Modellbasierte Softwareentwicklung (MODSOFT)

Part II

Domain Specific Languages

Eclipse / Plug-ins

Prof. Joachim Fischer / Dr. Markus Scheidgen / Dipl.-Inf. Andreas Blunk

{fischer,scheidge,blunk}@informatik.hu-berlin.de LFE Systemanalyse, III.310

Agenda

prolog (1 VL) Introduction: languages and their aspects, modeling vs. programming, meta-modeling and the 4 layer model

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description, features, p2-repositories, RCPs

- **Structure:** *Ecore*, *genmodel*, working with generated code, constraints with *Java* and *OCL*, *XML/XMI*
- **Notation:** Customizing the tree-editor, textural with *XText*, graphical with GEF and GMF
- **Semantics:** interpreters with Java, code-generation with Java and XTend, model-transformations with Java and ATL
- epilog

Tools: persisting large models, model versioning and comparison, model evolution and co-adaption, modular languages with XBase, Meta Programming System (MPS)

Eclipse/Eclipse-Plug-ins — Agenda

- ▶ Eclipse
- OSGi and Equinox
- Plug-in Architecture
- Eclipse Platform (a.k.a Existing Plug-ins)
- ► Plug-in Development Environment (PDE)
- ▶ Plug-in Distribution Options

Eclipse

Eclipse – History

- Eclipse started as a proprietary IBM product (IBM Visual age for Smalltalk/Java).
- Eclipse is open source it is a general purpose open platform that facilitates and encourages the development of third party plug-ins.
- Eclipse is best known as an Integrated Development Environment (IDE).
- Eclipse was originally designed for Java, now supports many other languages.
 - C, C++, Python, PHP, Ruby
 - XML, HTML, CSS
 - ant, maven, and many more

Original Eclipse Project Aims

- Provide open platform for application development tools
 - Run on a wide range of operating systems
 - GUI and non-GUI
- Language-neutral
 - Permit unrestricted content types
 - HTML, Java, C, JSP, EJB, XML, GIF, ...
- Facilitate seamless tool integration
 - At UI and deeper
 - Add new tools to existing installed products
- Attract community of tool developers
 - Including independent software vendors (ISVs)
 - Capitalize on popularity of Java for writing tools

What is Eclipse, what is an IDE

- ▶ In this lecture we manly see eclipse as an IDE.
- Programming requires the use of many tools:
 - editors (vim, emacs)
 - compilers (gcc, javac)
 - code analyzers (lyn)
 - debuggers (gdb, jdb)
 - build-tools (make, ant, maven)
 - version control (cvs, svn, git, ClearCase)
- ▶ IDEs integrate those tools into a single coherent environment.
 - one rich graphical user interface
 - one configuration scheme
 - The different tools are integrated with each other.

Eclipse Versions

- download: http://www.eclipse.org/downloads/
- Eclipse 3.x releases are: Callisto, Europa, Ganymede,
 Galileo, Helios, Indigo (3.7, latest)
- Eclipse 4.x releases are: Juno (4.2), Kepler (4.3), Luna (4.4, current)
- ► There is a 32- and 64-bit version for Windows, MacOS, and Linux/Unix.
- Eclipse is Java-based but uses SWT, a GUI-toolkit with platform specific versions.
- ► There are different packages (different collections of plug-ins) for different use-case. For this lecture *Eclipse Modeling Tools* has most needed plug-ins pre-installed.

Eclipse Vocabulary (I)

- Workbench, Perspective, Editor, View
- Project
 - organizational unit for your work
 - corresponds to a folder on your hard-drive, by default in the workspace directory
 - is a resource
- Project Properties
 - project specific configuration
 allows to create project specific settings for large parts of the preferences
- Project Nature
 - e.g. Java Project, EMF-Projects, xText-Project
 - determines project properties, build-process, specific sub-folder types (e.g. source-folder)

determines project properties, build-process, specific sub-folder types (e.g. source-folder)

Eclipse Vocabulary (II)

► Resource

- generic term for folders, files, and sometimes file-like (virtual resources) entities
- Preferences
 - eclipse wide configuration organized by plug-ins
- ► Launch-configuration
 - e.g. Java Application, RCP/Eclipse Application
 - used to Run, Debug, Profile

Eclipse Books/Resources

Lars Vogel: http://www.vogella.com/tutorials/eclipse.html

Eclipse: http://help.eclipse.org/ (PDE Dev. Guide)

Eclipse Plug-ins Vocabulary

- ► OSGi, Equinox
 - Open Service Gateway initiative (OSGi) specification
 - modular system and service platform
 - dynamic component model
 - Equinox is one implementation of OSGi
- ▶ Bundle, Plug-in, Feature, Application
- Dependency, Extension, Extension-point
- ► Plug-in Development Environment (PDE)
- PDE-project
 - special Java-project nature
 - contains manifest and plugin.xml

Eclipse Architecture (I)

- Eclipse is a universal platform for integrating development tools
- Open, extensible architecture based on plug-ins

Plug-in development environment (PDE)

Java development tools (JDT)

Eclipse Platform

Standard Java2 Virtual Machine

Eclipse Architecture (II)

Eclipse RCPs – Examples

Eclipse RCPs – Examples

Summary

- Eclipse is an extendable IDE
- Eclipse is a collection of Eclipse Plug-Ins (and Features, and Applications, etc.)
- Eclipse is a Platform to build Rich Clients (RCP)

OSGi / Equinox

Thomas Watson, Peter Kriens: OSGi™ Component Programming (EclipseCon, 2006)

What is the OSGi service platform?

- ► A Java[™] framework for developing remotely deployed service applications, that require:
 - Reliability
 - Large scale distribution
 - Wide range of devices
 - Collaborative
- Created through collaboration of industry leaders
- ► Specifications publicly available at www.osgi.org

Evolution (up to 2006)

Complexity of Software

- ► A DVD player can contain 1 Million lines of code
 - Comparison: Space Shuttle ~ 0.5 Million
- A BMW car can contain up to 50 networked computerized devices
- Eclipse contains 2.5 million lines of code
- ► An average programmer writes an average of 10 lines a day

What problems does the OSGi Service Platform address?

in general

- ► The limited (binary) software portability problem
- The complexity of building heterogeneous software systems
 - Supporting the myriad of configuration, variations, and customizations required by today's devices
- Managing the software lifecycle on the device

for eclipse

- Eclipse runs on Windows, Linux, MacOS, Unix derivates, 32/64-bit, etc.
- Plug-ins, Plug-ins, Plug-ins
 - different package solutions
 - different plug-in versions in different features
 - 3rd-party plug-ins
 - backward compatibility
- Lazy loading: not all plug-ins need to be started

Service Oriented Architectures

- Separate the contract from the implementation
- Allows alternate implementations
- Dynamically discover and bind available implementations
- ► Based on contract (interface)
- ► Components are reusable
- Not coupled to implementation details

OSGi Feature Layering

Module Layer

- Packaging of applications and libraries in Bundles
 - Raw Java has significant deployment issues
- Class Loading modularization
 - Raw Java provides the Class Path as an ordered search list, which makes it hard to control multiple applications
- Protection
 - Raw Java can not protect certain packages and classes
- Versioning
 - Raw Java can not handle multiple versions of the same package

Module Layer – What is in a Bundle?

- A Bundle contains:
 - Manifest (META-INF/MANIFEST.MF)
 - Code
 - Resources
 - build.properties
- ► The Framework:
 - Reads the bundle's manifest
 - Installs the code and resources
 - Resolves dependencies
- During Runtime:
 - Calls the Bundle Activator to start the bundle
 - Manages java classpath
 - Handles the service dependencies
 - Calls the Bundle Activator to stop the bundle

Module Layer – Wha

- ► A Bundle contains:
 - Manifest (META-INF/MANIFEST.MF)
 - Code
 - Resources
 - build.properties,
- ► The Framework:
 - Reads the bundle's manifest
 - Installs the code and resource
 - Resolves dependencies
- During Runtime:
 - Calls the Bundle Activator to start the bundle
 - Manages java classpath
 - Handles the service dependencies
 - Calls the Bundle Activator to stop the bundle

```
Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Helloworld Plug-in
Bundle-SymbolicName: helloworld
Bundle-Version: 1.0.0
Bundle-Localization: plugin
Bundle-Activator: helloworld.Activator
Import-Package:
org.osgi.framework; version="1.3.0"
```

```
source.. = src/
output.. = bin/
bin.includes = META-INF/,\
.
```

Module layer – Classpath issues

- Java applications consists of classes placed in packages
- Java searches for a package or class in different jar files and directories
- These are usually specified in the CLASSPATH environment variable
- An OSGi Framework is a network of class loaders.
- Parameterized by the Manifest headers
- Any dependencies between bundles are resolved by the Framework
- It is possible to fetch bundles on demand
- Complicated But an OSGi Framework makes it painless to use

Framework

org.osgi.framework
org.osgi.service.http

```
Framework

org.osgi.framework

org.osgi.service.http

Bundle A

Export org.osgi.service.log

com.ibm.service.log

com.ibm.j9

Import org.osgi.service.http

javax.servlet.http
```

```
Framework

org.osgi.framework

org.osgi.service.http

Bundle A
Export org.osgi.service.log

com.ibm.service.log

com.ibm.j9
Import org.osgi.service.http

javax.servlet.http
```

```
Framework
       org.osgi.framework
       org.osgi.service.http
Bundle A
Export org.osgi.service.log
       com.ibm.service.log
       com.ibm.j9
Import org.osgi.service.http
       javax.servlet.http
Bundle B
Export ericsson.osgi
       javax.servlet
       javax.servlet.http
       org.osgi.service.log
Import org.osgi.service.http
       org.osgi.service.log
```

```
Framework
       org.osgi.framework
       org.osgi.service.http
Bundle A
Export org.osgi.service.log
       com.ibm.service.log
       com.ibm.j9
Import org.osgi.service.http
       javax.servlet.http
Bundle B
Export ericsson.osgi
       javax.servlet
       javax.servlet.http
       org.osgi.service.log
Import org.osgi.service.http
       org.osgi.service.log
```

```
Framework
       org.osgi.framework
       org.osgi.service.http
Bundle A
Export org.osgi.service.log
       com.ibm.service.log
       com.ibm.j9
Import org.osgi.service.http
       javax.servlet.http
Bundle B
Export ericsson.osgi
       javax.servlet
       javax.servlet.http
       org.osgi.service.log
Import org.osgi.service.http
       org.osgi.service.log
```

A resolved

```
Framework
       org.osgi.framework
       org.osgi.service.http
Bundle A
Export org.osgi.service.log
       com.ibm.service.log
       com.ibm.j9
Import org.osgi.service.http
       javax.servlet.http
Bundle B
Export ericsson.osgi
       javax.servlet
       javax.servlet.http
       org.osgi.service.log
Import org.osgi.service.http
       org.osgi.service.log
```

A resolved

```
Framework
       org.osgi.framework
       org.osgi.service.http
Bundle A
Export org.osgi.service.log
       com.ibm.service.log
       com.ibm.j9
Import org.osgi.service.http
       javax.servlet.http
Bundle B
Export ericsson.osgi
       javax.servlet
       javax.servlet.http
       org.osgi.service.log
Import org.osgi.service.http
       org.osgi.service.log
```

A resolved

```
Framework
       org.osgi.framework
       org.osgi.service.http
Bundle A
Export org.osgi.service.log
       com.ibm.service.log
       com.ibm.j9
Import org.osgi.service.http
       javax.servlet.http
Bundle B
Export ericsson.osgi
       javax.servlet
       javax.servlet.http
       org.osgi.service.log
Import org.osgi.service.http
       org.osgi.service.log
```

A resolved

B resolved

Module layer – Package or Bundle Dependencies?

- ► The OSGi Specifications supports both Require-Bundle and Import-Package
- Require-Bundle creates a dependency on a complete bundle
- Simple to use
- Imports packages that are not used
- Import-Package creates a dependency on just a package
- Creates less brittle bundles because of substitutability
- More cumbersome to use (Tools!)
- In almost all cases, Import-Package is recommended because it eases deployment and version migration
- The specifications detail a number of additional problems with Require-Bundle

Life Cycle Layer

- System Bundle represents the OSGi Framework
- Provides an API for managing bundles
 - Install
 - Resolve
 - Start
 - Stop
 - Refresh
 - Update
 - Uninstall
- ▶ Based on the module layer

Service Layer

- Provides an in-VM service model
 - Discover (and get notified about) services based on their interface or properties
 - Bind to one or more services by
 - program control,
 - default rules, or
 - deployment configuration
- SOA Confusion
 - Web services bind and discover over the net
 - The OSGi Service Platform binds and discovers inside a Java VM
- ► The OSGi Alliance provides many standardized services

What is Equinox?

- ► An open source community focused on OSGi Technology
 - Develop OSGi specification implementations
 - Prototype ideas related to OSGi
- An OSGi Framework implementation
 - Core of the Eclipse runtime
 - Provides the base for Eclipse plug-in collaboration
 - Fully compatible with the OSGi R4 specification

The Equinox Target Environment

- Eclipse makes it easy to develop for OSGi Service Platforms
- A target platform
 - Contains a set of bundles
 - Defines runtime parameters
- ► To Define the Target Platform, goto:
 - Preferences ->Plug-in Development ->Target Platform
 - Select the target project in your workspace as location

The Equinox Target Environment

- Eclipse makes
- A target platfor
 - Contains a set
 - Defines runtir
- ► To Define the T
 - Preferences ->

Select the target project in your workspace as location

Summary

- ► The OSGi Service Platform is kind of a Java Operating System
- ► It simplifies:
 - Deployment Problems
 - Software composition
 - Software management
- Eclipse provides a development environment for OSGi Bundles
- Eclipse provides open source implementations of the OSGi specifications in the Equinox project

Eclipse Plug-in Architecture

North Western University, Boston, MA: Introduction to Eclipse plugin development

Eclipse Plug-in Architecture

- ▶ Plug-in smallest unit of Eclipse function
 - A special type of OSGi Bundle
 - Large example: Java Editor
 - Small example: Action to create zip files
- Extension point: named entity for collecting "contributions"
 - Example: extension point for workbench text editor.
- Extension: a contribution
 - Example: extending the text editor for domain specific language with syntax highlighting and semantics checking.

Extension and Extension-Points (I)

- Plug-in A
 - Declares extension point P
 - Declares interface I to go with P
- ▶ Plug-in B
 - Implements interface I with its own class C
 - Contributes class C to extension point P
- Plug-in A instantiates C and calls its I methods

Extension and Extension-Points (II)

- Each plug-in
 - Contributes to 1 or more extension points
 - Optionally declares new extension points
 - Depends on a set of other plug-ins
 - Contains Java code libraries and other files
 - May export Java-based APIs for downstream plug-ins
 - Lives in its own plug-in subdirectory
- Details spelled out in the plug-in manifest
 - Manifest declares contributions
 - Code implements contributions and provides API
 - plugin.xml file in root of plug-in subdirectory

Extension and Extension-Points (III)

The extension-point defines the contract (markup and code) for the extensions

Extension point declaration – plugin.xml

```
<extension-point id="views"
name="Views"
schema="schema/views.exsd"/>
```

Extension declaration – plugin.xml

Metaphor: disc spindle


```
<plugin
      id = "com.example.tool"
      name = "Example Plug-in Tool"
      class = "com.example.tool.ToolPlugin">
  <requires>
      <import plugin = "org.eclipse.core.resources"/>
      <import plugin = "org.eclipse.ui"/>
  </requires>
  <runtime>
      library name = "tool.jar"/>
  </runtime>
  <extension
      point = "org.eclipse.ui.preferencepages">
     <page id = "com.example.tool.preferences"</pre>
        icon = "icons/knob.gif"
        title = "Tool Knobs"
        class = "com.example.tool.ToolPreferenceWizard"/>
  </extension>
  <extension-point
      name = "Frob Providers"
      id = "com.example.tool.frobProvider"/>
</plugin>
```

```
<plugin
      id = "com.example.tool"
      name = "Example Plug-in Tool"
      class = "com.example.tool.ToolPlugin">
  <requires>
      <import plugin = "org.eclipse.core.resources"/>
      <import plugin = "org.eclipse.ui"/>
  </requires>
  <runtime>
      library name = "tool.jar"/>
  </runtime>
  <extension
      point = "org.eclipse.ui.preferencepages">
     <page id = "com.example.tool.preferences"</pre>
        icon = "icons/knob.gif"
        title = "Tool Knobs"
        class = "com.example.tool.ToolPreferenceWizard"/>
  </extension>
  <extension-point
      name = "Frob Providers"
      id = "com.example.tool.frobProvider"/>
</plugin>
```

Plug-in identification

```
<plugin
      id = "com.example.tool"
      name = "Example Plug-in Tool"
      class = "com.example.tool.ToolPlugin">
  <requires>
      <import plugin = "org.eclipse.core.resources"/>
      <import plugin = "org.eclipse.ui"/>
  </requires>
  <runtime>
      library name = "tool.jar"/>
  </runtime>
  <extension
      point = "org.eclipse.ui.preferencepages">
     <page id = "com.example.tool.preferences"</pre>
        icon = "icons/knob.gif"
        title = "Tool Knobs"
        class = "com.example.tool.ToolPreferenceWizard"/>
  </extension>
  <extension-point
      name = "Frob Providers"
      id = "com.example.tool.frobProvider"/>
</plugin>
```

Plug-in identification

Other plug-ins needed

```
<plugin
      id = "com.example.tool"
      name = "Example Plug-in Tool"
      class = "com.example.tool.ToolPlugin">
  <requires>
      <import plugin = "org.eclipse.core.resources"/>
      <import plugin = "org.eclipse.ui"/>
  </requires>
  <runtime>
      library name = "tool.jar"/>
  </runtime>
  <extension
      point = "org.eclipse.ui.preferencepages">
     <page id = "com.example.tool.preferences"</pre>
        icon = "icons/knob.gif"
        title = "Tool Knobs"
        class = "com.example.tool.ToolPreferenceWizard"/>
  </extension>
  <extension-point
      name = "Frob Providers"
      id = "com.example.tool.frobProvider"/>
</plugin>
```

Plug-in identification

Other plug-ins needed

Location of plug-in's code

```
<plugin
      id = "com.example.tool"
      name = "Example Plug-in Tool"
      class = "com.example.tool.ToolPlugin">
  <requires>
      <import plugin = "org.eclipse.core.resources"/>
      <import plugin = "org.eclipse.ui"/>
  </requires>
  <runtime>
      library name = "tool.jar"/>
  </runtime>
                                                                         Declare
  <extension
      point = "org.eclipse.ui.preferencepages">
     <page id = "com.example.tool.preferences"</pre>
        icon = "icons/knob.gif"
        title = "Tool Knobs"
        class = "com.example.tool.ToolPreferenceWizard"/>
  </extension>
  <extension-point
      name = "Frob Providers"
      id = "com.example.tool.frobProvider"/>
</plugin>
```

Plug-in identification

Other plug-ins needed

Location of plug-in's code

contribution this plug-in makes

```
<plugin
      id = "com.example.tool"
      name = "Example Plug-in Tool"
      class = "com.example.tool.ToolPlugin">
  <requires>
      <import plugin = "org.eclipse.core.resources"/>
      <import plugin = "org.eclipse.ui"/>
  </requires>
  <runtime>
      library name = "tool.jar"/>
  </runtime>
                                                                         Declare
  <extension
      point = "org.eclipse.ui.preferencepages">
     <page id = "com.example.tool.preferences"</pre>
        icon = "icons/knob.gif"
        title = "Tool Knobs"
        class = "com.example.tool.ToolPreferenceWizard"/>
  </extension>
  <extension-point
      name = "Frob Providers"
      id = "com.example.tool.frobProvider"/>
</plugin>
```

Plug-in identification

Other plug-ins needed

Location of plug-in's code

contribution this plug-in makes Declare new extension pe open to contributions from other plug-ins

Eclipse Platform

North Western University, Boston, MA: Introduction to Eclipse plugin development

Some Eclipse Platform Components

- ► SWT Standard Widget Toolkit
- ▶ JFace Framework providing higher-level UI abstractions
- Workbench Provides reusable and extensible UI metaphors
- ► Text Framework(s) for building high-function text editors
- UI Forms Framework for building forms-based views and editors
- ► GEF Framework for building rich graphical editors

SWT - Standard Widget Toolkit

JFace

- Framework on top of SWT providing higher-level UI abstractions
 - Application window: menu bar, tool bar, content area & status line
 - Viewers (MVC pattern)
 - Actions, action bars (abstracts menu items, tool items)
 - Preference and wizard framework

Workbench

- Defines reusable and extensible UI metaphors
- Leverages extension point mechanism and JFace abstractions.
- Provides:
 - Views
 - Editors
 - Action sets
 - Perspectives
 - Wizards
 - Preference pages
 - Commands and Key Bindings
 - Undo/Redo support
 - Presentations and Themes
 - ..

Text Editor Framework

- Framework(s) for building high-function text editors
 - document infrastructure
 - text manipulation through text edits
 - positions and linked position manager
 - template support
 - projection (aka folding) support
 - source viewer framework
 - provides Text-, SourceViewer and SourceViewerConfiguration
 - concept of annotations, annotations painter, hovers
 - concept of content assist
 - incremental syntax coloring (presentation reconciler)
 - incremental outline update (model reconciler)
 - formatter infrastructure
 - text editor framework
 - leverages source viewer framework for use in workbench editors
 - provides AbstractTextEditor

UI Forms

- Form consisting of multiple FormParts
- Extra widgets:
 - FormText (marked-up text)
 - ScrolledForm
 - Section
 - MasterDetailsBlock
- Extra layouts:
 - TableWrapLayout (HTML-like)
 - ColumnLayout (newspaper-like)
- ► Flat look, lightweight borders
- Forms-based multi-page editor
- Used extensively in PDE

GEF (Graphical Editor Framework)

- Framework for building rich graphical editors
 - Draw2D structured graphics drawing framework
 - Graphical editor framework:
 - MVC architecture
 - Undo/Redo support
 - Palette and common tools for manipulating objects
 - Integration with Properties and Outline view

User Assistance Components

- Eclipse Help Help UI on top of an extensible help content model
- ► Intro support Provides the "welcome experience" for your product
- ► Cheat sheets Provides guidance through complex tasks

Plug-in Development Environment (PDE)

Plug-in Development Environment

- ► PDE = Plug-in development environment
- Specialized tools for developing Eclipse plug-ins
- Built atop Eclipse Platform and JDT
 - Implemented as Eclipse plug-ins
 - Using Eclipse Platform and JDT APIs and extension points
- ► Included in Eclipse Project releases
 - Separately installable feature
 - Part of Eclipse SDK drops

PDE Goals

- To make it easier to develop Eclipse plug-ins
- Support self-hosted Eclipse development

PDE Templates

► PDE templates for creating simple plug-in projects

PDE Plugin Structure

PDE Plugin Structure

PDE Manifest Editor

- Specialized PDE editor for plug-in manifest files
 - MANIFEST.MF
 - plugin.xml
 - build.properties


```
🚯 de.hub.sam.h... 🛭 🤌

√ Search.java

                       youtube.pro...
                                                               J Topics.java
                                                                              de.scheidgen...
                                          m samples/pom.xml
                                                                                                                                     ?
                                    🙈 tt
de.scheidgen...
                  *de.hub.sam....
                                            product.product
                                                                             de.scheidgen...
                                                                                                *site.xml
  package de.hub.sam.helloworld.popup.actions;
                                                                                                                                     3 import org.eclipse.jface.action.IAction;
  9
    public class NewAction implements IObjectActionDelegate {
 10
 11
        private Shell shell;
 12
 13
 149
          * Constructor for Action1.
 15
 16
         public NewAction() {
 17⊝
 18
             super();
 19
 20
 21⊖
 22
          * @see IObjectActionDelegate#setActivePart(IAction, IWorkbenchPart)
 23
         public void setActivePart(IAction action, IWorkbenchPart targetPart) {
△240
 25
             shell = targetPart.getSite().getShell();
 26
 27
         /**
 28⊖
 29
          * @see IActionDelegate#run(IAction)
 30
        public void run(IAction action) {
△31⊖
 32
            MessageDialog.openInformation(
                 shell,
 33
                 "Helloworld",
 34
                 "New Action was executed.");
 35
 36
 37
 38⊖
          * @see IActionDelegate#selectionChanged(IAction, ISelection)
 39
 40
△41⊖
         public void selectionChanged(IAction action, ISelection selection) {
 42
 43
 44
 45
```

PDE

▶ PDE runs and debugs another Eclipse workbench

Summary

- ▶ PDE makes it easier to develop Eclipse plug-ins
- ► PDE is basis for self-hosted Eclipse development

Plug-in Distribution Options

Distribution Options

- ► Plugin
- ► Feature
- ► Rich Client Applications (RCP) or simple applications
- update site
- p2 (OSGi provisioning)

Plugin

- build.properties describes how the plugin is exported
- exports into .jar file via eclipse
- can be manually put into eclipse installations
- dependencies, versions, target platforms are not checked, inherently unsafe

Features

- Special PDE project type: feature project
- Describe feature via feature.xml and a special editor
 - plugins
 - depending plugins and features
 - target platform
 - versions
 - license
- Can be bundled into applications
- Can be served via update sites

(Rich Client) Applications

- Special PDE extension point: application
- ► Special PDE file type and editor: product configuration
 - based on launch configuration (specific application configuration) or application
 - configuration contains
 - plugins and features (and dependencies)
 - target platform (for different OSes)
 - branding, licesing, splash screen

Update Site

- Special PDE project type: update project
- Special PDE file editor: site.xml
 - categories
 - features
- ► Can be exported and served via web server or p2 repository

p2

- > p2 is an extensible provisioning platform for OSGi
- lots of UI for Equinox-based applications
- allows you to create
 - add-on manager for RCP applications
 - installer
 - configuration management system
 - self updating of applications
 - repository

Summary

- lots of distribution options
- most important: plugin vs. application
- software modeling tools and DSLs are usually distributed as plugin and features