EINFÜHRUNG IN DIE KRYPTOLOGIE Prof. Dr. J. KÖBLER

Übungsblatt 5

Aufgabe 21 mündlich

Gegeben sei ein Kryptosystem mit Klartextraum $M = \{a, b\}$, wobei $p(a) = \frac{1}{4}$ und $p(b) = \frac{3}{4}$, Schlüsselraum $K = \{k_1, k_2, k_3\}$, wobei $p(k_1) = \frac{1}{2}$ und $p(k_2) = p(k_3) = \frac{1}{4}$ und dem Kryptotextraum $C = \{1, 2, 3, 4\}$, sowie nebenstehender Verschlüsselungsfunktion.

man		
E	a	b
k_1	1	2
k_2	2	3
k_3	3	4

- (a) Berechnen Sie die (bedingten) Wahrscheinlichkeiten p(y) und $p(x \mid y)$ für alle Klartexte $x \in M$ und Kryptotexte $y \in C$.
- (b) Berechnen Sie die Entropie $\mathcal{H}(X)$ der Klartexte, die Entropie $\mathcal{H}(K)$ des Schlüssels und die Entropie $\mathcal{H}(Y)$ der Kryptotexte, sowie die bedingte Entropie $\mathcal{H}(K \mid Y)$.

Aufgabe 22 mündlich

Zeigen Sie:

- (a) Ein Kryptosystem ist absolut sicher, wenn $\sum_{k:E(k,x)=y} p(k) = 1/\|M\|$ für alle $x \in M$ und $y \in C$ gilt. Im Fall $\|C\| = \|M\|$ und p(x) > 0 für alle $x \in M$ ist dies auch notwendig.
- (b) Ein Kryptosystem mit ||K|| < ||M|| und p(x) > 0 für alle $x \in M$ ist nicht absolut sicher.
- (c) Ein Kryptosystem ist genau dann absolut sicher, wenn $\mathcal{H}(X \mid Y) = \mathcal{H}(X)$ ist.
- (d) Ist ein Kryptosystem mit p(x) > 0 für alle $x \in M$ absolut sicher, dann ist es unter allen Klartextverteilungen absolut sicher.

Aufgabe 23 $m\ddot{u}ndlich$

Für zwei Zufallsvariablen X und Y sei $\mathcal{H}(X,Y) = \sum_{x,y} p(x,y) \cdot \log(1/p(x,y))$ die (gemeinsame) Entropie von X und Y. Zeigen Sie:

- (a) $\mathcal{H}(X,Y) = \mathcal{H}(Y) + \mathcal{H}(X \mid Y) = \mathcal{H}(X) + \mathcal{H}(Y \mid X)$.
- (b) $\mathcal{H}(X,Y) \leq \mathcal{H}(X) + \mathcal{H}(Y)$, mit Gleichheit genau dann, wenn X und Y unabhängig sind.

Aufgabe 24 10 Punkte

Zeigen oder widerlegen Sie folgende Aussagen:

- (a) Ist ein Kryptosystem absolut sicher, so gilt $p(y_1) = p(y_2)$ für alle $y_1, y_2 \in C$.
- (b) In einem absolut sicheren Kryptosystem gilt $\mathcal{H}(X) \leq \mathcal{H}(K)$.
- (c) In jedem Kryptosystem gilt $\mathcal{H}(K \mid Y) \geq \mathcal{H}(X \mid Y)$.