
Modellbasierte Softwareentwicklung (MODSOFT)

Part II

Domain Specific Languages

Semantics
Prof. Joachim Fischer /

Dr. Markus Scheidgen / Dipl.-Inf. Andreas Blunk

{fischer,scheidge,blunk}@informatik.hu-berlin.de
LFE Systemanalyse, III.310

1

prolog
(1 VL)

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

0.
(2 VL)

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

1.
(2 VL)

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI

2.
(3 VL)

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

3.
(4 VL)

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

epilog
(2 VL)

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)

Agenda

2

➡

Previously on MODSOFT

3

Eclipse Modeling Framework

4

structure

EMFnotation semantics

Repository

Revision Diff

Compilation
Unit

* *

prevnext

«relation,
fragmentation»

* *

Meta-Languages

5

editor/
parser

repository/
constraint checker

compiler/
simulator/
intepreter

instance representation
(program, model, description)

instance semantics
(running software, results)

la
ng

ua
ge

 to
ol

s notationmeta tools

structuremeta tools

semanticsmeta tools

human input

generated output

Different Types of Semantics

▶ Operational Semantics

▶ Denotational Semantics

▶ Axiomatic Semantics

▶ Translational Semantics

6

Semantics and DSLs

7

DSL Validation

CheckingPetri-Nets

Simulation
Language Simulation

Java

C++

Java Tests

C++ Tests

Xtend

8

Xtend

▶ External DSL

▶ transparently compiles into Java

▶ written with Xtext

▶ Xtext code can be called from Java code, Java code can be
called from within Xtext code

9

Xtend Examples

10

Xtend Basics

package example1

class HelloWorld {
	 def static void main(String[] args) {
	 	 println('Hello World!')
	 }
}

11

Rich Strings
class BottleSong {
	
	 @Test def void singIt() {
	 	 println(singTheSong(99))
	 }
	
	 def singTheSong(int all) '''
	 	 «FOR i : all .. 1»
	 	 	 «i.Bottles» of beer on the wall, «i.bottles» of beer.
	 	 	 Take one down and pass it around, «(i - 1).bottles» of beer on the wall.
	 	 	
	 	 «ENDFOR»
	 	 No more bottles of beer on the wall, no more bottles of beer.
	 	 Go to the store and buy some more, «all.bottles» of beer on the wall.
	 '''

}

class BottleSupport {
	
	 def static bottles(int i) {
	 	 switch i {
	 	 	 case 0 : 'no more bottles'
	 	 	 case 1 : 'one bottle'
	 	 	 default : '''«i» bottles'''
	 	 }.toString
	 }
	
	 def static Bottles(int i) {
	 	 bottles(i).toFirstUpper
	 }
} 12

@Data class Movie {
	 String title
	 int year
	 double rating
	 long numberOfVotes
	 Set<String> categories
}

13

Higher Order Functions

class Movies {
	
	 @Test def void numberOfActionMovies() {
	 	 assertEquals(828, movies.filter[categories.contains('Action')].size)
	 }
	
	 @Test def void yearOfBestMovieFrom80ies() {
	 	 assertEquals(1989, movies.filter[(1980..1989).contains(year)].sortBy[rating].last.year)
	 }
	
	 @Test def void sumOfVotesOfTop2() {
	 	 val long movies = movies.sortBy[-rating].take(2).map[numberOfVotes].reduce[a, b| a + b]
	 	 assertEquals(47_229, movies)
	 }
	
	 val movies = new FileReader('data.csv').readLines.map[line |
	 	 val segments = line.split(' ').iterator
	 	 return new Movie(
	 	 	 segments.next,
	 	 	 Integer.parseInt(segments.next),
	 	 	 Double.parseDouble(segments.next),
	 	 	 Long.parseLong(segments.next),
	 	 	 segments.toSet
)
]
}

14

Xtext + Xtend

grammar org.xtext.example.mydsl.MyDsl with org.eclipse.xtext.common.Terminals

generate myDsl "http://www.xtext.org/example/mydsl/MyDsl"

Model:
	 greetings+=Greeting*;
	
Greeting:
	 'Hello' name=ID '!';

class MyDslGenerator implements IGenerator {
	
	 override void doGenerate(Resource resource, IFileSystemAccess fsa) {
	 	 fsa.generateFile('greetings.txt', 'People to greet: ' +
	 	 	 resource.allContents
	 	 	 	 .filter(typeof(Greeting))
	 	 	 	 .map[name]
	 	 	 	 .join(', '))
	 }
}

15

http://www.xtext.org/example/mydsl/MyDsl
http://www.xtext.org/example/mydsl/MyDsl

Object Constraint Language (OCL)
Jos Warmer and Anneke Kleppe, JOOP, 1999

16

Outline

▶ Motivation

▶ Basics of OCL

■ Specifying invariants

■ Specifying pre and post-conditions

■ Navigating in OCL expressions

■ Basic values and types

▶ Collections in OCL

17

Review

▶ Protocol

▶ Documenting protocols

■ Syntactic and semantic interfaces

18

Object Constraint Language (OCL)

▶ Motivation

■ UML diagrams don’t tell everything

■ Q: What does the following class diagram tell?

19

security

Person

Mortgage

House

1 1

0..*

0..*

0..*

1

mortgages

borrower
houses

mortgages

owner

OCL – What Is It?

▶ Standard “add-on” to UML

■ OCL expressions dependent on types from UML diagrams

■ defined by Object Management Group (OMG)

▶ Language for expressing additional information (e.g.,
constraints and business rules) about UML models

▶ Characteristics

■ Constraint and query language

■ Math foundation (set and predicate) but no math symbols

■ Strongly typed, declarative, and no side effect

■ High level of abstraction (platform independence)

20

Basics of OCL

▶ Associating OCL expressions to UML models

■ Directly to diagrams as notes

■ Separate accompanying texts, e.g.,

context Person

inv: age >= 0

▶ Specifying invariants

■ State conditions that must be always be met by all instances of
context types (classes or interfaces)

21

Person

-age inv: age >= 0

Basics of OCL – Invariants

context Company inv:

self.numberOfEmployees > 50

context c: Company inv:

c.numberOfEmployees > 50

context c: Company inv enoughEmployees:

c.numberOfEmployees > 50

22

self: contextual instance, an
instance to which the OCL
expression is attached

An explicit specification of
contextual instance, c

an optional label

Specifying Pre and Post-conditions

▶ Pre and post-conditions

■ Conditions that must be true at the moment when an operation
begins and ends its execution.

23

context Account::deposit(amt: Integer): void
pre: amt > 0
post: balance = balance@pre + amt

context Account::deposit(amt: Integer): void
pre argumentOk: amt > 0
post balanceIncreased: balance = balance@pre + amt

optional label

pre-value,
referring to
previous value

Referring to Pre-value and Result

▶ @pre: denotes the value of a property at the start of an
operations

▶ result: denotes the result of an operation

24

context Account::payInterest(rate: Real): void
post: balance = balance@pre + calcInterest@pre(rate)

context Account::getBalance(): Integer
post: result = balance

Navigating in OCL Expressions

▶ Use dot notation to navigate through associations

■ Direction and multiplicity matter

■ Use role names or class names

25

context Account
 inv: self.owner … --comment
 self.customer …

context Customer
 /* multiline comment */
 inv: self.accounts->size() …
 self.account …

CustomerAccount
0..* 1

accounts owner

Arrow notation for collection operations

single line (--) or multiple lines (/* … */)

Types in OCL

▶ Two different kinds

■ Predefined types (as defined in standard library)

◆ Basic types: Integer, Real, String, Boolean

◆ Collection types: Set, OrderedSet, Bag, Sequence

■ User-defined types: classes, interfaces, and enumerations.

▶ Value vs. object types

■ Immutable vs. mutable types

■ All predefined types are value types, i.e., there is no mutation
operation defined.

26

Basic Values and Types

▶ Several built-in types and operations

27

Type Values Operations

Boolean false, true or, and, xor, not, =, <>, implies

Integer -10, 0, 10, … =, <>, <, >, <=, >=, +, -, *, /, mod(),
div(), abs(), max(), min(), round(),
floor()Real -1.5, 3.14, …

=, <>, <, >, <=, >=, +, -, *, /, mod(),
div(), abs(), max(), min(), round(),
floor()

String ‘Carmen’
=, <>, concat(), size(), toLower(),
toUpper(), substring()

Exercise

▶ Write pre and post-conditions

28

Person
- gender: Gender

+ marry(p: Person): void
0..1 spouse

Collections in OCL

▶ Why?

■ Multiple objects produced by navigating associations

■ If multiplicity > 1, collections based on properties

◆ Set: {unique} (default)

◆ OrderedSet: {unique, ordered}

◆ Bag: {notUnique}

◆ Sequence: {notUnique, ordered}

context Account
inv: self.owner.name <> ''

context Customer
inv: self.accounts->size() > 0

CustomerAccount
0..* 1

accounts owner

Standard Collection Types

▶ Parameterized with elements types, e.g., Set(Account)

▶ Value/immutable types, not reference types

▶ One abstract and four concrete types

■ Collection

■ Set, OrderedSet, Bag, Sequence

■ Determined based on properties of associations, e.g., unique,
ordered, and sorted.

30

Collection Types

▶ Properties

▶ Literals

■ Set{10, 100}

■ OrderedSet{'apple', 'orange'}

■ Bag{10, 10, 100}

■ Sequence{10, 10, 100}, Sequence{1..10}, Sequence{1..(5 + 5)}

■ Set{Set{1}, Set{10}}

31

Type Duplicate? Ordered?

Set
OrderedSet
Bag
Sequence

N
N
Y
Y

N
Y
N
Y

*Ordered doesn’t mean sorted.

Collection Operations

▶ Large number of predefined operations

▶ Arrow notation, e.g., c->size()

■ Rationale: allow same-named, user-defined operations, e.g.,
c.size()

32

CustomerAccount
0..* 1

accounts owner

context Account context Account
inv: not owner->isEmpty() inv: not owner.isEmpty()

▶ Defined on all collection types

▶ Type-specific operations

■ append, including, excluding, first, last, insertAt, etc.

Collection Operations

33

Operation Description

count(o)
excludes(o)
excludesAll(c)
includes(o)
includesAll(c)
isEmpty()
notEmpty()
size()
sum()

Number of occurrences of o in the collection (self)
Is o not an element of the collection?
Are all the elements of c not present in the collection?
Is o an element of the collection?
Are all the elements of c contained in the collection?
Does the collection contain no element?
Does the collection contain one or more elements?
Number of elements in the collection
Addition of all elements in the collection

Iteration Operations

▶ Loop over elements by taking one element at a time

▶ Higher-order functions

▶ Iterator variables

■ Optional variable declared and used within body

■ Indicate the element being iterated

■ Always of the element type, thus, type declaration is optional

34

CustomerAccount
0..* 1

accounts owner

context Customer
inv: self.accounts->forAll(a: Account |a.owner = self)
inv: accounts->forAll(a | a.owner = self)
inv: accounts->forAll(owner = self)

Iteration Operations

35

Operation Description
any(expr)
collect(expr)

exists(expr)
forAll(expr)
isUnique(expr)
iterate(x: S; y: T| expr)
one(expr)
reject(expr)
select(expr)
sortedBy(expr)

Returns any element for which expr is true
Returns a collection that results from evaluating expr for each element of
self
Has at least one element for which expr is true?
Is expr true for all elements?
Does expr has unique value for all elements?
Iterates over all elements
Has only one element for which expr is true?
Returns a collection containing all elements for which expr is false
Returns a collection containing all elements for which expr is true
Returns a collection containing all elements ordered by expr

Iteration Operations

36

accounts->any(a: Account | a.balance > 1000)

accounts->collect(name) -- all the names

accounts->exists(balance > 5000)

accounts->forAll(balance >= 0)

accounts->isUnique(name)

accounts->iterate(a: Account; sum: Integer = 0 |
sum + a.balance)

accounts->one(name = ‘Carmen’)

accounts->reject(balance > 1000)

accounts->select(balance <= 1000)

accounts->sortedBy(balance)

Select vs. Collect

▶ Q: Difference between select and collect?

▶ Note that the dot notation is short for collect, e.g.,

37

Customer
0..*

accountscustomers

Account
balance: Integer

Bank
0..*

Note that results are flattened for “collect” and not for “collectNested”.

 context Bank
 inv: self.customers.accounts->forAll(balance > 0)
 inv: self.customers->collect(accounts)

 ->forAll(balance > 0)

The Iterate Operation

▶ Most fundamental and generic loop operation

▶ All other loop operations are special cases
iterate(elem: T1; result: T2 = expr | expr-elem-result)

▶ Example

 Set{1,2,3}->sum()

 Set{1,2,3}->iterate(i:Integer; r:Integer=0 | r + i)

38

Exercise

▶ Formulate constraints for the parents/children and the
derived associations.

39

parents

Person

0..2

0..* children
0..*

0..*
/family tree

ancestors

descendants

▶ Write the pre- and post-conditions of the getBelowAverage
operation that returns all the accounts of a customer of
which balances are below the average balance of the
customer’s accounts.

Exercise

40

0..*1

accounts

Account

+ getBalance(): Real

Customer

+ getBelowAverage(): Set(Account)

Informal Description

▶ Motivation

■ To escape from formality, but why?

■ To mix formal and informal texts in constraints.

▶ Approach

41

AccountCustomer
1 *

owner accounts

context Customer::getBelowAverage(): Set(Account)
pre: not accounts->isEmpty()
post: result = accounts->select(a: Account |

a.getBalance() < informally(“Avg of all account balances”))

Atlas Transformation Language (ATL)
Freddy Allilaire, Frédéric Jouault, 2007

42

Overview

▶ This presentation describes a very simple model transformation
example, some kind of ATL "hello world".

▶ It is intended to be extended later.

▶ The presentation is composed of the following parts:

■ Prerequisites.

■ Introduction.

■ Metamodeling.

■ Transformation.

■ Conclusion.

43

Prerequisites

▶ In the presentation we will not discuss the prerequisites.

▶ The interested reader may look in another presentation to these
prerequisites on:

■ MDE (MOF, XMI, OCL).

■ Eclipse/EMF (ECORE).

■ AMMA/ATL.

44

Introduction

▶ The goal is to present a use case of a model to model
transformation written in ATL.

▶ This use case is named: “Families to Persons”.

▶ Initially we have a text describing a list of families.

▶ We want to transform this into another text describing a list of
persons.

45

Goal of the ATL transformation we are going to write

46

…
Family March

 Father: Jim
 Mother: Cindy
 Son: Brandon
 Daughter: Brenda
… other Families

…
Mr. Jim March
Mrs. Cindy March
Mr. Brandon March
Mrs. Brenda March

… other Persons

Transforming this … … into this.

Let's suppose these are not texts, but models
(we'll discuss the correspondence
between models and texts later).

Input of the transformation is a model

47

Family March
 Father: Jim
 Mother: Cindy
 Son: Brandon
 Daughter: Brenda

Family Sailor
 Father: Peter
 Mother: Jackie
 Son: David
 Son: Dylan
 Daughter: Kelly

This is the text. This is the corresponding model.
It is expressed in XMI,
a standard way to represent models.

Output of the transformation should be a model

48

Mr. Dylan Sailor
Mr. Peter Sailor
Mr. Brandon March
Mr. Jim March
Mr. David Sailor
Mrs. Jackie Sailor
Mrs. Brenda March
Mrs. Cindy March
Mrs. Kelly Sailor

- -

Families to Persons

© 2007 ATLAS Nantes

Each model conforms to a metamodel

Source model
"sample-Families.ecore"

Target model
"sample-Persons.ecore"

Source metamodel

conformsTo

Target metamodel

conformsTo

http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp
http://www.univ-nantes.fr/index.jsp

The general picture

50

Source metamodel

conformsTo

Target metamodel

conformsTo

Source model Target model

Metametamodel (ECORE)

conformsTo

conformsTo

conformsTo

What we need to provide

▶ In order to achieve the transformation, we need to provide:

■ A source metamodel in KM3 ("Families").

■ A source model (in XMI) conforming to "Families".

■ A target metamodel in KM3 ("Persons").

■ A transformation model in ATL ("Families2Persons").

▶ When the ATL transformation is executed, we obtain:

■ A target model (in XMI) conforming to "Persons".

51

Definition of the source metamodel "Families"

52

What is “Families”:
A collection of families.
Each family has a name and is composed

of members:
A father

A mother

Several sons

Several daughters

Each family member has a first name.

Family March
 Father: Jim
 Mother: Cindy
 Son: Brandon
 Daughter: Brenda

Family Sailor
 Father: Peter
 Mother: Jackie
 Sons: David, Dylan
 Daughter: Kelly

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughter

0..1

0..1

0..1

0..1

1

1

*

*

"Families" metamodel (visual presentation and KM3)

53

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughter

0..1

0..1

0..1

0..1

1

1

*

*

"Persons" metamodel (visual presentation and KM3)

54

Person

fullName

Male Female

The big picture

55

‣ Our goal in this mini-tutorial is to write the
ATL transformation, stored in the
"Families2Persons" file.

‣ Prior to the execution of this transformation
the resulting file "sample-Persons.ecore" does
not exist. It is created by the transformation.

‣ Before defining the transformation itself, we
need to define the source and target
metamodels ("Families.km3" and
"Person.KM3").

‣ We take for granted that the definition of the
ATL language is available (supposedly in the
"ATL.km3" file).

‣ Similarly we take for granted that the
environment provides the recursive definition
of the metametamodel (supposedly in the
"Ecore.ecore" file).sample-

Families.ecore

Eclipse Modeling Framework (EMF)

M3

M2

M1

Families.km3 ATL.km3 Persons.km3

C2C2C2

Families2Persons.atl

sample-
Persons.ecore

C2 C2 C2

Ecore.ecore C2

Families to Persons Architecture

56

‣ Families and Persons metamodels have been
created previously.

‣ They have been written in the KM3
metamodel specification DSL (Domain
Specific Language).

sample-
Families.ecore

Eclipse Modeling Framework (EMF)

M3

M2

M1

Families.km3 ATL.km3 Persons.km3

C2C2C2

Families2Persons.atl

sample-
Persons.ecore

C2 C2 C2

Ecore.ecore C2

Families to Persons Architecture

57

‣ The following file is the sample that we will
use as source model in this use case:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://
www.omg.org/XMI" xmlns="Families">
 <Family lastName="March">
 <father firstName="Jim"/>
 <mother firstName="Cindy"/>
 <sons firstName="Brandon"/>
 <daughters firstName="Brenda"/>
 </Family>
 <Family lastName="Sailor">
 <father firstName="Peter"/>
 <mother firstName="Jackie"/>
 <sons firstName="David"/>
 <sons firstName="Dylan"/>
 <daughters firstName="Kelly"/>
 </Family>
</xmi:XMI>

sample-
Families.ecore

Eclipse Modeling Framework (EMF)

M3

M2

M1

Families.km3 ATL.km3 Persons.km3

C2C2C2

Families2Persons.atl

sample-
Persons.ecore

C2 C2 C2

Ecore.ecore C2

Families to Persons Architecture

58

‣ Now, let us start the creation of the ATL
transformation Families2Persons.atl.

‣ We suppose the ATL environment is already
installed.

‣ The creation of the ATL transformation will
follow several steps as described in the next
slides.

sample-
Families.ecore

Eclipse Modeling Framework (EMF)

M3

M2

M1

Families.km3 ATL.km3 Persons.km3

C2C2C2

Families2Persons.atl

sample-
Persons.ecore

C2 C2 C2

Ecore.ecore C2

Families to Persons: project creation

▶ First we create an ATL project by using the ATL Project Wizard.

59

Families to Persons: ATL transformation creation

▶ Next we create the ATL transformation. To do this, we use the
ATL File Wizard. This will generate automatically the header
section.

60

IN:
Name of the

source model in the
transformation

Families:
Name of the

source metamodel
in the

transformation

Persons:
Name of the

target metamodel
in the

transformation

OUT:
Name of the

target model in the
transformation

Families to Persons: header section

▶ The header section names the transformation module and
names the variables corresponding to the source and target
models ("IN" and "OUT") together with their metamodels
("Persons" and "Families") acting as types. The header section
of "Families2Persons" is:

61

Families to Persons: helper "isFemale()"

▶ A helper is an auxiliary function that
computes a result needed in a rule.

▶ The following helper "isFemale()"
computes the gender of the current
member:

62

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughter

0..1

0..1

0..1

0..1

1

1

*

*

Families to Persons: helper "familyName"

▶ The family name is not directly contained
in class “Member”. The following helper
returns the family name by navigating the
relation between “Family” and “Member”:

63

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughter

0..1

0..1

0..1

0..1

1

1

*

*

▶ After the helpers we now write the rules:

■ Member to Male

■ Member to Female

Families to Persons: writing the rules

64

Summary of the Transformation

65

‣ For each instance of the class "Member"
in the IN model, create an instance in
the OUT model.
‣ If the original "Member" instance is a

"mother" or one of the "daughters" of a
given "Family", then we create an
instance of the "Female" class in the
OUT model.
‣ If the original "Member" instance is a

"father" or one of the "sons" of a given
"Family", then we create an instance of
the "Male" class in the OUT model.
‣ In both cases, the "fullname" of the

created instance is the concatenation of
the Member "firstName" and of the
Family "lastName", separated by a
blank.

+
If isFemale()
 Female
Else
 Male

Person

fullName : String

Male Female

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughter

0..1

0..1

0..1

0..1

1

1

*

*

Families to Persons Architecture

66

▶ Once the ATL transformation “Families2Persons” is created, we
can execute it to build the OUT model.

ATL Launch Configuration

67

ATL Launch Configuration

68

Summary

▶ We have presented here a "hello world" level basic ATL
transformation.

▶ This is not a recommendation on how to program in ATL, just
an initial example.

▶ Several questions have not been answered

■ Like how to transform a text into an XMI-encoded model.

■ Or how to transform the XMI-encoded result into text.

▶ For any further questions, see the documentation mentioned in
the resource page (FAQ, Manual, Examples, etc.).

69

ATL Resource page

▶ ATL Home page

■ http://www.eclipse.org/m2m/atl/

▶ ATL Documentation page

■ http://www.eclipse.org/m2m/atl/doc/

▶ ATL Newsgroup

■ news://news.eclipse.org/eclipse.modeling.m2m

▶ ATL Wiki

■ http://wiki.eclipse.org/index.php/ATL

70

Working on the example

▶ There are a lot of exercise
questions that could be based on
this simple example.

▶ For example, modify the target
metamodel as shown and compute
the "grandParent" for any Person.

71

Person
fullName: String

Male Female

grandParent

Model-Transformations
further categorization

72

73

Czarnecki, Helsen: Classification of Model Transformation Approaches, OOSPLA Workshop GTCMDA 2003

74

75

76

77

Standard Model-Transformation Language?

▶ Query View Transformation (QVT), OMG Standard

■ 3 in 1

◆ Relational

◆ Operational

◆ Core

■ obviously there is not “the” model transformation language

78

External vs. Internal Transformation Languages

▶ example ATL in Ruby, Scala

▶ build-in flexibility because model transformation concepts
are added to an existing GPL, while an external model
transformation language hides GPL concepts

▶ Transformation language semantics becomes
parameterizable (it is just a GPL Library)

79

George, Wider, Scheidgen: Type-Safe Model Transformation Languages as internal Scala DSLs, ICMT 2012

Cuadrado, Molina, Tortosa: RubyTL: A Practical, Extensible Transformation Language, ECMDA 2006

Summary

▶ large number of of model transformation types and model
transformation languages

▶ declarative transformation languages for normative and
non-normative specification purposes

▶ imperative, statically type safe transformation languages, or
programming languages for implementation

▶ no accepted standard model transformation languages,
internal DSL/GPL hybrids might be the approach

80

Operational vs. Translational

▶ self-contained

▶ requires a specific runtime
environment almost all the time

▶ debuggable

▶ platform specific, requires model
processing on that platform

▶ interpreters can be
parameterized for semantic
variations

▶ no generated artifacts, no
elaboration of generated artifacts

▶ no generated artifacts that need
to be maintained

81

▶ target language dependent

▶ sometimes requires specific
runtime environment

▶ hard to debug

▶ “platform independent”, platform
does not need to process model

▶ model transformations can be
parameterized for semantic
variations

▶ generated code can be elaborated
for semantic variations

▶ generated code is another asset
to maintain

Code-Generation vs. Model-Transformations

▶ No guaranties that
generated artifacts are well-
formed or even
semantically sound

▶ In general, no properties
can be formally proved

▶ Structural differences
between source and target
possible

▶ Generated artifacts can be
syntactically elaborated
(there is concrete syntax)

82

▶ generated artifacts are at least
syntactically sound (no concrete
syntax involved)

▶ In theory and for some
techniques, some properties
(e.g. retention of properties) can
be proved

▶ Its harder to create structurally
different targets with most
model transformation languages

▶ Elaboration of generated
artifacts only via external
extension

Summary Semantics

▶ Operational semantics

■ Syntax and runtime structure in EMF

■ EMF-operations as interpreter, Java implementation are the state of
the art

▶ Code Generation

■ Templates or Rich Strings on EMF Models are state of the art

▶ Model-Transformations

■ many languages for many different types of model transformation

■ GPL/internal DSL hybrids are current standard approach

▶ Higher-order functions and OCL-style collections go a long
way

83

