
Modellbasierte Softwareentwicklung (MODSOFT)

Part II

Domain Specific Languages

Eclipse / Plug-ins

Prof. Joachim Fischer /
Dr. Markus Scheidgen / Dipl.-Inf. Andreas Blunk

{fischer,scheidge,blunk}@informatik.hu-berlin.de
LFE Systemanalyse, III.310

1

prolog
(1 VL)

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

0.
(2 VL)

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

1.
(2 VL)

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI

2.
(3 VL)

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

3.
(4 VL)

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

epilog
(2 VL)

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)

Agenda

2

➡

Eclipse/Eclipse-Plug-ins – Agenda

▶ Eclipse

▶ OSGi and Equinox

▶ Plug-in Architecture

▶ Eclipse Platform (a.k.a Existing Plug-ins)

▶ Plug-in Development Environment (PDE)

▶ Plug-in Distribution Options

3

Eclipse

4

Eclipse – History

▶ Eclipse started as a proprietary IBM product (IBM Visual age for
Smalltalk/Java).

▶ Eclipse is open source - it is a general purpose open platform that
facilitates and encourages the development of third party plug-ins.

▶ Eclipse is best known as an Integrated Development Environment
(IDE).

▶ Eclipse was originally designed for Java, now supports many other
languages.

■ C, C++, Python, PHP, Ruby

■ XML, HTML, CSS

■ ant, maven, and many more

5

6

Original Eclipse Project Aims

▶ Provide open platform for application development tools

■ Run on a wide range of operating systems

■ GUI and non-GUI

▶ Language-neutral

■ Permit unrestricted content types

■ HTML, Java, C, JSP, EJB, XML, GIF, …

▶ Facilitate seamless tool integration

■ At UI and deeper

■ Add new tools to existing installed products

▶ Attract community of tool developers

■ Including independent software vendors (ISVs)

■ Capitalize on popularity of Java for writing tools

What is Eclipse, what is an IDE

▶ In this lecture we manly see eclipse as an IDE.

▶ Programming requires the use of many tools:

■ editors (vim, emacs)

■ compilers (gcc, javac)

■ code analyzers (lyn)

■ debuggers (gdb, jdb)

■ build-tools (make, ant, maven)

■ version control (cvs, svn, git, ClearCase)

▶ IDEs integrate those tools into a single coherent environment.

■ one rich graphical user interface

■ one configuration scheme

■ The different tools are integrated with each other.

7

Eclipse Versions

▶ download: http://www.eclipse.org/downloads/

▶ Eclipse 3.x releases are: Callisto, Europa, Ganymede,
Galileo, Helios, Indigo (3.7, latest)

▶ Eclipse 4.x releases are: Juno (4.2), Kepler (4.3), Luna (4.4,
current)

▶ There is a 32- and 64-bit version for Windows, MacOS,
and Linux/Unix.

▶ Eclipse is Java-based but uses SWT, a GUI-toolkit with platform
specific versions.

▶ There are different packages (different collections of plug-ins) for
different use-case. For this lecture Eclipse Modeling Tools has most
needed plug-ins pre-installed.

8

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

Eclipse Vocabulary (I)

▶ Workbench, Perspective, Editor, View

▶ Project

■ organizational unit for your work

■ corresponds to a folder on your hard-drive, by default in the workspace
directory

■ is a resource

▶ Project Properties

■ project specific configuration
allows to create project specific settings for large parts of the preferences

▶ Project Nature

■ e.g. Java Project, EMF-Projects, xText-Project

■ determines project properties, build-process, specific sub-folder types (e.g.
source-folder)

9

Eclipse Vocabulary (I)

▶ Workbench, Perspective, Editor, View

▶ Project

■ organizational unit for your work

■ corresponds to a folder on your hard-drive, by default in the workspace
directory

■ is a resource

▶ Project Properties

■ project specific configuration
allows to create project specific settings for large parts of the preferences

▶ Project Nature

■ e.g. Java Project, EMF-Projects, xText-Project

■ determines project properties, build-process, specific sub-folder types (e.g.
source-folder)

9

31

Tool bar

Perspective
and
Fast View
bar

Resource
Navigator
view

Stacked
views

Properties
view

Tasks
view

Outline
view

Bookmarks
view

Menu bar

Message
area

Editor
Status
area

Text
editor

Eclipse Vocabulary (II)

▶ Resource

■ generic term for folders, files, and sometimes file-like (virtual
resources) entities

▶ Preferences

■ eclipse wide configuration organized by plug-ins

▶ Launch-configuration

■ e.g. Java Application, RCP/Eclipse Application

■ used to Run, Debug, Profile

10

Eclipse Books/Resources

11

Lars Vogel: http://www.vogella.com/tutorials/eclipse.html
Eclipse: http://help.eclipse.org/ (PDE Dev. Guide)

http://www.vogella.com/tutorials/eclipse.html
http://www.vogella.com/tutorials/eclipse.html
http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/guide/int.htm?cp=2_0_0
http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/guide/int.htm?cp=2_0_0

Eclipse Plug-ins Vocabulary

▶ OSGi, Equinox

■ Open Service Gateway initiative (OSGi) specification

■ modular system and service platform

■ dynamic component model

■ Equinox is one implementation of OSGi

▶ Bundle, Plug-in, Feature, Application

▶ Dependency, Extension, Extension-point

▶ Plug-in Development Environment (PDE)

▶ PDE-project

■ special Java-project nature

■ contains manifest and plugin.xml

12

13

Eclipse Architecture (I)

Java VM
Standard Java2
Virtual Machine

PlatformEclipse Platform

Java development
tools (JDT)

JDT

PDEPlug-in development
environment (PDE)

▶ Eclipse is a universal platform
for integrating development tools

▶ Open, extensible architecture based on plug-ins

14

Eclipse Architecture (II)

Platform Runtime

Workspace

Help

Team

Workbench

JFace

SWT

Eclipse Project

Java
Development

Tools
(JDT)

Their
Tool

Your
Tool

Another
Tool

Plug-in
Development
Environment

(PDE)

Eclipse Platform

Debug

Eclipse RCPs – Examples

15

Eclipse RCPs – Examples

15

Eclipse RCPs – Examples

15

Eclipse RCPs – Examples

15

Summary

▶ Eclipse is an extendable IDE

▶ Eclipse is a collection of Eclipse Plug-Ins (and Features, and
Applications, etc.)

▶ Eclipse is a Platform to build Rich Clients (RCP)

16

OSGi / Equinox
▶ Thomas Watson, Peter Kriens: OSGi™ Component

Programming (EclipseCon, 2006)

17

18

What is the OSGi service platform?

▶ A Java™ framework for developing remotely deployed
service applications, that require:

■ Reliability

■ Large scale distribution

■ Wide range of devices

■ Collaborative

▶ Created through collaboration of industry leaders

▶ Specifications publicly available at www.osgi.org

http://www.osgi.org
http://www.osgi.org

19

Evolution (up to 2006)

UPnP
Initial Provisioning

Name Space
Jini

Start Level
IO Connector
Wire Admin
XML Parser

Measurement & State
Position

Execution Env.

Application Manager
MIDP Container
Signed Bundles

Declarative Services
Power Management
Device Management

Security Policies
UPnP Exporter

Diagnostics/Monitoring
Framework Layering
Initial Provisioning

UPnP
…

2000 2001 2003 2005

R1

R2

R3

R4

H
om

e
A

ut
om

at
io

n

Ve
hi

cl
e

M
ob

ile

Framework
Http
Log

Device Access

Package Admin
Configuration Admin
Permission Admin

User Admin
Preferences
MetaType

Service Tracker

20

Complexity of Software

▶ A DVD player can contain 1 Million lines of code

■ Comparison: Space Shuttle ~ 0.5 Million

▶ A BMW car can contain up to 50 networked computerized
devices

▶ Eclipse contains 2.5 million lines of code

▶ An average programmer writes an average of 10 lines a day

21

What problems does the OSGi Service Platform address?

in general

▶ The limited (binary) software
portability problem
aaaaaaaaa

▶ The complexity of building
heterogeneous software
systems

■ Supporting the myriad of
configuration, variations, and
customizations required by
today’s devices

▶ Managing the software life-
cycle on the device

for eclipse

▶ Eclipse runs on Windows,
Linux, MacOS, Unix
derivates, 32/64-bit, etc.

▶ Plug-ins, Plug-ins, Plug-ins

■ different package solutions

■ different plug-in versions in
different features

■ 3rd-party plug-ins

■ backward compatibility

▶ Lazy loading: not all plug-ins
need to be started

22

Service Oriented Architectures

▶ Separate the contract from
the implementation

▶ Allows alternate
implementations

▶ Dynamically discover and
bind available
implementations

▶ Based on contract (interface)

▶ Components are reusable

▶ Not coupled to
implementation details

Service Contract

Component
provides

uses

23

OSGi Feature Layering

24

Module Layer

▶ Packaging of applications and
libraries in Bundles

■ Raw Java has significant deployment
issues

▶ Class Loading modularization

■ Raw Java provides the Class Path as
an ordered search list, which makes
it hard to control multiple
applications

▶ Protection

■ Raw Java can not protect certain
packages and classes

▶ Versioning

■ Raw Java can not handle multiple
versions of the same package

▶ A Bundle contains:

■ Manifest (META-INF/MANIFEST.MF)

■ Code

■ Resources

■ build.properties

▶ The Framework:

■ Reads the bundle’s manifest

■ Installs the code and resources

■ Resolves dependencies

▶ During Runtime:

■ Calls the Bundle Activator to start the bundle

■ Manages java classpath

■ Handles the service dependencies

■ Calls the Bundle Activator to stop the bundle

25

Module Layer – What is in a Bundle?

▶ A Bundle contains:

■ Manifest (META-INF/MANIFEST.MF)

■ Code

■ Resources

■ build.properties

▶ The Framework:

■ Reads the bundle’s manifest

■ Installs the code and resources

■ Resolves dependencies

▶ During Runtime:

■ Calls the Bundle Activator to start the bundle

■ Manages java classpath

■ Handles the service dependencies

■ Calls the Bundle Activator to stop the bundle

25

Module Layer – What is in a Bundle?Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Helloworld Plug-in
Bundle-SymbolicName: helloworld
Bundle-Version: 1.0.0
Bundle-Localization: plugin
Bundle-Activator: helloworld.Activator
Import-Package:
 org.osgi.framework;version="1.3.0"

package helloworld;

public class HelloWorld implements BundleActivator {

public void start(BundleContext context)
 throws Exception{

 System.out.println("Hello world!!");
 }

 public void stop(BundleContext context)
 throws Exception {
 System.out.println("Goodbye world!!");
 }

}
source.. = src/
output.. = bin/
bin.includes = META-INF/,\
 .

26

Module layer – Classpath issues

q

p

r
p

q-1.0

q q-2.0

Bundle

Imported package

Exported package

Wire

Constraint

▶ Java applications consists of classes
placed in packages

▶ Java searches for a package or class in
different jar files and directories

■ These are usually specified in the
CLASSPATH environment variable

▶ An OSGi Framework is a network of
class loaders.

■ Parameterized by the Manifest headers

▶ Any dependencies between bundles are
resolved by the Framework

▶ It is possible to fetch bundles on
demand

▶ Complicated – But an OSGi Framework
makes it painless to use

27

Module layer – OSGi dependency resolution

Framework
 org.osgi.framework
 org.osgi.service.http

27

Module layer – OSGi dependency resolution

Bundle A
Export org.osgi.service.log
 com.ibm.service.log
 com.ibm.j9
Import org.osgi.service.http
 javax.servlet.http

Framework
 org.osgi.framework
 org.osgi.service.http

27

Module layer – OSGi dependency resolution

Bundle A
Export org.osgi.service.log
 com.ibm.service.log
 com.ibm.j9
Import org.osgi.service.http
 javax.servlet.http

Framework
 org.osgi.framework
 org.osgi.service.http

27

Module layer – OSGi dependency resolution

Bundle A
Export org.osgi.service.log
 com.ibm.service.log
 com.ibm.j9
Import org.osgi.service.http
 javax.servlet.http

Framework
 org.osgi.framework
 org.osgi.service.http

Bundle B
Export ericsson.osgi
 javax.servlet
 javax.servlet.http
 org.osgi.service.log
Import org.osgi.service.http
 org.osgi.service.log

27

Module layer – OSGi dependency resolution

Bundle A
Export org.osgi.service.log
 com.ibm.service.log
 com.ibm.j9
Import org.osgi.service.http
 javax.servlet.http

Framework
 org.osgi.framework
 org.osgi.service.http

Bundle B
Export ericsson.osgi
 javax.servlet
 javax.servlet.http
 org.osgi.service.log
Import org.osgi.service.http
 org.osgi.service.log

27

Module layer – OSGi dependency resolution

Bundle A
Export org.osgi.service.log
 com.ibm.service.log
 com.ibm.j9
Import org.osgi.service.http
 javax.servlet.http

Framework
 org.osgi.framework
 org.osgi.service.http

Bundle B
Export ericsson.osgi
 javax.servlet
 javax.servlet.http
 org.osgi.service.log
Import org.osgi.service.http
 org.osgi.service.log

A resolved

27

Module layer – OSGi dependency resolution

Bundle A
Export org.osgi.service.log
 com.ibm.service.log
 com.ibm.j9
Import org.osgi.service.http
 javax.servlet.http

Framework
 org.osgi.framework
 org.osgi.service.http

Bundle B
Export ericsson.osgi
 javax.servlet
 javax.servlet.http
 org.osgi.service.log
Import org.osgi.service.http
 org.osgi.service.log

A resolved

27

Module layer – OSGi dependency resolution

Bundle A
Export org.osgi.service.log
 com.ibm.service.log
 com.ibm.j9
Import org.osgi.service.http
 javax.servlet.http

Framework
 org.osgi.framework
 org.osgi.service.http

Bundle B
Export ericsson.osgi
 javax.servlet
 javax.servlet.http
 org.osgi.service.log
Import org.osgi.service.http
 org.osgi.service.log

A resolved

27

Module layer – OSGi dependency resolution

Bundle A
Export org.osgi.service.log
 com.ibm.service.log
 com.ibm.j9
Import org.osgi.service.http
 javax.servlet.http

Framework
 org.osgi.framework
 org.osgi.service.http

Bundle B
Export ericsson.osgi
 javax.servlet
 javax.servlet.http
 org.osgi.service.log
Import org.osgi.service.http
 org.osgi.service.log

B resolved

A resolved

28

Module layer – Package or Bundle Dependencies?

r

r

s

r

q

p

Require-Bundle

Import-Package

▶ The OSGi Specifications supports both Require-
Bundle and Import-Package

▶ Require-Bundle creates a dependency on a
complete bundle

■ Simple to use

■ Imports packages that are not used

▶ Import-Package creates a dependency on just a
package

■ Creates less brittle bundles because of substitutability

■ More cumbersome to use (Tools!)

▶ In almost all cases, Import-Package is
recommended because it eases deployment and
version migration

▶ The specifications detail a number of additional
problems with Require-Bundle

29

Life Cycle Layer

▶ System Bundle represents the
OSGi Framework

▶ Provides an API for managing
bundles

■ Install

■ Resolve

■ Start

■ Stop

■ Refresh

■ Update

■ Uninstall

▶ Based on the module layer

INSTALLED

RESOLVED

UNINSTALLED

ACTIVE

STOPPING

STARTING

start

stop

30

Service Layer

▶ Provides an in-VM service model

■ Discover (and get notified about) services based on their interface
or properties

■ Bind to one or more services by

◆ program control,

◆ default rules, or

◆ deployment configuration

▶ SOA Confusion

■ Web services bind and discover over the net

■ The OSGi Service Platform binds and discovers inside a Java VM

▶ The OSGi Alliance provides many standardized services

31

What is Equinox ?

▶ An open source community focused on OSGi Technology

■ Develop OSGi specification implementations

■ Prototype ideas related to OSGi

▶ An OSGi Framework implementation

■ Core of the Eclipse runtime

■ Provides the base for Eclipse plug-in collaboration

■ Fully compatible with the OSGi R4 specification

32

The Equinox Target Environment

▶ Eclipse makes it easy to develop for OSGi Service Platforms

▶ A target platform

■ Contains a set of bundles

■ Defines runtime parameters

▶ To Define the Target Platform, goto:

■ Preferences ->Plug-in Development ->Target Platform

■ Select the target project in your workspace as location

32

The Equinox Target Environment

▶ Eclipse makes it easy to develop for OSGi Service Platforms

▶ A target platform

■ Contains a set of bundles

■ Defines runtime parameters

▶ To Define the Target Platform, goto:

■ Preferences ->Plug-in Development ->Target Platform

■ Select the target project in your workspace as location

33

Summary

▶ The OSGi Service Platform is kind of a Java Operating
System

▶ It simplifies:

■ Deployment Problems

■ Software composition

■ Software management

▶ Eclipse provides a development environment for OSGi
Bundles

▶ Eclipse provides open source implementations of the OSGi
specifications in the Equinox project

Eclipse Plug-in Architecture
▶ North Western University, Boston, MA: Introduction to

Eclipse plugin development

34

Eclipse Plug-in Architecture

▶ Plug-in - smallest unit of Eclipse function

■ A special type of OSGi Bundle

■ Large example: Java Editor

■ Small example: Action to create zip files

▶ Extension point: named entity for collecting “contributions”

■ Example: extension point for workbench text editor.

▶ Extension: a contribution

■ Example: extending the text editor for domain specific language
with syntax highlighting and semantics checking.

35

plug-in A plug-in B

class Cinterface I

extension
point P extensioncontributes

creates, calls

implements

▶ Plug-in A

■ Declares extension point P

■ Declares interface I to go with P

▶ Plug-in B

■ Implements interface I with its own class C

■ Contributes class C to extension point P

▶ Plug-in A instantiates C and calls its I methods

Extension and Extension-Points (I)

Extension and Extension-Points (II)

▶ Each plug-in

■ Contributes to 1 or more extension points

■ Optionally declares new extension points

■ Depends on a set of other plug-ins

■ Contains Java code libraries and other files

■ May export Java-based APIs for downstream plug-ins

■ Lives in its own plug-in subdirectory

▶ Details spelled out in the plug-in manifest

■ Manifest declares contributions

■ Code implements contributions and provides API

■ plugin.xml file in root of plug-in subdirectory

37

 <extension-point id=“views”
 name=“Views”
 schema="schema/views.exsd”/>

<extension id=“catalogView"
 point=“org.eclipse.ui.views”>
 <view name=“Catalog”
 icon=“icons/catview.gif”
 class=“com.acme.CatalogView”/>
</extension>

Extension point declaration – plugin.xml

Extension declaration – plugin.xml

The extension-point defines the contract (markup and code) for the
extensions

Metaphor: disc spindle

Extension and Extension-Points (III)

<plugin
 id = “com.example.tool"
 name = “Example Plug-in Tool"
 class = "com.example.tool.ToolPlugin">
 <requires>
 <import plugin = "org.eclipse.core.resources"/>
 <import plugin = "org.eclipse.ui"/>
 </requires>
 <runtime>
 <library name = “tool.jar"/>
 </runtime>
 <extension
 point = "org.eclipse.ui.preferencepages">
 <page id = "com.example.tool.preferences"
 icon = "icons/knob.gif"
 title = “Tool Knobs"
 class = "com.example.tool.ToolPreferenceWizard“/>
 </extension>
 <extension-point
 name = “Frob Providers“
 id = "com.example.tool.frobProvider"/>
</plugin>

Plug-in.xml

<plugin
 id = “com.example.tool"
 name = “Example Plug-in Tool"
 class = "com.example.tool.ToolPlugin">
 <requires>
 <import plugin = "org.eclipse.core.resources"/>
 <import plugin = "org.eclipse.ui"/>
 </requires>
 <runtime>
 <library name = “tool.jar"/>
 </runtime>
 <extension
 point = "org.eclipse.ui.preferencepages">
 <page id = "com.example.tool.preferences"
 icon = "icons/knob.gif"
 title = “Tool Knobs"
 class = "com.example.tool.ToolPreferenceWizard“/>
 </extension>
 <extension-point
 name = “Frob Providers“
 id = "com.example.tool.frobProvider"/>
</plugin>

Plug-in identification

Plug-in.xml

<plugin
 id = “com.example.tool"
 name = “Example Plug-in Tool"
 class = "com.example.tool.ToolPlugin">
 <requires>
 <import plugin = "org.eclipse.core.resources"/>
 <import plugin = "org.eclipse.ui"/>
 </requires>
 <runtime>
 <library name = “tool.jar"/>
 </runtime>
 <extension
 point = "org.eclipse.ui.preferencepages">
 <page id = "com.example.tool.preferences"
 icon = "icons/knob.gif"
 title = “Tool Knobs"
 class = "com.example.tool.ToolPreferenceWizard“/>
 </extension>
 <extension-point
 name = “Frob Providers“
 id = "com.example.tool.frobProvider"/>
</plugin>

Other plug-ins needed

Plug-in identification

Plug-in.xml

<plugin
 id = “com.example.tool"
 name = “Example Plug-in Tool"
 class = "com.example.tool.ToolPlugin">
 <requires>
 <import plugin = "org.eclipse.core.resources"/>
 <import plugin = "org.eclipse.ui"/>
 </requires>
 <runtime>
 <library name = “tool.jar"/>
 </runtime>
 <extension
 point = "org.eclipse.ui.preferencepages">
 <page id = "com.example.tool.preferences"
 icon = "icons/knob.gif"
 title = “Tool Knobs"
 class = "com.example.tool.ToolPreferenceWizard“/>
 </extension>
 <extension-point
 name = “Frob Providers“
 id = "com.example.tool.frobProvider"/>
</plugin>

Location of plug-in’s code

Other plug-ins needed

Plug-in identification

Plug-in.xml

<plugin
 id = “com.example.tool"
 name = “Example Plug-in Tool"
 class = "com.example.tool.ToolPlugin">
 <requires>
 <import plugin = "org.eclipse.core.resources"/>
 <import plugin = "org.eclipse.ui"/>
 </requires>
 <runtime>
 <library name = “tool.jar"/>
 </runtime>
 <extension
 point = "org.eclipse.ui.preferencepages">
 <page id = "com.example.tool.preferences"
 icon = "icons/knob.gif"
 title = “Tool Knobs"
 class = "com.example.tool.ToolPreferenceWizard“/>
 </extension>
 <extension-point
 name = “Frob Providers“
 id = "com.example.tool.frobProvider"/>
</plugin>

Declare
contribution

this plug-in makes

Location of plug-in’s code

Other plug-ins needed

Plug-in identification

Plug-in.xml

<plugin
 id = “com.example.tool"
 name = “Example Plug-in Tool"
 class = "com.example.tool.ToolPlugin">
 <requires>
 <import plugin = "org.eclipse.core.resources"/>
 <import plugin = "org.eclipse.ui"/>
 </requires>
 <runtime>
 <library name = “tool.jar"/>
 </runtime>
 <extension
 point = "org.eclipse.ui.preferencepages">
 <page id = "com.example.tool.preferences"
 icon = "icons/knob.gif"
 title = “Tool Knobs"
 class = "com.example.tool.ToolPreferenceWizard“/>
 </extension>
 <extension-point
 name = “Frob Providers“
 id = "com.example.tool.frobProvider"/>
</plugin>

Declare
contribution

this plug-in makes
Declare new extension point
open to contributions from

other plug-ins

Location of plug-in’s code

Other plug-ins needed

Plug-in identification

Plug-in.xml

Eclipse Platform
▶ North Western University, Boston, MA: Introduction to

Eclipse plugin development

40

Some Eclipse Platform Components

▶ SWT - Standard Widget Toolkit

▶ JFace – Framework providing higher-level UI abstractions

▶ Workbench – Provides reusable and extensible UI
metaphors

▶ Text - Framework(s) for building high-function text editors

▶ UI Forms - Framework for building forms-based views and
editors

▶ GEF - Framework for building rich graphical editors

41

SWT - Standard Widget Toolkit

42

JFace

▶ Framework on top of SWT providing higher-level UI
abstractions

■ Application window: menu bar, tool bar, content area & status
line

■ Viewers (MVC pattern)

■ Actions, action bars (abstracts menu items, tool items)

■ Preference and wizard framework

43

Workbench

▶ Defines reusable and extensible UI
metaphors

▶ Leverages extension point
mechanism and JFace abstractions.

▶ Provides:

■ Views

■ Editors

■ Action sets

■ Perspectives

■ Wizards

■ Preference pages

■ Commands and Key Bindings

■ Undo/Redo support

■ Presentations and Themes

■ ...

44

▶ Framework(s) for building high-function text editors

■ document infrastructure

◆ text manipulation through text edits

◆ positions and linked position manager

◆ template support

◆ projection (aka folding) support

■ source viewer framework

◆ provides Text-, SourceViewer and SourceViewerConfiguration

◆ concept of annotations, annotations painter, hovers

◆ concept of content assist

◆ incremental syntax coloring (presentation reconciler)

◆ incremental outline update (model reconciler)

◆ formatter infrastructure

■ text editor framework

◆ leverages source viewer framework for use in workbench editors

◆ provides AbstractTextEditor

Text Editor Framework

45

UI Forms

▶ Form consisting of multiple FormParts

▶ Extra widgets:

■ FormText (marked-up text)

■ ScrolledForm

■ Section

■ MasterDetailsBlock

▶ Extra layouts:

■ TableWrapLayout (HTML-like)

■ ColumnLayout (newspaper-like)

▶ Flat look, lightweight borders

▶ Forms-based multi-page editor

▶ Used extensively in PDE
46

GEF (Graphical Editor Framework)

▶ Framework for building
rich graphical editors

■ Draw2D - structured
graphics drawing
framework

■ Graphical editor
framework:

◆ MVC architecture

◆ Undo/Redo support

◆ Palette and common
tools
for manipulating objects

◆ Integration with Properties
and Outline view

47

User Assistance Components

▶ Eclipse Help – Help UI on top of an extensible help content
model

▶ Intro support – Provides the “welcome experience” for your
product

▶ Cheat sheets – Provides guidance through complex tasks

48

Plug-in Development Environment
(PDE)

49

50

Plug-in Development Environment

▶ PDE = Plug-in development environment

▶ Specialized tools for developing Eclipse plug-ins

▶ Built atop Eclipse Platform and JDT

■ Implemented as Eclipse plug-ins

■ Using Eclipse Platform and JDT APIs and extension points

▶ Included in Eclipse Project releases

■ Separately installable feature

■ Part of Eclipse SDK drops

51

PDE Goals

▶ To make it easier to develop Eclipse plug-ins

▶ Support self-hosted Eclipse development

52

PDE Templates

▶ PDE templates for
creating simple plug-in
projects

PDE Plugin Structure

53

PDE Plugin Structure

53

plugin project

plugin dependencies

code

bundle activator

example extension code

manifest files

54

PDE Manifest Editor

▶ Specialized PDE editor
for plug-in manifest files

■ MANIFEST.MF

■ plugin.xml

■ build.properties

54

PDE Manifest Editor

▶ Specialized PDE editor
for plug-in manifest files

■ MANIFEST.MF

■ plugin.xml

■ build.properties

54

PDE Manifest Editor

▶ Specialized PDE editor
for plug-in manifest files

■ MANIFEST.MF

■ plugin.xml

■ build.properties

54

PDE Manifest Editor

▶ Specialized PDE editor
for plug-in manifest files

■ MANIFEST.MF

■ plugin.xml

■ build.properties

55

PDE

▶ PDE runs and debugs another Eclipse workbench

1. Workbench
running PDE

(host)

2. Run-time
workbench

 (target)

55

PDE

▶ PDE runs and debugs another Eclipse workbench

1. Workbench
running PDE

(host)

2. Run-time
workbench

 (target)

55

PDE

▶ PDE runs and debugs another Eclipse workbench

1. Workbench
running PDE

(host)

2. Run-time
workbench

 (target)

55

PDE

▶ PDE runs and debugs another Eclipse workbench

1. Workbench
running PDE

(host)

2. Run-time
workbench

 (target)

56

Summary

▶ PDE makes it easier to develop Eclipse plug-ins

▶ PDE is basis for self-hosted
Eclipse development

Plug-in Distribution Options

57

Distribution Options

▶ Plugin

▶ Feature

▶ Rich Client Applications (RCP) or simple applications

▶ update site

▶ p2 (OSGi provisioning)

58

Plugin

▶ build.properties describes how the plugin is exported

▶ exports into .jar file via eclipse

▶ can be manually put into eclipse installations

▶ dependencies, versions, target platforms are not checked,
inherently unsafe

59

Features

▶ Special PDE project type: feature project

▶ Describe feature via feature.xml and a special editor

■ plugins

■ depending plugins and features

■ target platform

■ versions

■ license

▶ Can be bundled into applications

▶ Can be served via update sites

60

(Rich Client) Applications

▶ Special PDE extension point: application

▶ Special PDE file type and editor: product configuration

■ based on launch configuration (specific application
configuration) or application

■ configuration contains

◆ plugins and features (and dependencies)

◆ target platform (for different OSes)

◆ branding, licesing, splash screen

61

Update Site

▶ Special PDE project type: update project

▶ Special PDE file editor: site.xml

■ categories

■ features

▶ Can be exported and served via web server or p2 repository

62

p2

▶ p2 is an extensible provisioning platform for OSGi

▶ lots of UI for Equinox-based applications

▶ allows you to create

■ add-on manager for RCP applications

■ installer

■ configuration management system

■ self updating of applications

■ repository

63

Summary

▶ lots of distribution options

▶ most important: plugin vs. application

▶ software modeling tools and DSLs are usually distributed as
plugin and features

64

