
Algorithms and Data Structures

Ulf Leser

AVL: Balanced Search Trees

Ulf Leser: Algorithms and Data Structures 2

Content of this Lecture

• AVL Trees
• Searching
• Inserting
• Deleting

Ulf Leser: Algorithms and Data Structures 3

History

• Adelson-Velskii, G. M. and Landis, E. M. (1962). "An
information organization algorithm (in Russian)", Doklady
Akademia Nauk SSSR. 146: 263–266.
– Georgi Maximowitsch Adelson-Welski (russ. Георгий Максимович

Адельсон-Вельский; weitere gebräuchliche Transkription Adelson-
Velsky und Adelson-Velski; *1922 in Samara, †2014 in Israel) ist
ein russischer Mathematiker und Informatiker. Zusammen mit J.M.
Landis entwickelte er 1962 die Datenstruktur des AVL-Baums.

– Jewgeni Michailowitsch Landis (russ. Евгений Михайлович
Ландис; *1921 in Charkiw, Ukraine; †1997 in Moskau) war ein
sowjetischer Mathematiker und Informatiker … Zusammen mit G.
Adelson-Velsky entwickelte Landis 1962 die Datenstruktur des AVL-
Baums.

– Source: http://www.wikipedia.de/

Ulf Leser: Algorithms and Data Structures 4

Balanced Trees

• Natural search trees: Searching / inserting / deleting is
O(log(n)) on average, but O(n) in worst-case

• Complexity directly depends on tree height
• Balanced trees are binary search trees with certain

constraints on tree height
– Intuitively: All leaves have “similar” depth: ~log(n)
– Accordingly, searching / deleting / inserting is in O(log(n))
– Difficulty: Keep the height constraints during tree updates

• First proposal of balanced trees is attributed to [AVL62]
• Many more since then: brother-, RB-, B-, B*-, BB-, … trees

Ulf Leser: Algorithms and Data Structures 5

AVL Trees

• Definition
An AVL tree T=(V, E) is a binary search tree in which the
following constraint holds:
∀v∈V: |height(v.leftChild) - height(v.rightChild)| ≤ 1

• Remarks
– AVL trees are height–balanced

• Condition does not imply that the level of all leaves differ by at most 1
– Will call this constraint height constraint (HC)
– AVL trees are search trees, i.e., the search constraint (SC) also

must hold: Right child is larger than parent is larger than left child

Ulf Leser: Algorithms and Data Structures 6

Examples [source: S. Albers, 2010]

AVL? AVL? AVL?

Ulf Leser: Algorithms and Data Structures 7

„Unbalancing“

Ulf Leser: Algorithms and Data Structures 8

Worst-Case

Ulf Leser: Algorithms and Data Structures 9

Height of an AVL Tree

• Lemma
The height h of an AVL tree T with |V|=n is in O(log(n))

• Proof by induction
– We construct AVL trees with

the minimal # of nodes (n) at a
given height h

– Let m be the number of leaves
– h=0 ⇒ m=1
– h=1 ⇒ m=1 or m=2
– h=2 ⇒ 2≤m≤4
– h=3 ⇒ 3≤m≤8

Ulf Leser: Algorithms and Data Structures 10

Height of an AVL Tree

• Lemma
An AVL tree T with n nodes has height h ≤ O(log(n))

• Proof by induction
– We construct AVL trees with the

minimal # of nodes (n) at a given
height h

– Let m(h) be the minimal number
of leaves of an AVL tree of
height h

– It holds: m(h) = m(h-1)+m(h-2)

– Such “maximally unbalanced” AVL trees are called Fibonacci-Trees

Ulf Leser: Algorithms and Data Structures 11

Proof Continued

• Because: m(h) are exactly the Fibonacci numbers fib
– 0, 1, 1, 2, 3, 5, 8…

• Recall (from Fibonacci search)

• Since h “starts” at i=1

• This yields (recall: In binary trees: n≤2m-1 ⇒ (n+1)/2≤m)

hhh ccchfibhm 61,1'*61,1*61,1*61,1*~)1()(1 ==+= +

i

ii

cifib 61,1*
2

51*
2

51*
5

1
2

51
5

1~)(
1

=






 +







 +
=







 +
+

))(log(61,1'*~)(
2

1 nOhchmn h ≤⇒≤
+

Ulf Leser: Algorithms and Data Structures 12

Content of this Lecture

• AVL Trees
• Searching
• Inserting
• Deleting

Ulf Leser: Algorithms and Data Structures 13

Searching in an AVL Tree

• Searching is in O(log(n))
– Follows directly from the worst-case height

• Note: The best-case height is ceil(log(n)), so best-case and
worst-case asymptotically are of the same order

• But how can we ensure that the HC is always fulfilled?

Ulf Leser: Algorithms and Data Structures 14

Inserting

• We start with insertions
• The trick is to insert nodes efficiently without hurting the

height constraint (HC) nor the search constraint (SC)
• We first explain the procedure(s) and then prove that

HC/SC always holds after insertion of a node if HC/SC held
before this insertion

• We have to work for the HC; SC follows almost
automatically from the procedure

Ulf Leser: Algorithms and Data Structures 15

Framework

• Assume an AVL tree T=(V, E) and we want to insert k, k∉V
• As for search trees, we first check whether k∈V and end in

a node p where we know that k cannot be in the subtree
rooted at p, but must be placed there

• What are the possible situations?
• This is one:

k<p

p<k’’k

k’<k

Ulf Leser: Algorithms and Data Structures 16

Height Constraints

k<p

p<k’’k

k’<k

Ulf Leser: Algorithms and Data Structures 17

How to Proof the HC

• We now only look at this
particular case

• Before insertion, HC and SC held
– Note: k’’ cannot have children

• Height constraint after ins(k)
– The height of only one subtree

changes – left child of p
– Adding k does not hurt HC in p (because k’’ exists)
– Thus, HC holds after insertion

• Search constraint (we have k’<k<p<k’’)
– Since k is larger than k’, it must be in the right subtree of k’
– Since k is smaller than p, it must be in the left subtree of p
– This subtree didn’t exit and is created now
– Thus, SC holds after insertion

k<p

p<k’’k

k’<k

Ulf Leser: Algorithms and Data Structures 18

The Essential Information

• Since we do not change the height of the subtree under
p (nor of any other subtree), the HC must hold for
ancestors of p and all nodes of T after insertion if it held
before insertion

k<p

p<k’’k

k’<k

Ulf Leser: Algorithms and Data Structures 19

Other Cases

• Also trivial

• Problem
– The subtree of p = the left subtree of k’

changes its height
– We have to look at the height of the

right subtree of k’ to decide what to do
– Actually, we only need to know if it is

larger, smaller, or equal in height to the
left subtree (before insertion)

p<k

k’’<p k

k<k’

p<k

k

k<k’

Ulf Leser: Algorithms and Data Structures 20

Abstraction

• We assume that we found the position of k such that SC
holds after insertion
– We don’t need to check from now on – its part of the case

• To check HC, we need to know the prior height differences
in every node that is an ancestor of the new position of k

• Definition
Let T=(V, E) be a binary tree and p∈V. We define
bal(p) = height(right_child(p)) – height(left_child(p))

• Lemma
If T is an AVL tree, then ∀p: bal(p) ∈ {-1, 0, 1}

Ulf Leser: Algorithms and Data Structures 21

New Presentation

k<p

p<k’’k

l’<k

p<k

k’’<p k

k<k’

p<k

k

k<k’

+1

0k

-1

0 k

0

k

Ulf Leser: Algorithms and Data Structures 22

Now Systematically: 3 Cases

• Assume AVL tree T=(V, E) and we want to insert k, k∉V
• We found parent p under which we must insert k (for SC)
• Three possible cases

• Case 1: bal(p)=+1
– Then there exists a right “subtree” of p

(one node only)
– We insert k as left child
– Height of p doesn’t change

• Ancestors of p remain unaffected
– Adapt bal(p) and we are done

+1

0

0

0k

Ulf Leser: Algorithms and Data Structures 23

Case 2

• Assume AVL tree T=(V, E) and we want to insert k, k∉V
• We found parent p under which we must insert k (for SC)
• Three possible cases

• Case 2: bal(p)=-1
– Then there exists a left “subtree” of p

(one node only)
– We insert k as right child
– Height of p doesn’t change

• Ancestors of p remain unaffected
– Adapt bal(p) and we are done

-1

0

0

0 k

Ulf Leser: Algorithms and Data Structures 24

Case 3

• Assume AVL tree T=(V, E) and we want to insert k, k∉V
• We found parent p under which we must insert k (for SC)
• Three possible cases

• Case 3: bal(p)=0
– There is neither a left nor a

right subtree of p (p is a leaf)
– We insert k as left or right child
– Height of p changes (HC valid?)
– Ancestors of p are affected
– Idea: Adapt bal(p) and look at parent(p)

0

+/-1

k?k?

Ulf Leser: Algorithms and Data Structures 25

Up the Tree

• If bal(p)=0, we have to check HC in ancestors of p
• We call a procedure upin(p) recursively

– We look at the parent p’ of p
– We check bal(p’) to see if the height change in p breaks HC in p’
– If not, we are done
– If yes, we can either fix it locally (below p’) or have to propagate

further up the tree
• “Fixing locally” in constant time is the main trick behind

AVL trees
• Since we can call upin(p) only O(log(n)) times – the height

of an AVL tree with n nodes – and do only constant work:
Insertion is in O(log(n))

Ulf Leser: Algorithms and Data Structures 26

Subcases – Somewhere in the Tree

• p can either be the left or the right child of its parent p‘
• Note that bal(p) must be +1 or -1 when upin() is called

– We call this PC, the precondition of upin()
– In the first call, bal(p)=0 before insertion, thus +1/-1 afterwards
– In later calls: We have to check

Case 3.1 Case 3.2

bal(p)∈{+1,-1}

p’

k

bal(p)∈{+1,-1}

p’

k

Ulf Leser: Algorithms and Data Structures 27

Subcases of Case 3.1

bal(p)∈{+1,-1}

p’

k

bal(p)∈{+1,-1}

bal(p’)=+1

k

bal(p)∈{+1,-1}

bal(p’)=0

k

bal(p)∈{+1,-1}

bal(p’)=-1

k

Case 3.1.1

Case 3.1.2
Case 3.1.3

Ulf Leser: Algorithms and Data Structures 28

Subcases of Case 3.1

• Case 3.1.1 (bal(p’)=+1)
– Right subtree of p‘ was higher

than left subtree
– Left subtree has just grown by 1
– Thus, height of p‘ doesn‘t change
– Set bal(p‘)=0 and we are done

• Case 3.1.2 (bal(p’)=0)
– Left and right subtree of p’ had

same height
– Height of p’ changes, but HC

holds in p’
– Set bal(p’)=-1 and call upin(p’)

• Note: PC holds

bal(p)∈{+1,-1}

bal(p’)=+1

k

bal(p)∈{+1,-1}

bal(p’)=0

k

Ulf Leser: Algorithms and Data Structures 29

Subcases of Case 3.1

• Case 3.1.3 (bal(p’)=-1)
– Left subtree of p‘ was already

higher than right subtree
– And has even grown further
– HC is hurt in p’
– Fix locally – but how?

• Case 3.1.3.1 Case 3.1.3.2

bal(p)∈{+1,-1}

bal(p’)=-1

k

-1

-1

1 2
3

+1

-1

1 2
3

Ulf Leser: Algorithms and Data Structures 30

A Closer Look

• Subtree 1 contains values smaller than p (and than p’)
• Subtree 2 contains values larger than p, but smaller than p’
• Subtree 3 contains values larger than p’ (and than p)
• Can we rearrange the subtrees rooted in p’ such that SC

and HC hold?

-1

-1

1 2
3

Case 3.1.3.1

Ulf Leser: Algorithms and Data Structures 31

Example

• Subtree 1 contains values smaller than p (and than p’)
• Subtree 2 contains values larger than p, but smaller than p’
• Subtree 3 contains values larger than p’ (and than p)
• Idea: There are not “enough” values larger than p’
• Thus, p’ cannot be root of this subtree – rotate

4

8

-3 5-7
9-

Ulf Leser: Algorithms and Data Structures 32

Rotation

• Rotate nodes p and p’ to the right
– Tree “-3” has lost height (8 moved)

• Fine: Was too high
– Tree “9-” gained height (4 on top)

• Fine: Was too low

4

8

-3 5-7
9-

4

8

-3 5-7 9-

Ulf Leser: Algorithms and Data Structures 33

Rotation

• Rotate nodes p and p’ to the right
– Tree “5-7” keeps height

• Clearly, SC holds
• Impact on HC?

4

8

-3 5-7
9-

4

8

-3 5-7 9-

Ulf Leser: Algorithms and Data Structures 34

Rotation and HC

• Before rotation after insertion
– p’: HC hurt in left subtree

(height now is h+1) versus right
subtree (height remains h-1)

– Entire subtree at p’ before
insertion had height h+1

-1

-1

h h-1
h-1

0

0

h h-1 h-1

h+1 h-1

Ulf Leser: Algorithms and Data Structures 35

Rotation and HC

• After rotation
– HC holds
– Height of subtree at p’ is

h+1 and hence unchanged
– No further upin()

-1

-1

h h-1
h-1

0

0

h h-1 h-1

• Before rotation after insertion
– p’: HC hurt in left subtree

(height now is h+1) versus right
subtree (height remains h-1)

– Entire subtree at p’ before
insertion had height h+1

Ulf Leser: Algorithms and Data Structures 36

Second Sub-Sub-Subcase

• Case 3.1.3
– Left subtree of p‘ was already

higher than right subtree
– And has even grown
– HC is hurt in p’
– Fix locally
– How?

• Case 3.1.3.1 Case 3.1.3.2

bal(p)∈{+1,-1}

bal(p’)=-1

k

-1

-1

1 2
3

+1

-1

1 2
3

Ulf Leser: Algorithms and Data Structures 37

More Intricate

• HC hurt (height of left subtree of p’ is h+1, right ST is h-1)
• If we rotated to the right, p (the new root) would have a

left subtree of height h-1 and a right subtree of height h+1
– The “deep” subtree “h” remains deep

• Forbidden by HC
• We have to break into the subtree “h”

+1

-1

h-1 h
h-1

?

-1

h-1 h h-1

Ulf Leser: Algorithms and Data Structures 38

Breaking a Subtree

• height(v)=h
• Thus, height(X)/height(Y) must be

h-1/h-1 or h-1/h-2 or h-2/h-1
• But: Since the subtree rooted at p has just grown in

height, this growth must have happened below v (because
bal(p)=+1), so we must have height(X)≠height(Y)

+1

-1

h-1 h
h-1

+1

-1

h-1

X
h-1 or
h-2

h-1

Y
h-1 or
h-2

v

=

Ulf Leser: Algorithms and Data Structures 39

Double Rotation: First Rotation

p

p’

h-1

X
h-1 or
h-2

h-1

Y
h-1 or
h-2

v

p

p’

h-1 X
h-1 or
h-2

h-1

Y
h-1 or
h-2

v

Ulf Leser: Algorithms and Data Structures 40

Double Rotation: Second Rotation

p

p’

h-1 X
h-1 or
h-2

h-1

Y
h-1 or
h-2

v

p

p’

h-1 X
h-1 or
h-2

h-1

Y
h-1 or
h-2

v

Ulf Leser: Algorithms and Data Structures 41

AVL Constraints

• Adaptation: If h(X)=-1 and
h(Y)=-2, we now get
– bal(p) = 0
– bal(p’) = +1
– bal(v) = 0

• Both ST have height h

• Height constraint
– Holds in every node

• Need to call upin(v)?
– No: Subtree had height h+1

and still has height h+1
• Search constraint?

p

p’

h-1 X
h-1

h-1
Y

h-2

v

Ulf Leser: Algorithms and Data Structures 42

AVL Constraints

• Adaptation: If h(X)=-2 and
h(Y)=-1, we now get
– bal(p) = -1
– bal(p’) = 0
– bal(v) = 0

• Both ST have height h

• Height constraint
– Holds in every node

• Need to call upin(v)?
– No: Subtree had height h+1

and still has height h+1
• Search constraint?

p

p’

h-1
X

h-2

h-1Y
h-1

v

Ulf Leser: Algorithms and Data Structures 43

Search Constraint

p

p’

p[

]p,v[

]p’

]v,p’[

v p

p’

p[
]p,v[

]p’

]v,p’[

v

Uff

Ulf Leser: Algorithms and Data Structures 44

Are we Done?

• Case 3.2

• Similar solution
– If bal(p’)=-1, adapt and finish
– If bal(p’)=0, adapt and call upin(parent(p’)
– If bal(p’)=+1, then

• Case 3.2.3.1: Rotate left in p
• Case 3.2.3.1: Rotate right in p, then rotate left in v

bal(p)∈{+1,-1}

p’

k

Ulf Leser: Algorithms and Data Structures 45

Summary

• We found the node p under which we want to insert k
• Major cases

– If k<p and rightChild(p)≠null: Insert k (new left child)
– If k>p and leftChild(p)≠null: Insert k (new right child)
– If p has no children: Insert k and call upin(p)

• Procedure upin(p)
– If p=leftChild(p’)

• If bal(p’)=1: Set bal(p’)=0, done
• If bal(p’)=0: Set bal(p’)=-1, call upin(p’)
• If bal(p’)=-1:

– If bal(p)=-1: Rotate right in p, done
– If bal(p)=+1: Rotate left in p, right in v, done

– Else (p=rightChild(p’))
• …

Ulf Leser: Algorithms and Data Structures 46

Example

• HC hurt in p
• rotate left in p

insert 9

insert 8

Ulf Leser: Algorithms and Data Structures 47

Example

• p changes height
• HC hurt in root
• Rotate left in p, then right in root

Ulf Leser: Algorithms and Data Structures 48

Content of this Lecture

• AVL Trees
• Searching
• Inserting
• Deleting

Ulf Leser: Algorithms and Data Structures 49

Deleting a Key

• Follows the same scheme as insertions
• First find the node p which holds k (to be deleted)
• We will again find cases where we have to do nothing,

cases where we have to rotate, and cases where we have
to propagate changes up the tree

• We will be a bit more sloppy than for insertions – details
can be found in [OW]

Ulf Leser: Algorithms and Data Structures 50

Major Cases

• Case 1: k has no children
– Remove k, adapt bal(p)
– If bal(p) is set to 0, then height

has shrunken by 1
• All other cases are easily

resolved locally
– Then call upout(p)

• Case 2: k has only one child
– Replace k with k‘

• k‘ cannot have children, or HC
would not hold in k

– Height of k’ has changed
– Call upout(k’)

p

k

p

k

k’

Ulf Leser: Algorithms and Data Structures 51

Invariant

• Case 1: k has no children
– Remove k, adapt bal(p)
– If bal(p) is set to 0, then height

has shrunken by 1
• All other cases are easily

resolved locally
– Then call upout(p)

• Case 2: k has only one child
– Replace k with k‘

• k‘ cannot have children, or HC
would not hold in k

– Height of k’ has changed
– Call upout(k’)

p

k

p

k

k’

• bal(k’)=0
• Height of k/k’

decreased by
1

• bal(p)=0
• Height of p

decreased by
1

Ulf Leser: Algorithms and Data Structures 52

Case 3

• Case 3: k has two children
– Recall natural search trees
– We search the symmetric

predecessor q of k
– Replace k with q and call

delete(q) (the old one)

p

k

q

1.
Replace k
with q

2. Remove q

Ulf Leser: Algorithms and Data Structures 53

Procedure upout(p)

• Whenever we call upout(p), the height of p has decreased
by 1 and bal(p)=0

• Let p be the left child of its parent p’
– Again, the case of p being the right child of p’ is symmetric

• Case 1; bal(p’)=-1

p

bal(p’)=-1

h

upout(p)

h

p

bal(p’)=0

h-1
h

k

Ulf Leser: Algorithms and Data Structures 54

Procedure upout(p)

• Whenever we call upout(p), the height of p has decreased
by 1 and bal(p)=0

• Let p be the left child of its parent p’
– Again, the case of p being the right child of p’ is symmetric

• Case 2: bal(p’)=0

done

p

bal(p’)=0

h h+1

p

bal(p’)=+1

h-1 h+1

k

Ulf Leser: Algorithms and Data Structures 55

Procedure upout(p)

• Whenever we call upout(p), the height of p has decreased
by 1 and bal(p)=0

• Let p be the left child of its parent p’
– Again, the case of p being the right child of p’ is symmetric

• Case 3: bal(p’)=+1

p

bal(p’)=+1

h
h+2

= p

bal(p’)=+1

0

q

2 3
1

height(q)=height(p)+1

k

Ulf Leser: Algorithms and Data Structures 56

Subcase 1

• Case 3.1: bal(q)=0
• Rotate left in q

p

bal(p’)=+1

0

bal(q)=0

2 3
1

p

bal(p’)=0

0

bal(q)=-1

2
31

Height has not changed - done

Ulf Leser: Algorithms and Data Structures 57

Subcase 2

• Case 3.2: bal(q)=+1
• Rotate left in q (again)

p

bal(p’)=+1

0

bal(q)=+1

2
3

1

p

bal(p’)=0

0

bal(q)=0

2 31

Height has changed – upout(q)

Ulf Leser: Algorithms and Data Structures 58

Subcase 3

• Case 3.3: bal(q)=-1
• Rotate right in q, then left in z

p

bal(p’)=+1

0

bal(q)=-1

2

41

p

p’

0

bal(z)=0

2
3

1

Height has changed – upout(z)

z

3

q

4

Ulf Leser: Algorithms and Data Structures 59

Summary AVL Trees

• With a little work, we reached our goal: Searching,
inserting, and deleting is in O(log(n))

• One can also show that ins/del are in O(1) on average
– Because reorganizations are rare and usually stop very early

• AVL trees are a “work-horse” for managing a sorted list
• AVL trees are bad as disk-based DS

– Disk blocks (b) are much larger than one key, and following a
pointer means one head seek

– Better: B-Trees: Trees of order b with constant height in all leaves
• b typically ~1000 – all children of a node should fill one IO block
• Finding a key only requires O(log1000(n)) seeks

Ulf Leser: Algorithms and Data Structures 60

Exemplary Questions

• Given the following AVL tree and the following sequence of
operations <(I,15>, <D, 25>, <I, 8>, …). Draw the tree
after every operation. In case rotations are necessary, also
draw the tree after every rotation.

• Give a formal proof that the height of a AVL-Tree over n
nodes is in O(log(n)). Use the formula fib(n)~c*1.6n , for
some constant c.

• Consider the following AVL tree. Insert as many nodes as
possible (with arbitrary yet reasonable key values) without
changing the height of any of its subtree.

	Foliennummer 1
	Content of this Lecture
	History
	Balanced Trees
	AVL Trees
	Examples [source: S. Albers, 2010]
	„Unbalancing“
	Worst-Case
	Height of an AVL Tree
	Height of an AVL Tree
	Proof Continued
	Content of this Lecture
	Searching in an AVL Tree
	Inserting
	Framework
	Height Constraints
	How to Proof the HC
	The Essential Information
	Other Cases
	Abstraction
	New Presentation
	Now Systematically: 3 Cases
	Case 2
	Case 3
	Up the Tree
	Subcases – Somewhere in the Tree
	Subcases of Case 3.1
	Subcases of Case 3.1
	Subcases of Case 3.1
	A Closer Look
	Example
	Rotation
	Rotation
	Rotation and HC
	Rotation and HC
	Second Sub-Sub-Subcase
	More Intricate
	Breaking a Subtree
	Double Rotation: First Rotation
	Double Rotation: Second Rotation
	AVL Constraints
	AVL Constraints
	Search Constraint
	Are we Done?
	Summary
	Example
	Example
	Content of this Lecture
	Deleting a Key
	Major Cases
	Invariant
	Case 3
	Procedure upout(p)
	Procedure upout(p)
	Procedure upout(p)
	Subcase 1
	Subcase 2
	Subcase 3
	Summary AVL Trees
	Exemplary Questions

