contract (interface)

▶ Components are reusable

▶ Not coupled to 
implementation details

Service Contract

Component
provides

uses
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OSGi Feature Layering
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Module Layer

▶ Packaging of applications and 
libraries in Bundles

■ Raw Java has significant deployment 
issues

▶ Class Loading modularization

■ Raw Java provides the Class Path as 
an ordered search list, which makes 
it hard to control multiple 
applications

▶ Protection

■ Raw Java can not protect certain 
packages and classes

▶ Versioning

■ Raw Java can not handle multiple 
versions of the same package



▶ A Bundle contains:

■ Manifest (META-INF/MANIFEST.MF)

■ Code

■ Resources

■ build.properties

▶ The Framework:

■ Reads the bundle’s manifest

■ Installs the code and resources

■ Resolves dependencies

▶ During Runtime:

■ Calls the Bundle Activator to start the bundle

■ Manages java classpath

■ Handles the service dependencies

■ Calls the Bundle Activator to stop the bundle

25

Module Layer – What is in a Bundle?
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Module Layer – What is in a Bundle?Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Helloworld Plug-in
Bundle-SymbolicName: helloworld
Bundle-Version: 1.0.0
Bundle-Localization: plugin
Bundle-Activator: helloworld.Activator
Import-Package: 
 org.osgi.framework;version="1.3.0"

package helloworld;

public class HelloWorld implements BundleActivator {
 

public void start(BundleContext context) 
  throws Exception{

  System.out.println("Hello world!!");
 }

 public void stop(BundleContext context) 
  throws Exception {
 System.out.println("Goodbye world!!");
 }

}
source.. = src/
output.. = bin/
bin.includes = META-INF/,\
               .
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Module layer – Classpath issues
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Bundle

Imported package

Exported package

Wire

Constraint

▶ Java applications consists of classes 
placed in packages

▶ Java searches for a package or class in 
different jar files and directories

■ These are usually specified in the 
CLASSPATH environment variable

▶ An OSGi Framework is a network of 
class loaders.

■ Parameterized by the Manifest headers

▶ Any dependencies between bundles are 
resolved by the Framework

▶ It is possible to fetch bundles on 
demand

▶ Complicated – But an OSGi Framework 
makes it painless to use 
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Module layer – OSGi dependency resolution

Framework
       org.osgi.framework
       org.osgi.service.http
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Module layer – OSGi dependency resolution

Bundle A
Export org.osgi.service.log
       com.ibm.service.log
       com.ibm.j9
Import org.osgi.service.http
       javax.servlet.http

Framework
       org.osgi.framework
       org.osgi.service.http
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Module layer – OSGi dependency resolution
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Module layer – Package or Bundle Dependencies?

r

r
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p

Require-Bundle

Import-Package

▶ The OSGi Specifications supports both Require-
Bundle and Import-Package

▶ Require-Bundle creates a dependency on a 
complete bundle

■ Simple to use

■ Imports packages that are not used

▶ Import-Package creates a dependency on just a 
package

■ Creates less brittle bundles because of substitutability

■ More cumbersome to use (Tools!)

▶ In almost all cases, Import-Package is 
recommended because it eases deployment and 
version migration

▶ The specifications detail a number of additional 
problems with Require-Bundle
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Life Cycle Layer

▶ System Bundle represents the 
OSGi Framework

▶ Provides an API for managing 
bundles

■ Install

■ Resolve

■ Start

■ Stop

■ Refresh

■ Update

■ Uninstall

▶ Based on the module layer

INSTALLED

RESOLVED

UNINSTALLED

ACTIVE

STOPPING

STARTING

start

stop
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Service Layer

▶ Provides an in-VM service model

■ Discover (and get notified about) services based on their interface 
or properties

■ Bind to one or more services by 

◆ program control,

◆ default rules, or 

◆ deployment configuration

▶ SOA Confusion

■ Web services bind and discover over the net

■ The OSGi Service Platform binds and discovers inside a Java VM

▶ The OSGi Alliance provides many standardized services
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What is Equinox ?

▶ An open source community focused on OSGi Technology

■ Develop OSGi specification implementations

■ Prototype ideas related to OSGi

▶ An OSGi Framework implementation

■ Core of the Eclipse runtime

■ Provides the base for Eclipse plug-in collaboration

■ Fully compatible with the OSGi R4 specification
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The Equinox Target Environment

▶ Eclipse makes it easy to develop for OSGi Service Platforms

▶ A target platform

■ Contains a set of bundles

■ Defines runtime parameters

▶ To Define the Target Platform, goto:

■ Preferences ->Plug-in Development ->Target Platform

■ Select the target project in your workspace as location
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Summary

▶ The OSGi Service Platform is kind of a Java Operating 
System

▶ It simplifies:

■ Deployment Problems

■ Software composition

■ Software management

▶ Eclipse provides a development environment for OSGi 
Bundles

▶ Eclipse provides open source implementations of the OSGi 
specifications in the Equinox project



Eclipse Plug-in Architecture
▶ North Western University, Boston, MA: Introduction to 

Eclipse plugin development 
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Eclipse Plug-in Architecture

▶ Plug-in - smallest unit of Eclipse function

■ A special type of OSGi Bundle

■ Large example: Java Editor

■ Small example: Action to create zip files 

▶ Extension point: named entity for collecting “contributions”

■ Example: extension point for workbench text editor.

▶ Extension: a contribution

■ Example: extending the text editor for domain specific language 
with syntax highlighting and semantics checking.
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plug-in A plug-in B

class Cinterface I

extension
point P extensioncontributes

creates, calls

implements

▶ Plug-in A

■ Declares extension point P

■ Declares interface I to go with P

▶ Plug-in B

■ Implements interface I with its own class C

■ Contributes class C to extension point P

▶ Plug-in A instantiates C and calls its I methods

Extension and Extension-Points (I)



Extension and Extension-Points (II)

▶ Each plug-in

■ Contributes to 1 or more extension points

■ Optionally declares new extension points

■ Depends on a set of other plug-ins

■ Contains Java code libraries and other files

■ May export Java-based APIs for downstream plug-ins

■ Lives in its own plug-in subdirectory

▶ Details spelled out in the plug-in manifest

■ Manifest declares contributions

■ Code implements contributions and provides API

■ plugin.xml file in root of plug-in subdirectory
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 <extension-point id=“views”
                  name=“Views”
                  schema="schema/views.exsd”/>

<extension id=“catalogView"
           point=“org.eclipse.ui.views”>
   <view name=“Catalog”
         icon=“icons/catview.gif”
         class=“com.acme.CatalogView”/>
</extension>

Extension point declaration – plugin.xml

Extension declaration – plugin.xml

The extension-point defines the contract (markup and code) for the 
extensions

Metaphor: disc spindle

Extension and Extension-Points (III)



<plugin
      id = “com.example.tool"
      name = “Example Plug-in Tool"
      class = "com.example.tool.ToolPlugin">
  <requires>
      <import plugin = "org.eclipse.core.resources"/>
      <import plugin = "org.eclipse.ui"/>
  </requires>
  <runtime>
      <library name = “tool.jar"/> 
  </runtime>
  <extension
      point = "org.eclipse.ui.preferencepages">
     <page id = "com.example.tool.preferences"
        icon = "icons/knob.gif"
        title = “Tool Knobs"
        class = "com.example.tool.ToolPreferenceWizard“/>
  </extension>
  <extension-point
      name = “Frob Providers“
      id = "com.example.tool.frobProvider"/>
</plugin>

Plug-in.xml



<plugin
      id = “com.example.tool"
      name = “Example Plug-in Tool"
      class = "com.example.tool.ToolPlugin">
  <requires>
      <import plugin = "org.eclipse.core.resources"/>
      <import plugin = "org.eclipse.ui"/>
  </requires>
  <runtime>
      <library name = “tool.jar"/> 
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      point = "org.eclipse.ui.preferencepages">
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        title = “Tool Knobs"
        class = "com.example.tool.ToolPreferenceWizard“/>
  </extension>
  <extension-point
      name = “Frob Providers“
      id = "com.example.tool.frobProvider"/>
</plugin>

Plug-in identification

Plug-in.xml



<plugin
      id = “com.example.tool"
      name = “Example Plug-in Tool"
      class = "com.example.tool.ToolPlugin">
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</plugin>

Other plug-ins needed

Plug-in identification

Plug-in.xml



<plugin
      id = “com.example.tool"
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Location of plug-in’s code

Other plug-ins needed

Plug-in identification

Plug-in.xml



<plugin
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Location of plug-in’s code

Other plug-ins needed
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Plug-in.xml



<plugin
      id = “com.example.tool"
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      class = "com.example.tool.ToolPlugin">
  <requires>
      <import plugin = "org.eclipse.core.resources"/>
      <import plugin = "org.eclipse.ui"/>
  </requires>
  <runtime>
      <library name = “tool.jar"/> 
  </runtime>
  <extension
      point = "org.eclipse.ui.preferencepages">
     <page id = "com.example.tool.preferences"
        icon = "icons/knob.gif"
        title = “Tool Knobs"
        class = "com.example.tool.ToolPreferenceWizard“/>
  </extension>
  <extension-point
      name = “Frob Providers“
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Declare 
contribution

this plug-in makes
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other plug-ins

Location of plug-in’s code

Other plug-ins needed

Plug-in identification

Plug-in.xml



Eclipse Platform
▶ North Western University, Boston, MA: Introduction to 

Eclipse plugin development 
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Some Eclipse Platform Components

▶ SWT - Standard Widget Toolkit

▶ JFace – Framework providing higher-level UI abstractions

▶ Workbench – Provides reusable and extensible UI 
metaphors

▶ Text - Framework(s) for building high-function text editors

▶ UI Forms - Framework for building forms-based views and 
editors

▶ GEF - Framework for building rich graphical editors

41



SWT - Standard Widget Toolkit

42



JFace

▶ Framework on top of SWT providing higher-level UI 
abstractions

■ Application window: menu bar, tool bar, content area & status 
line

■ Viewers (MVC pattern)

■ Actions, action bars (abstracts menu items, tool items)

■ Preference and wizard framework
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Workbench

▶ Defines reusable and extensible UI 
metaphors

▶ Leverages extension point 
mechanism and JFace abstractions.

▶ Provides:

■ Views

■ Editors

■ Action sets

■ Perspectives

■ Wizards

■ Preference pages

■ Commands and Key Bindings

■ Undo/Redo support

■ Presentations and Themes

■ ...
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▶ Framework(s) for building high-function text editors

■ document infrastructure

◆ text manipulation through text edits

◆ positions and linked position manager

◆ template support

◆ projection (aka folding) support

■ source viewer framework

◆ provides Text-, SourceViewer and SourceViewerConfiguration

◆ concept of annotations, annotations painter, hovers

◆ concept of content assist

◆ incremental syntax coloring (presentation reconciler)

◆ incremental outline update (model reconciler)

◆ formatter infrastructure

■ text editor framework

◆ leverages source viewer framework for use in workbench editors

◆ provides AbstractTextEditor

Text Editor Framework
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UI Forms

▶ Form consisting of multiple FormParts

▶ Extra widgets: 

■ FormText (marked-up text)

■ ScrolledForm

■ Section

■ MasterDetailsBlock

▶ Extra layouts: 

■ TableWrapLayout (HTML-like)

■ ColumnLayout (newspaper-like)

▶ Flat look, lightweight borders

▶ Forms-based multi-page editor

▶ Used extensively in PDE
46



GEF (Graphical Editor Framework)

▶ Framework for building 
rich graphical editors

■ Draw2D - structured 
graphics drawing 
framework

■ Graphical editor 
framework:

◆ MVC architecture 

◆ Undo/Redo support

◆ Palette and common  
tools 
for manipulating objects

◆ Integration with Properties 
and Outline view
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User Assistance Components

▶ Eclipse Help – Help UI on top of an extensible help content 
model

▶ Intro support – Provides the “welcome experience” for your 
product

▶ Cheat sheets – Provides guidance through complex tasks

48



Plug-in Development Environment 
(PDE)
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Plug-in Development Environment

▶ PDE = Plug-in development environment

▶ Specialized tools for developing Eclipse plug-ins

▶ Built atop Eclipse Platform and JDT

■ Implemented as Eclipse plug-ins

■ Using Eclipse Platform and JDT APIs and extension points

▶ Included in Eclipse Project releases

■ Separately installable feature

■ Part of Eclipse SDK drops
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PDE Goals

▶ To make it easier to develop Eclipse plug-ins

▶ Support self-hosted Eclipse development
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PDE Templates

▶ PDE templates for 
creating simple plug-in 
projects



PDE Plugin Structure
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PDE Plugin Structure
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plugin project

plugin dependencies

code

bundle activator

example extension code

manifest files
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PDE Manifest Editor

▶ Specialized PDE editor 
for plug-in manifest files

■ MANIFEST.MF

■ plugin.xml

■ build.properties
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PDE Manifest Editor

▶ Specialized PDE editor 
for plug-in manifest files

■ MANIFEST.MF

■ plugin.xml

■ build.properties



55

PDE

▶ PDE runs and debugs another Eclipse workbench

1. Workbench
running PDE

(host)

2. Run-time
workbench

 (target)
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Summary

▶ PDE makes it easier to develop Eclipse plug-ins

▶ PDE is basis for self-hosted
Eclipse development



Plug-in Distribution Options
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Distribution Options

▶ Plugin

▶ Feature

▶ Rich Client Applications (RCP) or simple applications

▶ update site

▶ p2 (OSGi provisioning)
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Plugin

▶ build.properties describes how the plugin is exported

▶ exports into .jar file via eclipse

▶ can be manually put into eclipse installations

▶ dependencies, versions, target platforms are not checked, 
inherently unsafe
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Features

▶ Special PDE project type: feature project

▶ Describe feature via feature.xml and a special editor

■ plugins

■ depending plugins and features

■ target platform

■ versions

■ license

▶ Can be bundled into applications

▶ Can be served via update sites
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(Rich Client) Applications

▶ Special PDE extension point: application

▶ Special PDE file type and editor: product configuration

■ based on launch configuration (specific application 
configuration) or application

■ configuration contains

◆ plugins and features (and dependencies)

◆ target platform (for different OSes)

◆ branding, licesing, splash screen
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Update Site

▶ Special PDE project type: update project

▶ Special PDE file editor: site.xml

■ categories

■ features

▶ Can be exported and served via web server or p2 repository
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p2

▶ p2 is an extensible provisioning platform for OSGi

▶ lots of UI for Equinox-based applications

▶ allows you to create

■ add-on manager for RCP applications

■ installer

■ configuration management system

■ self updating of applications

■ repository
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Summary

▶ lots of distribution options

▶ most important: plugin vs. application

▶ software modeling tools and DSLs are usually distributed as 
plugin and features
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